磁性材料,是古老而用途十分广泛的功能材料,而物质的磁性早在3000年以前就被人们所认识和应用,例如中国古代用天然磁铁作为指南针。现代磁性材料已经广泛的用在我们的生活之中,例如将永磁材料用作马达,应用于变压器中的铁心材料,作为存储器使用的磁光盘,计算机用磁记录软盘等。可以说,磁性材料与信息化、自动化、机电一体化、国防、国民经济的方方面面紧密相关。而通常认为,磁性材料是指由过度元素铁、钴、镍及其合金等能够直接或间接产生磁性的物质。
实验表明,任何物质在外磁场中都能够或多或少地被磁化,只是磁化的程度不同。根据物质在外磁场中表现出的特性,物质可分为五类:顺磁性物质,抗磁性物质,铁磁性物质,亚磁性物质,反磁性物质。 根据分子电流假说,物质在磁场中应该表现出大体相似的特性,但在此告诉我们物质在外磁场中的特性差别很大.这反映了分子电流假说的局限性。实际上,各种物质的微观结构是有差异的,这种物质结构的差异性是物质磁性差异的原因。 磁性材料的应用——变压器
我们把顺磁性物质和抗磁性物质称为弱磁性物质,把铁磁性物质称为强磁性物质。通常所说的磁性材料是指强磁性物质。磁性材料按磁化后去磁的难易可分为软磁性材料和硬磁性材料。磁化后容易去掉磁性的物质叫软磁性材料,不容易去碰的物质叫硬磁性材料。一般来讲软磁性材料剩磁
基本特性
1、磁性材料的磁化曲线 磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H 作用下,必有相应的磁化强度M 或磁感应强度B,它们随磁场强度H 的变化曲线称为磁化曲线(M~H或B~H曲线)。磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。材料的工作状态相当于M~H曲线或B~H曲线上的某一点,该点常称为工作点。 2、软磁材料的常用磁性能参数 饱和磁感应强度Bs:其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列。 剩余磁感应强度Br:是磁滞回线上的特征参数,H回到0时的B值。 矩形比:Br∕Bs 矫顽力Hc:是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等)。 磁导率μ:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关。 初始磁导率μi、最大磁导率μm、微分磁导率μd、振幅磁导率μa、有效磁导率μe、脉冲磁导率μp。 居里温度Tc:铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性,该临界温度为居里温度。它确定了磁性器件工作的上限温度。 损耗P:磁滞损耗Ph及涡流损耗Pe P = Ph + Pe = af + bf2+ c Pe ∝ f2 t2 / ,ρ 降低,降低磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe 的方法是减薄磁性材料的厚度t 及提高材料的电阻率ρ。在自由静止空气中磁芯的损耗与磁芯的温升关系为:总功率耗散(mW)/表面积(cm2) 3、软磁材料的磁性参数与器件的电气参数之间的转换 在设计软磁器件时,首先要根据电路的要求确定器件的电压~电流特性。器件的电压~电流特性与磁芯的几何形状及磁化状态密切相关。设计者必须熟悉材料的磁化过程并拿握材料的磁性参数与器件电气参数的转换关系。设计软磁器件通常包括三个步骤:正确选用磁性材料;合理确定磁芯的几何形状及尺寸;根据磁性参数要求,模拟磁芯的工作状态得到相应的电气参数。
编辑本段简史
中国是世界上最先发现物质磁性现象和应用磁性材料的国家。早在战国时期就有关于天然磁性材料(如磁铁矿)的记载。11世纪就发明了制造人工永磁材料的方法。1086年《梦溪笔谈》记载了指南针的制作和使用。1099~1102年有指南针用于航海的记述,同时还发现了地磁偏角的现象。 磁性材料的磁滞回线
近代,电力工业的发展促进了金属磁性材料──硅钢片(Si-Fe合金)的研制。永磁金属从 19世纪的碳钢发展到后来的稀土永磁合金,性能提高二百多倍。随着通信技术的发展,软磁金属材料从片状改为丝状再改为粉状,仍满足不了频率扩展的要求。20世纪40年代,荷兰JL斯诺伊克发明电阻率高、高频特性好的铁氧体软磁材料,接着又出现了价格低廉的永磁铁氧体。50年代初,随着电子计算机的发展,美籍华人王安首先使用矩磁合金元件作为计算机的内存储器,不久被矩磁铁氧体记忆磁芯取代,后者在60~70年代曾对计算机的发展起过重要的作用。50年代初人们发现铁氧体具有独特的微波特性,制成一系列微波铁氧体器件。压磁材料在第一次世界大战时即已用于声纳技术,但由于压电陶瓷的出现,使用有所减少。后来又出现了强压磁性的稀土合金。非晶态(无定形)磁性材料是近代磁学研究的成果,在发明快速淬火技术后,1967年解决了制带工艺,正向实用化过渡。 软磁材料的一种——铁粉芯
编辑本段分类
磁性材料具有磁有序的强磁性物质,广义还包括可应用其磁性和磁效应的弱磁性及反铁磁性物质。磁性是物质的一种基本属性。物质按照其内部结构及其在外磁场中的性状可分为抗磁性、顺磁性、铁磁性、反铁磁性和亚铁磁性物质。铁磁性和亚铁磁性物质为强磁性物质,抗磁性和顺磁性物质为弱磁性物质。磁性材料按性质分为金属和非金属两类,前者主要有电工钢、镍基合金和稀土合金等,后者主要是铁氧体材料。按使用又分为软磁材料、永磁材料和功能磁性材料。功能磁性材料主要有磁致伸缩材料、磁记录材料、磁电阻材料、磁泡材料、磁光材料,旋磁材料以及磁性薄膜材料等,反映磁性材料基本磁性能的有磁化曲线、磁滞回线和磁损耗等。 1、永磁材料 一经外磁场磁化以后,即使在相当大的反向磁场作用下,仍能保持一部或大部原磁化方向的磁性。对这类材料的要求是剩余磁感应强度Br高,矫顽力BHC(即 磁性材料
抗退磁能力)强,磁能积(BH)(即给空间提供的磁场能量)大。相对于软磁材料而言,它亦称为硬磁材料。 软磁材料制品
永磁材料有合金、铁氧体和金属间化合物三类。①合金类:包括铸造、烧结和可加工合金。铸造合金的主要品种有:AlNi(Co)、FeCr(Co)、FeCrMo、FeAlC、FeCo(V)(W);烧结合金有:Re-Co(Re代表稀土元素)、Re-Fe以及AlNi(Co)、FeCrCo等;可加工合金有:FeCrCo、PtCo、MnAlC、CuNiFe和AlMnAg等,后两种中BHC较低者亦称半永磁材料。②铁氧体类:主要成分为MO·6Fe2O3,M代表Ba、Sr、Pb或SrCa、LaCa等复合组分。③金属间化合物类:主要以MnBi为代表。 永磁材料有多种用途。①基于电磁力作用原理的应用主要有:扬声器、话筒、电表、按键、电机、继电器、传感器、开关等。②基于磁电作用原理的应用主要有:磁控管和行波管等微波电子管、显像管、钛泵、微波铁氧体器件、磁阻器件、霍尔器件等。③基于磁力作用原理的应用主要有:磁轴承、选矿机、磁力分离器、磁性吸盘、磁密封、磁黑板、玩具、标牌、密码锁、复印机、控温计等。其他方面的应用还有:磁疗、磁化水、磁麻醉等。 根据使用的需要,永磁材料可有不同的结构和形态。有些材料还有各向同性和各向异性之别。 2、软磁材料 永磁材料
它的功能主要是导磁、电磁能量的转换与传输。因此,对这类材料要求有较高的磁导率和磁感应强度,同时磁滞回线的面积或磁损耗要小。与永磁材料相反,其Br和BHC越小越好,但饱和磁感应强度Bs则越大越好。 软磁材料的一种——铁粉芯 软磁材料大体上可分为四类。①合金薄带或薄片:FeNi(Mo)、FeSi、FeAl等。②非晶态合金薄带:Fe基、Co基、FeNi基或FeNiCo基等配以适当的Si、B、P和其他掺杂元素,又称磁性玻璃。③磁介质(铁粉芯):FeNi(Mo)、FeSiAl、羰基铁和铁氧体等粉料,经电绝缘介质包覆和粘合后按要求压制成形。④铁氧体:包括尖晶石型──M O·Fe2O3 (M 代表NiZn、MnZn、MgZn、Li1/2Fe1/2Zn、CaZn等),磁铅石型──Ba3Me2Fe24O41(Me代表Co、Ni、Mg、Zn、Cu及其复合组分)。 软磁材料的应用甚广,主要用于磁性天线、电感器、变压器、磁头、耳机、继电器、振动子、电视偏转轭、电缆、延迟线、传感器、微波吸收材料、电磁铁、加速器高频加速腔、磁场探头、磁性基片、磁场屏蔽、高频淬火聚能、电磁吸盘、磁敏元件(如磁热材料作开关)等。 3、矩磁材料和磁记录材料 主要用作信息记录、无接点开关、逻辑操作和信息放大。这种材料的特点是磁滞回线呈矩形。 4、旋磁材料 具有独特的微波磁性,如导磁率的张量特性、法拉第旋转、共振吸收、场移、相移、双折射和自旋波等效应。据此设计的器件主要用作微波能量的传输和转换,常用的有隔离器、环行器、滤波器(固定式或电调式)、衰减器、相移器、调制器、开关、限幅器及延迟线等,还有尚在发展中的磁表面波和静磁波器件(见微波铁氧体器件)。常用的材料已形成系列,有Ni系、Mg系、Li系、YlG系和BiCaV系等铁氧体材料;并可按器件的需要制成单晶、多晶、非晶或薄膜等不同的结构和形态。 5、压磁材料 这类材料的特点是在外加磁场作用下会发生机械形变,故又称磁致伸缩材料,它的功能是作磁声或磁力能量的转换。常用于超声波发生器的振动头、通信机的机械滤波器和电脉冲信号延迟线等,与微波技术结合则可制作微声(或旋声)器件。由于合金材料的机械强度高,抗振而不炸裂,故振动头多用Ni系和NiCo系合金;在小信号下使用则多用Ni系和NiCo系铁氧体。非晶态合金中新出现的有较强压磁性的品种,适宜于制作延迟线。压磁材料的生产和应用远不及前面四种材料。 磁性材料的应用——变压器 磁性材料是生产、生活、国防科学技术中广泛使用的材料。如制造电力技术中的各种电机、变压器,电子技术中的各种磁性元件和微波电子管,通信技术中的滤波器和增感器,国防技术中的磁性水雷、电磁炮,各种家用电器等。此外,磁性材料在地矿探测、海洋探测以及信息、能源、生物、空间新技术中也获得了广泛的应用。 磁性材料的用途广泛。主要是利用其各种磁特性和特殊效应制成元件或器件;用于存储、传输和转换电磁能量与信息,或在特定空间产生一定强度和分布的磁场;有时也以材料的自然形态而直接利用(如磁性液体)。磁性材料在电子技术领域和其他科学技术领域中都有重要的作用。 中国古代的指南针——司南
编辑本段发展及种类
1、软磁材料的发展 软磁材料在工业中的应用始于19世纪末。随着电力工及电讯技术的兴起,开始使用低碳钢制造电机和变压器,在电话线路中的电感线圈的磁芯中使用了细小的铁粉、氧化铁、细铁丝等。到20世纪初,研制出了硅钢片代替低碳钢,提高了变压器的效率,降低了损耗。直至现在硅钢片在电力工业用软磁材料中仍居首位。到20年代,无线电技术的兴起,促进了高导磁材料的发展,出现了坡莫合金及坡莫合金磁粉芯等。从40年代到60年代,是科学技术飞速发展的时期,雷达、电视广播、集成电路的发明等,对软磁材料的要求也更高,生产出了软磁合金薄带及软磁铁氧体材料。进入70年代,随着电讯、自动控制、计算机等行业的发展,研制出了磁头用软磁合金,除了传统的晶态软磁合金外,又兴起了另一类材料——非晶态软磁合金。 2、常用软磁磁芯的种类 铁、钴、镍三种铁磁性元素是构成磁性材料的基本组元。 磁性材料
按(主要成分、磁性特点、结构特点)制品形态分类: (1) 粉芯类: 磁粉芯,包括:铁粉芯、铁硅铝粉芯、高磁通量粉芯(High Flux)、坡莫合金粉芯(MPP)、铁氧体磁芯 (2) 带绕铁芯:硅钢片、坡莫合金、非晶及纳米晶合金
编辑本段常用软磁磁芯
磁粉芯是由铁磁性粉粒与绝缘介质混合压制而成的一种软磁材料。由于铁磁性颗粒很小(高频下使用的为05~5 微米),又被非磁性电绝缘膜物质隔开,因此,一方面可以隔绝涡流,材料适用于较高频率;另一方面由于颗粒之间的间隙效应,导致材料具有低导磁率及恒导磁特性;又由于颗粒尺寸小,基本上不发生集肤现象,磁导率随频率的变化也就较为稳定。主要用于高频电感。磁粉芯的磁电性能主要取决于粉粒材料的导磁率、粉粒的大小和形状、它们的填充系数、绝缘介质的含量、成型压力及热处理工艺等。 常用的磁粉芯有铁粉芯、坡莫合金粉芯及铁硅铝粉芯三种。 磁芯的有效磁导率μe及电感的计算公式为: μe = DL/4N2S × 109 。其中:D 为磁芯平均直径(cm),L为电感量(享),N 为绕线匝数,S为磁芯有效截面积(cm2)。 (1) 铁粉芯 常用铁粉芯是由碳基铁磁粉及树脂碳基铁磁粉构成。在粉芯中价格最低。饱和磁感应强度值在14T左右;磁导率范围从22~100;初始磁导率μi随频率的变化稳定性好;直流电流叠加性能好;但高频下损耗高。铁粉芯初始磁导率随直流磁场强度的变化。铁粉芯初始磁导率随频率的变化 (2)坡莫合金粉芯 坡莫合金粉芯主要有钼坡莫合金粉芯(MPP)及高磁通量粉芯(High Flux)。 MPP 是由81%Ni、2%Mo及Fe粉构成。主要特点是:饱和磁感应强度值在7500Gs左右;磁导率范围大,从14~550;在粉末磁芯中具有最低的损耗;温度稳定性极佳,广泛用于太空设备、露天设备等;磁致伸缩系数接近零,在不同的频率下工作时无噪声产生。主要应用于300kHz以下的高品质因素Q滤波器、感应负载线圈、谐振电路、在对温度稳定性要求高的LC电路上常用、输出电感、功率因素补偿电路等, 在AC电路中常用, 粉芯中价格最贵。 高磁通粉芯HF是由50%Ni、50%Fe粉构成。主要特点是:饱和磁感应强度值在15000Gs 左右;磁导率范围从14~160;在粉末磁芯中具有最高的磁感应强度,最高的直流偏压能力;磁芯体积小。主要应用于线路滤波器、交流电感、输出电感、功率因素校正电路等, 在DC 电路中常用,高DC 偏压、高直流电和低交流电上用得多。价格低于MPP。 (3) 铁硅铝粉芯(Kool Mμ Cores) 铁硅铝粉芯由9%Al、5%Si, 85%Fe粉构成。主要是替代铁粉芯,损耗比铁粉芯低80%,可在8kHz以上频率下使用;饱和磁感在105T 左右;导磁率从26~125;磁致伸缩系数接近0,在不同的频率下工作时无噪声产生;比MPP有更高的DC偏压能力;具有最佳的性能价格比。主要应用于交流电感、输出电感、线路滤波器、功率因素校正电路等。有时也替代有气隙铁氧体作变压器铁芯使用。 2、 软磁铁氧体(Ferrites) 软磁铁氧体 软磁铁氧体是以Fe2O3为主成分的亚铁磁性氧化物,采用粉末冶金方法生产。有Mn-Zn、Cu-Zn、Ni-Zn等几类,其中Mn-Zn铁氧体的产量和用量最大,Mn-Zn铁氧体的电阻率低,为1~10 欧姆-米,一般在100kHZ 以下的频率使用。Cu-Zn、Ni-Zn铁氧体的电阻率为102~104 欧姆-米,在100kHz~10 兆赫的无线电频段的损耗小,多用在无线电用天线线圈、无线电中频变压器。磁芯形状种类丰富,有E、I、U、EC、ETD形、方形(RM、EP、PQ)、罐形(PC、RS、DS)及圆形等。在应用上很方便。由于软磁铁氧体不使用镍等稀缺材料也能得到高磁导率,粉末冶金方法又适宜于大批量生产,因此成本低,又因为是烧结物硬度大、对应力不敏感,在应用上很方便。而且磁导率随频率的变化特性稳定,在150kHz以下基本保持不变。随着软磁铁氧体的出现,磁粉芯的生产大大减少了,很多原来使用磁粉芯的地方均被软磁铁氧体所代替。 国内外铁氧体的生产厂家很多,在此仅以美国的Magnetics公司生产的Mn-Zn铁氧体为例介绍其应用状况。分为三类基本材料:电信用基本材料、宽带及EMI材料、功率型材料。 电信用铁氧体的磁导率从750~2300, 具有低损耗因子、高品质因素Q、稳定的磁导率随温度/时间关系, 是磁导率在工作中下降最慢的一种,约每10年下降3%~4%。广泛应用于高Q滤波器、调谐滤波器、负载线圈、阻抗匹配变压器、接近传感器。宽带铁氧体也就是常说的高导磁率铁氧体,磁导率分别有5000、10000、15000。其特性为具有低损耗因子、高磁导率、高阻抗/频率特性。广泛应用于共模滤波器、饱和电感、电流互感器、漏电保护器、绝缘变压器、信号及脉冲变压器,在宽带变压器和EMI上多用。功率铁氧体具有高的饱和磁感应强度,为4000~5000Gs。另外具有低损耗/频率关系和低损耗/温度关系。也就是说,随频率增大、损耗上升不大;随温度提高、损耗变化不大。广泛应用于功率扼流圈、并列式滤波器、开关电源变压器、开关电源电感、功率因素校正电路。 (二) 带绕铁芯 1、硅钢片铁芯 硅钢片是一种合金,在纯铁中加入少量的硅(一般在45%以下)形成的铁硅系合金称为硅钢。该类铁芯具有最高的饱和磁感应强度值为20000Gs;由于它们具有较好的磁电性能,又易于大批生产,价格便宜,机械应力影响小等优点,在电力电子行业中获得极为广泛的应用,如电力变压器、配电变压器、电流互感器等铁芯。是软磁材料中产量和使用量最大的材料。也是电源变压器用磁性材料中用量最大的材料。特别是在低频、大功率下最为适用。常用的有冷轧硅钢薄板DG3、冷轧无取向电工钢带DW、冷轧取向电工钢带DQ,适用于各类电子系统、家用电器中的中、小功率低频变压器和扼流圈、电抗器、电感器铁芯,这类合金韧性好,可以冲片、切割等加工,铁芯有叠片式及卷绕式。但高频下损耗急剧增加,一般使用频率不超过400Hz。从应用角度看,对硅钢的选择要考虑两方面的因素:磁性和成本。对小型电机、电抗器和继电器,可选纯铁或低硅钢片;对于大型电机,可选高硅热轧硅钢片、单取向或无取向冷轧硅钢片;对变压器常选用单取向冷轧硅钢片。在工频下使用时,常用带材的厚度为02~035毫米;在400Hz下使用时,常选01毫米厚度为宜。厚度越薄,价格越高。 2、坡莫合金 坡莫合金铁芯 坡莫合金常指铁镍系合金,镍含量在30~90%范围内。是应用非常广泛的软磁合金。通过适当的工艺,可以有效地控制磁性能,比如超过105的初始磁导率、超过106的最大磁导率、低到2‰奥斯特的矫顽力、接近1或接近0的矩形系数,具有面心立方晶体结构的坡莫合金具有很好的塑性,可以加工成1μm的超薄带及各种使用形态。常用的合金有1J50、1J79、1J85等。1J50 的饱和磁感应强度比硅钢稍低一些,但磁导率比硅钢高几十倍,铁损也比硅钢低2~3倍。做成较高频率(400~8000Hz)的变压器,空载电流小,适合制作100W以下小型较高频率变压器。1J79 具有好的综合性能,适用于高频低电压变压器,漏电保护开关铁芯、共模电感铁芯及电流互感器铁芯。1J85 的初始磁导率可达十万105以上,适合于作弱信号的低频或高频输入输出变压器、共模电感及高精度电流互感器等。 3、非晶及纳米晶软磁合金(Amorphous and Nanocrystalline alloys) 硅钢和坡莫合金软磁材料都是晶态材料,原子在三维空间做规则排列,形成周期性的点阵结构,存在着晶粒、晶界、位错、间隙原子、磁晶各向异性等缺陷,对软磁性能不利。从磁性物理学上来说,原子不规则排列、不存在周期性和晶粒晶界的非晶态结构对获得优异软磁性能是十分理想的。非晶态金属与合金是70年代问世的一个新型材料领域。它的制备技术完全不同于传统的方法,而是采用了冷却速度大约为每秒一百万度的超急冷凝固技术,从钢液到薄带成品一次成型,比一般冷轧金属薄带制造工艺减少了许多中间工序,这种新工艺被人们称之为对传统冶金工艺的一项革命。由于超急冷凝固,合金凝固时原子来不及有序排列结晶,得到的固态合金是长程无序结构,没有晶态合金的晶粒、晶界存在,称之为非晶合金,被称为是冶金材料学的一项革命。这种非晶合金具有许多独特的性能,如优异的磁性、耐蚀性、耐磨性、高的强度、硬度和韧性,高的电阻率和机电耦合性能等。由于它的性能优异、工艺简单,从80年代开始成为国内外材料科学界的研究开发重点。目前美、日、德国已具有完善的生产规模,并且大量的非晶合金产品逐渐取代硅钢和坡莫合金及铁氧体涌向市场。 中国自从70年代开始了非晶态合金的研究及开发工作,经过“六五”、“七五”、“八五”期间的重大科技攻关项目的完成,共取得科研成果134项,国家发明奖2项,获专利16项,已有近百个合金品种。钢铁研究总院现具有4条非晶合金带材生产线、一条非晶合金元器件铁芯生产线。生产各种定型的铁基、铁镍基、钴基和纳米晶带材及铁芯,适用于逆变电源、开关电源、电源变压器、漏电保护器、电感器的铁芯元件,年产值近2000万元。“九五”正在建立千吨级铁基非晶生产线,进入国际先进水平行列。 目前,非晶软磁合金所达到的最好单项性能水平为: 初始磁导率 μo = 14 × 104 钴基非晶最大磁导率 μm= 220 × 104 钴基非晶矫顽力 Hc = 0001 Oe 磁性材料
钴基非晶矩形比 Br/Bs = 0995 钴基非晶饱和磁化强度 4πMs = 18300Gs 铁基非晶电阻率 ρ= 270μΩ/cm 常用的非晶合金的种类有:铁基、铁镍基、钴基非晶合金以及铁基纳米晶合金。其国家牌号及性能特点见表及图所示,为便于对比,也列出晶态合金硅钢片、坡莫合金1J79 及铁氧体的相应性能。这几类材料各有不同的特点,在不同的方面得到应用。 牌号基本成分和特征: 1K101 Fe-Si-B 系快淬软磁铁基合金 1K102 Fe-Si-B-C 系快淬软磁铁基合金 1K103 Fe-Si-B-Ni 系快淬软磁铁基合金 1K104 Fe-Si-B-Ni Mo 系快淬软磁铁基合金 1K105 Fe-Si-B-Cr(及其他元素)系快淬软磁铁基合金 1K106 高频低损耗Fe-Si-B 系快淬软磁铁基合金 1K107 高频低损耗Fe-Nb-Cu-Si-B 系快淬软磁铁基纳米晶合金 1K201 高脉冲磁导率快淬软磁钴基合金 1K202 高剩磁比快淬软磁钴基合金 1K203 高磁感低损耗快淬软磁钴基合金 1K204 高频低损耗快淬软磁钴基合金 1K205 高起始磁导率快淬软磁钴基合金 1K206 淬态高磁导率软磁钴基合金 1K501 Fe-Ni-P-B 系快淬软磁铁镍基合金 1K502 Fe-Ni-V-Si-B 系快淬软磁铁镍基合金 400Hz: 硅钢铁芯 非晶铁芯 功率(W) 45 45 铁芯损耗(W) 24 13 激磁功率(VA) 61 13 总重量(g) 295 276
编辑本段展望
磁电共存这一基本规律导致了磁性材料必然与电子技术相互促进而发展,例如光电子技术促进了光磁材料和磁光材料的研制。磁性半导体材料和磁敏材料和器件可以应用于遥感、遥则技术和机器人。人们正在研究新的非晶态和稀土磁性材料(如FeNa合金)。磁性液体已进入实用阶段。某些新的物理和化学效应的发现(如拓扑效应)也给新材料的研制和应用(如磁声和磁热效应的应用)提供了条件。较小,硬磁性材料剩磁较大。
问题一:哪几种金属磁铁可以吸起来 铁、钴、镍及其合金,铁氧体。
大体上说只要是“铁磁性物质”就可以被磁铁吸引
铁磁性物质:
实验表明,任何物质在外磁场中都能够或多或少地被磁化,只是磁化的程度不同。根据物质在外磁场中表现出的特性,物质可粗略地分为三类:顺磁性物质,抗磁性物质,铁磁性物质。
根据分子电流假说,物质在磁场中应该表现出大体相似的特性,但在此告诉我们物质在外磁场中的特性差别很大,这反映了分子电流假说的局限性。实际上,各种物质的微观结构是有差异的,这种物质结构的差异性是物质磁性差异的原因。
我们把顺磁性物质和抗磁性物质称为弱磁性物质,铁磁性物质称为强磁性物质。通常所说的磁性材料是指强磁性物质。磁性材料按磁化后去磁的难易可分为软磁性材料和硬磁性材料。磁化后容易去掉磁性的物质叫软磁性材料,不容易去碰的物质叫硬磁性材料。一般来讲软磁性材料剩磁较小,硬磁性材料剩磁较大。
磁性材料按化学成份分,常见的有两大类:金属磁性材料和铁氧体。铁氧体是以氧化铁为主要成分的磁性氧化物。软磁性材料的剩磁弱,而且容易去磁,适用于需要反复磁化的场合,可以用来制造半导体收音机的天线磁棒、录音机的磁头、电子计算机中的记忆元件,以及变压器、交流发电机、电磁铁和各种高频元件的铁芯等。常见的金属软磁性材料有软铁、硅钢、镍铁合金等,常见的软磁铁氧体有锰锌铁氧体、镍锌铁氧体等。硬磁性材料的剩磁强,而且不易退磁,适合制成永磁铁,应用在磁电式仪表、扬声器、话筒、永磁电机等电器设备中。常见的金属硬磁性材料有碳钢、钨钢、铝镍钴合金等,常见的硬磁铁氧体为钡铁氧体和锯铁氧体。
acumox/blogs/xp/2005/7/29/
问题二:哪些金属不能与磁铁相吸?哪些可以? 锈钢能不能和磁铁相吸的问题,主要是这个原因。我们常说的钢、铁、不锈钢都属于铁基黑色金属材料。能否被磁铁吸引是材料的一项物理性能,叫导磁性。虽然都是不锈钢,因为其金相组织结构的不同,导磁性有不同的表现;奥氏体型的不锈钢导磁性不好,就不能被吸住,你家的不锈钢勺就属于此类;马氏体型的不锈钢导磁性较好,就能被吸住,比较好用而且刃口较锋利的不锈钢菜刀,就会被磁铁吸引,属于此类。艾尔磁电成立2006专业生产各种磁性产品。好磁铁,选艾尔。
问题三:哪些金属能被磁铁吸引?哪些不能? 磁铁只能吸引铁(Fe),钴(Co),镍(Ni)3种金属,因为只有铁(Fe),钴(Co),镍(Ni)是顺磁体,就是说其内部原子磁场指向方向一致 而其他金属又分为2类,一类是内部原子磁场指向方向呈现各个方向随机,最后磁场互相抵消而没有磁性。第2类是内部原子磁场指向方向平行相反, 最后磁场互相抵消而没有磁性
问题四:磁铁能吸附几种金属为什么磁铁能吸附铁呢 可以吸附铁,钴,镍
铁、钴、镍等铁磁物质内包含有大量磁筹(相当于小磁铁,即下面说到的原磁体),在磁场作用下产生力的作用
磁铁是磁体的一种
磁铁吸引铁、钴、镍等物质的性质称为磁性
铁、钴、镍中有许多具有两个异性磁极的原磁体,在无外磁场作用时,这些原磁体排列紊乱,当外磁场作用时,原磁体排列总体上表现的较为规整,表现出磁性
至于为什么磁铁不可以吸引其他金属,那是因为其他金属的外电子排布不具有铁,镍等金属的特殊结构,也就是不具备磁筹性 ----个人理解
问题五:那种磁铁吸附力最强?能吸附哪几种金属类物体? 钕铁硼磁铁(永磁强磁)及电磁铁的吸附力最强,能吸附含铁、钴、镍、锰等成分的金属。武汉强丰泰磁业有限公司提供参考。
问题六:磁铁可以吸哪些东西呢? 磁铁的成分是铁、钴、镍等原子,其原子的内部结构比较特殊,本身就具有磁矩。磁铁种类:形状类磁铁:方块磁铁、瓦形磁铁、异形磁铁、圆柱形磁铁、圆环磁铁、圆片磁铁、磁棒磁铁、磁力架磁铁,属性类磁铁:钐钴磁体、钕铁硼磁铁、铁氧体磁铁、铝镍钴磁铁、铁铬钴磁铁,行业类磁铁:磁性组件、电机磁铁、橡胶磁铁、强力磁铁、塑磁等等种类。磁铁分永久磁铁与软磁,永久磁铁是加上强磁,使磁性物质的自旋与电子角动量成固定方向排列,软磁则是加上电流(也是一种加上磁力的方法) 等电流去掉软铁会慢慢失去磁性。
磁铁能够产生磁场,具有吸引铁磁性物质如铁、镍、钴等金属的特性。
磁铁可分作“永久磁铁”与“非永久磁铁”。永久磁铁可以是天然产物,又称天然磁石,也可以由人工制造(最强的磁铁是钕磁铁)。而非永久性磁铁,只有在某些条件下会有磁性,通常是以电磁铁的形式产生,也就是利用电流来强化其磁场。
问题七:磁铁能吸的金属有哪些 现在由于众所周知的原因XB上的游戏量还是很多的
有喜欢的游戏还是可以考虑入手的
XB360初期游戏数量方面没什么优势 再加上那个原因 能玩的就更少了
不过最终还是要自己决定-v-
问题八:磁铁能吸一切金属物质吗 不能。比如304不锈钢,蒙耐尔合金K500等。
问题九:哪几种金属磁铁可以吸起来 铁、钴、镍及其合金,铁氧体。
大体上说只要是“铁磁性物质”就可以被磁铁吸引
铁磁性物质:
实验表明,任何物质在外磁场中都能够或多或少地被磁化,只是磁化的程度不同。根据物质在外磁场中表现出的特性,物质可粗略地分为三类:顺磁性物质,抗磁性物质,铁磁性物质。
根据分子电流假说,物质在磁场中应该表现出大体相似的特性,但在此告诉我们物质在外磁场中的特性差别很大,这反映了分子电流假说的局限性。实际上,各种物质的微观结构是有差异的,这种物质结构的差异性是物质磁性差异的原因。
我们把顺磁性物质和抗磁性物质称为弱磁性物质,铁磁性物质称为强磁性物质。通常所说的磁性材料是指强磁性物质。磁性材料按磁化后去磁的难易可分为软磁性材料和硬磁性材料。磁化后容易去掉磁性的物质叫软磁性材料,不容易去碰的物质叫硬磁性材料。一般来讲软磁性材料剩磁较小,硬磁性材料剩磁较大。
磁性材料按化学成份分,常见的有两大类:金属磁性材料和铁氧体。铁氧体是以氧化铁为主要成分的磁性氧化物。软磁性材料的剩磁弱,而且容易去磁,适用于需要反复磁化的场合,可以用来制造半导体收音机的天线磁棒、录音机的磁头、电子计算机中的记忆元件,以及变压器、交流发电机、电磁铁和各种高频元件的铁芯等。常见的金属软磁性材料有软铁、硅钢、镍铁合金等,常见的软磁铁氧体有锰锌铁氧体、镍锌铁氧体等。硬磁性材料的剩磁强,而且不易退磁,适合制成永磁铁,应用在磁电式仪表、扬声器、话筒、永磁电机等电器设备中。常见的金属硬磁性材料有碳钢、钨钢、铝镍钴合金等,常见的硬磁铁氧体为钡铁氧体和锯铁氧体。
acumox/blogs/xp/2005/7/29/
问题十:哪些金属不能与磁铁相吸?哪些可以? 锈钢能不能和磁铁相吸的问题,主要是这个原因。我们常说的钢、铁、不锈钢都属于铁基黑色金属材料。能否被磁铁吸引是材料的一项物理性能,叫导磁性。虽然都是不锈钢,因为其金相组织结构的不同,导磁性有不同的表现;奥氏体型的不锈钢导磁性不好,就不能被吸住,你家的不锈钢勺就属于此类;马氏体型的不锈钢导磁性较好,就能被吸住,比较好用而且刃口较锋利的不锈钢菜刀,就会被磁铁吸引,属于此类。艾尔磁电成立2006专业生产各种磁性产品。好磁铁,选艾尔。
铁、镍、钴等金属。
磁铁的成分是铁、钴、镍等原子,其原子的内部结构比较特殊,本身就具有磁矩。磁铁能够产生磁场,具有吸引铁磁性物质如铁、镍、钴等金属的特性。
磁铁种类:形状类磁铁:方块磁铁、瓦形磁铁、异形磁铁、圆柱形磁铁、圆环磁铁、圆片磁铁、磁棒磁铁、磁力架磁铁,属性类磁铁:钐钴磁体、钕铁硼磁铁(强力磁铁)、铁氧体磁铁、铝镍钴磁铁、铁铬钴磁铁,行业类磁铁:磁性组件、电机磁铁、橡胶磁铁、塑磁等等种类。
磁铁分永久磁铁与软磁,永久磁铁是加上强磁,使磁性物质的自旋与电子角动量成固定方向排列,软磁则是加上电。(也是一种加上磁力的方法) 等电流去掉软铁会慢慢失去磁性。
扩展资料:
磁铁制作工艺:
1,原料
钕铁硼磁铁的主要原材料有:稀土金属钕、稀土金属镨、纯铁、铝、硼铁合金以及其他稀土原料
2,钕铁硼磁铁加工工具
有专用切片机、线切割机床、平磨机、双面机、打孔机、倒角机、电镀设备。
3,工艺流程
钕铁硼磁铁、钐钴磁铁、铝镍钴磁铁、铁氧体磁铁制作工艺也有所不同。从工艺讲,有烧结钕铁硼磁铁和粘接钕铁硼磁铁,我们主要讲烧结钕铁硼磁铁。
配料 → 熔炼制锭→ 制粉 → 压型 → 烧结回火 → 磁性检测 → 磨加工 → 销切加工 →电镀→ 磁化→成品。
其中配料是基础,烧结回火是关键钕铁硼磁铁生产工具:有熔炼炉、鄂破机、球磨机、气流磨、压制成型机、真空封装机、等静压机、烧结炉、热处理真空炉、磁性能测试仪、高斯计
参考资料:
磁性材料按化学成份分,常见的有两大类:金属磁性材料和铁氧体.铁氧体是以氧化铁为主要成分的磁性氧化物.软磁性材料的剩磁弱,而且容易去磁.适用于需要反复磁化的场合.可以用来制造半导体收音机的天线磁棒、录音机的磁头、电子计算机中的记忆元件,以及变压器、交流发电机、电磁铁和各种高频元件的铁芯等.常见的金属软磁性材料有软铁、硅钢、镍铁合金等,常见的软磁铁氧体有锰锌铁氧体、镍锌铁氧体等.硬磁性材料的剩磁强,而且不易退磁,适合制成永磁铁,应用在磁电式仪表、扬声器、话筒、永磁电机等电器设备中.常见的金属硬磁性材料有碳钢、钨钢、铝镍钴合金等,常见的硬磁铁氧体为钡铁氧体和锯铁氧体.
我的看法:一般的所指的磁铁不单单是铁氧体(四氧化三铁),还有铁钴镍合金、铁的稀土合金等各种永磁材料,如铝镍钴、钐钴、钕铁硼,这些也很常见,磁性非常强,这些物质能够被磁场恒磁场磁化,而且磁化后本身具有磁性且不消失。
至于磁铁为什么能够有磁性??这个问题很难回答,现在一般解释:
铁、钴、镍或铁氧体等铁磁类物质内部的电子自旋可以在小范围内自发地排列起来,形成一个自发磁化区,这种自发磁化区就叫磁畴。铁磁类物质磁化后,内部的磁畴整整齐齐、方向一致地排列起来,使磁性加强,就构成磁铁了。磁铁的吸铁过程就是对铁块的磁化过程,磁化了的铁块和磁铁不同极性间产生吸引力,铁块就牢牢地与磁铁“粘”在一起了。我们就说磁铁有磁性了。
但是为什么就这几种元素才具有这样的特性,恐怕专业人士和科学家现在也难以解释。
不对的地方请指正。
磁铁的成分是铁、钴、镍等原子,其原子的内部结构比较特殊,本身就具有磁矩。磁铁能够产生磁场,具有吸引铁磁性物质如铁、镍、钴等金属的特性。
将条形磁铁的中点用细线悬挂起来,静止的时候,它的两端会各指向地球南方和北方,指向北方的一端称为指北极或N极,指向南方的一端为指南极或S极。
如果将地球想像成一块大磁铁,则地球的地磁北极是指南极,地磁南极则是指北极。磁铁与磁铁之间,同名磁极相排斥、异名磁极相吸引。所以,指南针与南极相排斥,指北针与北极相排斥,而指南针与指北针则相吸引。
扩展资料
应用
1、如果没有磁性材料,电气化就成为不可能,因为发电要用到发电机、输电要用到变压器、电力机械要用到电动机、电话机、收音机和电视机中要用到扬声器。众多仪器仪表都要用到磁钢线圈结构。这些都已经在讲述其它内容时说到了。
2、磁性材料在军事领域同样得到了广泛应用。例如,普通的水雷或者地雷只能在接触目标时爆炸,因此作用有限。而如果在水雷或地雷上安装磁性传感器,由于坦克或者军舰都是钢铁制造的,在它们接近(无须接触目标)时,传感器就可以探测到磁场的变化使水雷或地雷爆炸,提高了杀伤力。
—磁铁
欢迎分享,转载请注明来源:品搜搜测评网