能够保证阴极发射的热电子不会轻易到达阳极,只有穿过栅极并且动能足够大的电子才能克服这个电场到达阳极。
如果具有较大的能量就能冲过反向电场而达到极板形成电流,被微电流计检测出来。如果电子在中间与汞原子碰撞,以致通过栅极后不足以克服反向电场而折回,通过电流计的电流就将显著减小,就是个筛选的作用,由于能量低了,达不到极板,这样才能有那UI曲线的产生。
扩展资料:
夫兰克—赫兹管实验的相关要求规定
1、实验要在一个类似真空管的管状容器,称为水银管,内部充满温度在140度与200度之间,低气压的水银气体。水银管内,装了三个电极:阴极、网状控制栅极、阳极。
2、当加速电压很低,小于 49伏特V时,随着电压的增加,抵达阳极的电流也平稳地单调递增。当电压在 49 伏特时,电流猛烈地降低,几乎降至 0 安培。继续增加电压。再一次,同样地,电流也跟随着平稳地增加,直到电压达到 980伏特。
3、当电压很低时,被加速的电子只能获得一点点能量。他们只能与水银原子进行纯弹性碰撞。这是因为量子力学不允许一个原子吸收任何能量,除非碰撞能量大于将电子跃迁至较高的能量量子态所需的能量。
-弗兰克—赫兹实验
如果电压时灯丝和阳极(第二栅极)间的加速电压,通常实验中是的,但如果充气管中的气体足够稀薄,也可能测到高激发态对应的电位。
水银原子的电子的最低激发能量是 49eV。当加速电压升到 49 伏特时,每一个移动至栅极的自由电子拥有至少 49eV动能(外加电子在那温度的静能)。
自由电子与水银原子可能会发生非弹性碰撞。自由电子的动能可能被用来使水银原子的束缚电子从一个能量量子态跃迁至另一个能量量子态,从而增加了束缚电子的能极,称这过程为水银原子被激发。
但是经过这非弹性碰撞,自由电子失去了 49eV 动能,不再能克服栅极与阳极之间负值的电压。大多数的自由电子会被栅极吸收。因此,抵达阳极的电流会猛烈地降低。
扩展资料夫兰克—赫兹管实验的相关要求规定
1、实验要在一个类似真空管的管状容器,称为水银管,内部充满温度在140度与200度之间,低气压的水银气体。水银管内,装了三个电极:阴极、网状控制栅极、阳极。
2、当加速电压很低,小于 49伏特V时,随着电压的增加,抵达阳极的电流也平稳地单调递增。当电压在 49 伏特时,电流猛烈地降低,几乎降至 0 安培。继续增加电压。再一次,同样地,电流也跟随着平稳地增加,直到电压达到 980伏特。
3、当电压很低时,被加速的电子只能获得一点点能量。他们只能与水银原子进行纯弹性碰撞。这是因为量子力学不允许一个原子吸收任何能量,除非碰撞能量大于将电子跃迁至较高的能量量子态所需的能量。
弗兰克-赫兹实验为能级的存在提供了直接的证据,对玻尔的原子理论是一个有力支持。弗兰克擅长低压气体放电的实验研究。
1913 年他和G赫兹在柏林大学合作,研究电离电势和量子理论的关系,用的方法是勒纳德(PLenard )创造的反向电压法,由此他们得到了一系列气体,例如氦、氖、氢和氧的电离电势。后来他们又特地研究了电子和惰性气体的碰撞特性。
-弗兰克—赫兹实验
在丹麦物理学家玻尔(NBohr)开创性地发表原子定态跃迁的量子理论后的第二年(1914年),德国物理学家弗兰克(JFrank)和赫兹(GLHertz)在研究低能电子和原子的相互作用时发现,当电子和原子发生非弹性碰撞时,电子会把特定大小的能量转移给原子并使之受激,由此证明了原子内部量子化能级的存在。同一年,在使用石英制作的F-H管中,拍摄到了对应汞原子激发所需的最低能量的光谱线,由此验证了玻尔理论中的频率法则。1920年,弗兰克及其合作者又在改进的装置中测得了原子的亚稳能级和较高的激发能级,进一步证实了原子具有离散能级的概念。显然,他们的实验为玻尔理论提供了独立于光谱研究方法的直接而有力的实验依据,为此他俩荣获1925年度的诺贝尔物理学奖,至今他们的实验方法仍是探索原子结构的重要手段之一。实验目的1.测定汞原子的电离电势。2.测定汞原子的第一激发电势,证明原子能级的存在。3.通过本实验,了解实验中的宏观量是如何与电子和原子碰撞的微观过程相联系,并进而用于研究原子的内部结构(通过本实验了解弗兰克-赫兹实验的物理思想和方法)。实验原理根据玻尔提出的量子理论,原子处于一系列不连续的能量状态,这些状态称为定态,具有确定的能量值。原子从一个定态向另一个定态的跃迁常伴随着电磁波(光)的吸收或辐射,光的频率取决于发生跃迁的二个定态En、Em之间的能量差,由能量守恒定律可得如下频率法则式中h为普朗克常量。在正常情况下,绝大部分原子处于基态(最低能态),当原子吸收电磁波或受到其它具有足够能量的粒子的碰撞时,可由基态跃迁到能量较高的一系列激发态。从基态跃迁到第一激发态的所需的能量称为临界能量,为最低能量;从基态到电离所需的能量称为电离能量,为最高能量。弗兰克及赫兹就是利用了低能电子和原子碰撞时交换能量的规律来研究原子的能级结构的。1.关于激发电势本实验用电场加速电子,并使之与稀薄气体的汞原子发生碰撞。初速度为零的电子在电势为U的加速电场作用下将获得能量eU,当此能量小于汞原子激发的临界能量时,电子与汞原子的碰撞为弹性碰撞。由于电子的质量远小于汞原子的质量,故碰撞后,电子的能量几乎没有损失。如果碰撞时电子的能量大小汞原子激发所需的临界能量,汞原子就会有一定的概率从电子那里获得能量,并从基态E1跃迁到第一激发态E2,也即电子和汞原子发生了非弹性碰撞,电子损失特定大小的能量E2-E1 = eU0,汞原子获得此能量并跃迁到高一级能态,这个电势差U0称为汞原子的第一激发电势,测出U0就可以求出汞原子的基态和第一激发态之间的能量差。实验中电子和原子的碰撞是在密封的玻璃管子内进行的,管子密封前抽真空后充汞(或其它物质),管中装有阴极、栅极和板极(阳板),这种实验用的真空三极管称为弗兰克-赫兹管(F-H管)。现在四极的F-H管也很普遍,常用以测量汞(或其它)原子的一系列较高的激发能级,于此我们仅说明三极的F-H管的工作原理。图511-1 弗兰克-赫兹实验原理图 图511-2 IA~UGK 曲线
弗兰克-赫兹实验的工作原理如图511-1所示,F-H管放在温控加热炉中,温控器可使实验温度在80~220℃取值,在实验温度下,管中的部分汞由液态转化气态,电子由热阴极发出,并由阴极K和栅极G之间的可调电压UGK加速而获得能量。在测量汞原子的第一激发电势时,开关接通a端(相当于微电流测量放大器面板上的“工作状态”开关拨向“R”档),实验温度应大于130℃,电子向栅极过程中将不断与气体原子发生碰撞。实验装置的巧妙之处在于收集电子的板极A与栅极G之间设置了一个2V左右的反向电压,称为拒斥电压UGA,此电压对在K-G空间内与汞原子发生碰撞的电子进行筛选,经过碰撞通过栅极进入GA之间的电子,其剩余动能必须大于eUGA才能克服电场的阻力到达板极A而形成电流,这样板极电流(板流)IA的大小就同电子在与气体原子碰撞过程中的能量损失联系起来了。实验时,逐渐增加栅极和阴极之间的栅极(加速)电压UGK,测量板流IA随UGK的变化,可得如图511-2所示的IA~UGK曲线。该曲线的明显特征是随UGK的增加,板流IA总体上是逐渐增加的,但清楚地显示出一系列极大值和极小值,并且各极大值或极小值之间的间隔均在49V左右。下面我们对上述曲线形状以及影响曲线各因素进行说明。加速电压UGk从零刚开始升高直到接近于汞原子的第一激发电势U0时,由于电子与汞原子的碰撞为弹性碰撞,电子几乎不损失能量,板流IA随UGK的升高而升高。当UGK的等于或稍大于U0时,开始有部分电子在栅极附近与汞原子发生非弹性碰撞,并把几乎全部的能量交给汞原子使之激发,这些损失了能量的电子不能克服拒斥电压阻挡而折回到栅板,从而使板流IA开始变小。继续增加UGK,更多的电子与汞原子发生了非弹性碰撞并损失eU0的能量,由于拒斥电压的阴挡,这些损失了能量的电子都不能到达板极形成电流,故板流IA继续变小。直到UGK≥U0+UGA时,才开始有部分通过非弹性碰撞的电子有稍大于eUGA的剩余动能,并能克服拒斥电压阻档到达板极,也即此时板流IA开始上升。当UGK≥2U0时,部分电子有可能在K-G空间中历经二次非弹性碰撞(此时第一次非弹性碰撞显然不在栅极附近)而耗尽能量,板流IA出现第二次下降;当UGK≥2U0+UGA时,损失了2eU0能量的电子开始有部分因具有足够的能量到达板极,从而板流IA又开始上升。类似地,就得到了多峰(谷)的IA~UGK曲线,如图511-2所示。峰值处的电压UGK近似地等于nU0,谷值处的电压UGK近似地等于nU0+UGA,峰(谷)间的距离刚好均为U0。如此周期性变化曲线的出现,表明原子和电子发生非弹性碰撞时,原子吸收的能量是一定的,也即原子内部存在着量子化的能级。从上述分析,我们也可以理解拒斥电压UGA对IA~UGK曲线有很大的影响:UGA偏小时,起不到对经历非弹性碰撞的热电子的筛选作用,导致极小值太大,峰谷差值也将变小;UGA偏大时,大部分电子将会被筛选掉,导致极大值太小,峰谷现象不明显。实验表明,UGA取适中值2V左右为好。需要指出的是:各电子的能量在任何时刻都不是完全相等的,而是按一定的统计规律分布的,电子和原子的碰撞也是个偶然的微观事件,由于原子在与足够能量的电子发生碰撞时被激发到某一能态上的概率既与此激发态的能级大小有关,也与碰撞电子的能量大小有关。例如,当电子的能量稍大于eU0时,汞原子被激发到第一激发态的概率很大,而激发到其它能级上的概率为零;当电子的能量明显大于eU0,汞原子被激发到第一激发态的概率明显变小,而激发到其它允许能态的概率明显增大;当电子的能量大于汞原子的电离能量时,碰撞的结果主要是使汞原子电离,当然,其它许多允许的事件,仍有不等的一定的概率发生。我们还必须注意到,电子在从阴极运动到栅极的过程中,由于与汞原子频繁的碰撞,使得其沿KG方向迂回曲折地前进。容易理解,电子的加速过程(获得能量的过程)是以其自由程为间隔分段进行的,而电子的平均自由程与汞原子数密度有关。当温度升高时,饱和汞蒸气原子数密度明显增加,电子的平均自由程很小,碰撞频率很大。需要记住的是,即使是弹性碰撞,电子与汞原子碰撞时仍约有10-5的原有能量的损失,不要小视这个数,因为电子的平均自由程也很小(10-7~10-5m),电子只有在一个自由程内从电场中获得的能量大于它经历一次弹性碰撞所损失的能量,才有可能积累到足够的能量。因此要使汞原子被激发,饱和气体的温度不能太高,电场不能太小。当温度适宜时(一般在140~220℃),电子积累的能量可以大于eU0的能量。但此时,由于自由程较小以及与汞原子频繁的(非)弹性碰撞,电子很难有机会达到远大于eU0的能量。当温度低至70~90℃时,由于电子平均自由程的明显增加,部分电子可能会积聚更大的能量去激发汞原子到更高能级,甚至使其电离。由此可见,实验中使F-H管维持在一定的温度是非常重要的。需要特别指的是:由于阴极发射的热电子的初动能大于零,阴极与栅极由于材料不同而存在的接触电势差,使整个IA~UGK曲线发生了偏移,各个峰(谷)不在原定之处,但任两个相邻峰(谷)之间的间距依旧为U0。实际上,由于汞原子亚稳态能级的存在,以及原子的顺次(逐级)激发(即处于激发态的原子在退激之前与电子再次发生非弹性碰撞并被激发到更高能级)、光电效应、光致激发和光致电离的存在,使得整个过程变得很复杂,同时也使相当一部分的汞原子被激发到更高的能级甚至被电离。在能量交换频繁的若干区域中将见到一个个淡蓝色光环,它明显地反映出了汞的光谱特性。这是那些被激发到高能级上的汞原子返回低能态时所辐射的可见光。当然,实验室用的F-H管大多是玻璃的,它对紫外线是不透明的,所以无法摄到对应临界能量的紫外光,其波长 nm。但弗兰克-赫兹用能透过紫外光的石英制作的F-H管进行实验时发现,当加速电压UGK小于49V时无任何辐射现象,当UGK稍大于49V时,汞辐射了,而且辐射的谱线正是波长为25×102nm的紫外光。最后我们指出,灯丝电压对曲线影响也较大:灯丝电压过大,导致阴极温度偏高,阴极发射的电子数过多,这将会使微电流放大器饱和,引起IA~UGK曲线阻塞,同时也使F-H管更易全面击穿;灯丝电压过小,参加碰撞的电子数太少,造成曲线峰谷很弱。实验中一般取灯丝电压为63V左右。2.关于电离电势当电子的能量达到或超过汞原子的电离能WZ = eUZ(UZ称为原子的电离电势)时,与汞原子碰撞的结果将使汞原子电离,利用F-H管测量汞原子电离电势的方法有两种,我们仅介绍离子流探测法。图511-3 离子电流IA~UGK曲线离子流探测法的工作原理如图511-1所示,此时开关K拨向b端(相当于微电流测量放大器面板上“工作状态”开关拔向“I”档),扳极A相对阴极K处于负电势。从阴极出来的电子加速运动至栅极后受到更大数值的减速电压的阻挡而到不了板极A,只有带正电的粒子才有可能到板极A而形成离子电流IA。此时炉温需降至80~90℃,汞原子数密度很小,电子的平均自由程很大,从阴极出来的部分经历碰撞最少的电子在加速电压UGK的作用下将获得能量eUGK,当此能量达到或超过汞原子的电离能WZ时,将使汞原子发生电离,板极收集到离子流。由于电离是雪崩式的,无控制时离子流随UGK的增加而迅速增大,实验结果大致如图511-3所示,曲线的拐点处即为电离电势,汞的电离电势约在104V左右。实验仪器FH-1A型弗兰克-赫兹实验仪一套:包括加热炉、弗兰克-赫兹管及微电流测量放大器等。实验内容1.预热和调整(1)将装有充汞F-H管的温控加热炉接通电源,选择一定的炉温(由实验室定),调好温控旋钮,预热15~30分钟,以得到合适的汞蒸汽密度。(2)同时接通微电流测量放大器电源,进行预热。将仪器的“栅压选择”开关拨向“M”(锯齿波自动扫描电压),此时电压表指针会缓慢上升到某值时突然变小并重新再缓慢上升。然后将“栅极电压Ug”旋钮逆时针旋至最小,把“栅压选择”开关拨向“DC”,待预热20分钟后,将“工作状态”拨向“R(激发)”,对电流表进行“零点”和“满度”校准。调零与满度之间略有牵连,故需反复调节。(3)用万用表调节UGA,使其为直流22V左右,记下UGA。(4)把“栅极电压Ug”旋钮至最小,“栅压选择”和“工作状态”拨向“0”,用随机所附专用连接线通测量放大器加热炉面板上各对应电极(注意!绝不能让G、K、H接反或短路),并用万用表检查K、H的灯丝电压是否为交流63V2.测量汞原子的电离电势UZ待加热炉稳定在所需温度(约80℃),微电流测量放大器工作稳定,弗兰克-赫兹管充分预热后,即可先进行电离电势的逐点测量。(1)先进行粗略观察。“工作状态”拨向“I(电离)”,“倍率”档为×10-5,旋动“栅压调节”旋钮,缓慢增大UGK的数值,全面观察一次IA的变化情况。当电流IA变化明显(注意“倍率”档的更换)且从加热炉玻璃窗口看到炉内F-H管的K-G空间开始出现淡淡的蓝色辉光时,表示管内汞原子已经电离,此时,不可再增大UGK以免过度电离(过度电离时F-H管的发出强烈的蓝光)导致管子严重受损,应立即将其调小至零。(2)再从零起仔细调节UGK,测量并记录一系列UGK对应的IA值。当电流明显变化时,测量结束,将“栅极电压Ug”调至最小。注意在电流开始变化处多测几个点,以便能比较精确地找出曲线的折拐点。3.测量汞原子的第一激发电势U0测定电离电势后,将“工作状态”开关拨向“R(激发)”,再调节加热炉的温控开关,使炉温升至180℃,待其稳定后,即可进行激发电势测量。(1)先进行全面观察。暂将“倍率”拨到×10-6或×10-5档,缓慢增加UGK的值,全面观察一次IA的变化情况。注意要及时更换倍率以适应电流变化。(2)测量IA~UGK曲线。使UGK从零起缓慢增加,记录下电流IA及对应UGK(即Ug)的电压值,特别地,应认真找到并读出IA的峰谷值及对应的各个UGK值,为便于作图,在各峰谷值附近应多测几个点,记下各测试条件。(3)分别改变炉温(如140℃、220℃)或(稍许)改变拒斥电压的大小,再测几条IA~UGK曲线的影响。4.用示波器观察IA~UGK图形(本实验内容可根据实验室情况选作)(1)将示波器的Y轴接到微电流测量放大器后盖输出端,Y轴增益用“×1”档,扫描速度要慢些。(2)炉温要升到200℃以上,以免F-H管严重击穿。(3)放大倍率用×10-4或10-3档,即电表的灵敏度不需太高。(4)将“栅压选择”拨向“M”,即可在示波器屏上看到IA~UGK图线,记录波形与逐点测量的图线比绞(扫描时间要尽可能短)。5.用X~Y函数记录仪描绘IA~UGK曲线(本实验内容可根据实验室情况选作)(1)将连示波器的开关倒向接记录仪的输入端,记录仪的X轴接到微电流放大器的GK端,记录仪的Y轴量程取5mV/cm,X轴量程取5V/cm。(2)函数记录仪预热后,用锯齿波电压扫描(扫描时间要尽可能短,以免F-H管被严重击穿),即可在记录纸上绘出完整的IA~UGK曲线。数据处理1.求出汞原子的电离电势UZ根据测量结果作出离子电流IA随加速电压UGK变化的曲线,并由曲线的折拐点求出汞原子的电离电势。2.求出汞原子的第一激发电势U0根据测量结果绘制电子电流IA随栅极电压UGK变化的曲线图,由曲线的峰、谷值并根据逐差法分别求出相邻峰、谷间电压的平均值,两者再平均求出汞原子的第一激发电势U0的测量结果。注意事项1.在测量过程中,当IA迅速增大时或F-H管出现强烈蓝光时,要立即减小UGK至零。2.加热炉外壳温度较高,注意避免灼伤。3.由于炉内温度场不均匀,温度计的水银泡必须与F-H管的栅阴极中段相齐。4.炉温过低时,不可加灯丝电压和栅极电压。5.若想测出IA~UGK曲线的第一个峰谷值,炉温宜低(约140℃),但要注意此时F-H管易于全面击穿。6、实验完毕,须将“栅压选择”和“工作状态”开关置“0”,“栅压调节”旋至最小,暂不拆除K、H、G连接线,不要切断微电流放大器的电源。应先切断加热炉电源,并小心旋松加热炉面板,使其快速冷却,待温度降至120℃以下后,才能切断放大器及各种连线,以延长管子寿命。预习思考题1、设汞原子的第一激发电势为49V,则能量分别为40eV和52eV的电子与汞原子发生碰撞时各损失多少能量?2、拒斥电压是如何影响IA~UGK曲线的?3、汞的电离电势宜在90℃±10℃附近测量,为什么?4、当温度较高时,IA~UGK曲线的第一个峰谷不易出现,为什么?5、弗兰克-赫兹管的阴极与栅极之间的接触电势差对IA~UGK曲线及电离电势的测定有何影响?怎样由实验结果估计其大小?分析讨论题1、在测量汞原子的第一激发电势时,观察淡蓝色光环的特征以及与UGK的关系并说明为什么?2、IA~UGK曲线的谷值一般均不为零,且随加速电压UGK的增加而增大,这是由于各种原因使原子电离形成本底电流的缘故。试根据实验结果说明本底电流与UGK的关系以及对峰谷值测量的影响?如何消除这种影响?3、由汞原子的电离电势和第一激发电势,求出汞原子基态和第一激发态的能量值。
注意事项
(1)实验装置使用220V交流单相电源,电源进线中的地线要接触良好,以防干扰和确保安全。
(2)函数记录仪的X输入负端不能与Y输入的负端连接,也不能与记录仪的地线(⊥)连接,否则要损坏仪器。
(3)实验过程中若产生电离击穿(即电流表严重过载现象)时,要立即将加速电压减少到零。以免损坏管子。
(4)加热炉外壳温度较高,移动时注意用把手,导线也不要靠在炉壁上,以免灼伤和塑料线软化。
因为,弗兰克赫兹实验 Ip-Ug2k曲线(随着电子能量变大,电子和汞原子交替做弹性碰撞和非弹性碰撞,波峰代表弹性碰撞,损失能量少,电流就大,越过阈值后能量显著减小。)而导致曲线起伏。但这种情况一般不说曲线具有周期性,因为它显然不是周期函数。
加速电压Ua刚开始升高时,极板电流也随之升高,直到加速电压Ua等于或者稍大于Ar原子的第一激发电压,这是在栅极G2附近电子与Ar原子发生非弹性碰撞,能量传递给Ar原子,Ar原子被激发。这时候由于电子损失了大量的能量,不能够越过UR产生的拒斥场,使得到达极板的电子数目减少。
实验结果诠释
使用弹性碰撞和非弹性碰撞的理论,法兰克和赫兹给予了这实验合理的解释。当电压很低时,被加速的电子只能获得一点点能量。他们只能与水银原子进行纯弹性碰撞。这是因为量子力学不允许一个原子吸收任何能量,除非碰撞能量大于将电子跃迁至较高的能量量子态所需的能量。
由于是纯弹性碰撞,系统内的总动能大约不变。又因为电子的质量超小于水银原子的质量,电子能够紧紧地获取大部分的动能。
-弗兰克-赫兹实验
欢迎分享,转载请注明来源:品搜搜测评网