太阳大气中有90多种化学元素其中氢的含量最多,约占太阳质量的71%,氦约占27%,其他元素约占2%其他元素中有钠、钙、铁、氧等等它的平均温度是6000度左右,可以说是一个温度很高的大气团,太阳上的高温使物质保持气体状态,同时也使气体原子失去大量的核外电子,这些电子不再受原子核的束缚,成为“自由电子”因此太阳上的气体处于等离子体状态
扩展资料
太阳结构:天文学家把太阳结构分为内部结构和大气结构两大部分。太阳的内部结构由内到外可分为核心、辐射层、对流层3个部分,大气结构由内到外可分为光球、色球、和日冕3层 。
太阳的中央为核心约位在0~025的太阳半径。密度约为水的158倍;温度约为15000000K在如此高温高密度的环境下,可发生核聚变反应。
太阳核心之外为太阳辐射层,约为在025~086太阳半径。其底部密度约为水的20倍,温度约为8000000k;其上部密度约为水的001倍,温度约为500000 k。
太阳是一个炽热的球体。表面温度可达5000~6000K。太阳外表的稀薄大气层,称为日冕(Corona),由等离子体构成。这种等离子体以每秒几百公里的速度向四周扩散,形成的粒子流称为太阳风。由于太阳具有极高的温度,推断其物质成分能通过扩散而达到均一。因此,认为太阳大气层的化学成分可能和太阳内部成分无明显差别,因而认为太阳大气层的化学成分可代表太阳的化学组成。太阳大气层的化学成分可通过太阳光谱的分析资料获得。目前从太阳光谱中测得的化学元素达85种。这些元素在太阳表面温度下,绝大多数都呈原子或等离子体存在。虽然发现有以分子状态存在的,但种类和数量极少。关于某些元素在太阳大气中未被发现的原因,倾向认为这些元素可能在太阳中的丰度过低,现有的光谱技术难以检测。
太阳表层中主要元素丰度列于表1-20。其最显著的特征是氢和氦具有极大的丰度,这两种元素几乎占太阳质量的99%以上。从核物理分析看,维持太阳表面极高温度的能源应是来自由氢合成氦过程产生的核能。
表1-20 太阳表层的元素丰度(原子数/硅原子数·10-6)
楼主你好:
组成太阳的物质大多是些普通的气体,其中氢约占713%,氦约占27%,其它元素占2%。太阳从中心向外可分为核反应区、辐射区和对流区、太阳大气。太阳的大气层,像地球的大气层一样,可按不同的高度和不同的性质分成各个圈层,即光球、色球和日冕三层。我们平常看到的太阳表面,是太阳大气的最底层,温度约是6000℃。它是不透明的,因此我们不能直接看见太阳内部的结构。但是,天文学家根据物理理论和对太阳表面各种现象的研究,建立了太阳内部结构和物理状态的模型。这一模型也已经被对于其他恒星的研究所证实,至少在大的方面,是可信的。
太阳的核心区域虽然很小,半径只是太阳半径的1/4,但却是太阳那巨大能量的真正源头。太阳核心的温度极高,达1500万℃,压力也极大,使得由氢聚变为氦的热核反应得以发生,从而释放出极大的能量。这些能量再通过辐射层和对流层中物质的传递,才得以传送到达太阳光球的底部,并通过光球向外辐射出去。
太阳光球就是我们平常所看到的太阳圆面,通常所说的太阳半径也是指光球的半径。光球的表面是气态的,其平均密度只有水的几亿分之一,但由于它的厚度达500千米,所以光球是不透明的。光球层的大气中存在着激烈的活动,用望远镜可以看到光球表面有许多密密麻麻的斑点状结构,很象一颗颗米粒,称之为米粒组织。它们极不稳定,一般持续时间仅为5~10分钟,其温度要比光球的平均温度高出300~400℃。目前认为这种米粒组织是光球下面气体的剧烈对流造成的现象。
光球表面另一种著名的活动现象便是太阳黑子。黑子是光球层上的巨大气流旋涡,大多呈现近椭圆形,在明亮的光球背景反衬下显得比较暗黑,但实际上它们的温度高达4000℃左右,倘若能把黑子单独取出,一个大黑子便可以发出相当于满月的光芒。日面上黑子出现的情况不断变化,这种变化反映了太阳辐射能量的变化。太阳黑子的变化存在复杂的周期现象,平均活动周期为112年。
紧贴光球以上的一层大气称为色球层,平时不易被观测到,过去这一区域只是在日全食时才能被看到。当月亮遮掩了光球明亮光辉的一瞬间,人们能发现日轮边缘上有一层玫瑰红的绚丽光彩,那就是色球。色球层厚约8000千米,它的化学组成与光球基本上相同,但色球层内的物质密度和压力要比光球低得多。日常生活中,离热源越远处温度越低,而太阳大气的情况却截然相反,光球顶部接近色球处的温度差不多是4300℃,到了色球顶部温度竟高达几万度,再往上,到了日冕区温度陡然升至上百万度。人们对这种反常增温现象感到疑惑不解,至今也没有找到确切的原因。
在色球上人们还能够看到许多腾起的火焰,这就是天文上所谓的“日珥”。日珥是迅速变化着的活动现象,一次完整的日珥过程一般为几十分钟。同时,日珥的形状也可说是千姿百态,有的如浮云烟雾,有的似飞瀑喷泉,有的好似一弯拱桥,也有的酷似团团草丛,真是不胜枚举。天文学家根据形态变化规模的大小和变化速度的快慢将日珥分成宁静日珥、活动日珥和爆发日珥三大类。最为壮观的要属爆发日珥,本来宁静或活动的日珥,有时会突然"怒火冲天",把气体物质拼命往上抛射,然后回转着返回太阳表面,形成一个环状,所以又称环状日珥。
在日全食时的短暂瞬间,常常可以看到太阳周围除了绚丽的色球外,还有一大片白里透蓝,柔和美丽的晕光,这就是太阳大气的最外层──日冕。日冕的范围在色球之上,一直延伸到好几个太阳半径的地方。日冕里的物质更加稀薄,它还会有向外膨胀运动,并使得热电离气体粒子连续地从太阳向外流出而形成太阳风。
太阳看起来很平静,实际上无时无刻不在发生剧烈的活动。太阳表面和大气层中的活动现象,诸如太阳黑子、耀斑和日冕物质喷发等,会使太阳风大大增强,造成许多地球物理现象──例如极光增多、大气电离层和地磁的变化。太阳活动和太阳风的增强还会严重干扰地球上无线电通讯及航天设备的正常工作,使卫星上的精密电子仪器遭受损害,地面电力控制网络发生混乱,甚至可能对航天飞机和空间站中宇航员的生命构成威胁。因此,监测太阳活动和太阳风的强度,适时作出“空间气象”预报,越来越显得重要。
希望能帮到你,望采纳!
太阳的质量由75%氢和25%氦组成(原子数量的921%为氢,78%为氦);
其他物质
("金属")的数量总合仅为01%。在太阳核心区氢转化为氦,而这些量的改变很慢。
组成太阳的物质大多是些普通的气体,其中氢约占71%,
氦约占27%,
其它元素占2%。太阳从中心向外可分为核反应区、辐射区和对流区、太阳大气。太阳的大气层,像地球的大气层一样,可按不同的高度和不同的性质分成各个圈层,即光球、色球和日冕三层。我们平常看到的太阳表面,是太阳大气的最底层,温度约是6000摄氏度。它是不透明的,因此我们不能直接看见太阳内部的结构。但是,天文学家根据物理理论和对太阳表面各种现象的研究,建立了太阳内部结构和物理状态的模型。这一模型也已经被对于其他恒星的研究所证实,至少在大的方面,是可信的。
太阳的核心区域虽然很小,半径只是太阳半径的1/4,但却是太阳那巨大能量的真正源头。太阳核心的温度极高,达1500万℃,压力也极大,使得由氢聚变为氦的热核反应得以发生,从而释放出极大的能量。这些能量再通过辐射层和对流层中物质的传递,才得以传送到达太阳光球的底部,并通过光球向外辐射出去。
光球层成分
氢
7346
%
氦
2485
%
氧
077
%
碳
029
%
铁
016
%
氖
012
%
氮
009
%
硅
007
%
镁
005
%
硫
004
%
太阳大部分是由普通的气体组成
组成太阳的物质大多是些普通的气体,其中氢约占百分之七十一,氦约占百分之二十七,其它元素占百分之二。
太阳的大气层,像地球的大气层一样,可按不同的高度和不同的性质分成各个圈层,即光球、色球和日冕三层。
太阳从中心向外可分为核反应区、辐射区和对流区、太阳大气。
在太阳内部,4个氢原子发生氢核聚变缩合成一个氦原子,放出巨大能量,这能量就是光和热。
根据科彻霍夫的有关光谱的研究成果,可以肯定,如果太阳光畅通无阻地传播到地球表面,我们就可以同时接收到太阳光的原始光谱,太阳光在传播过程中将穿过稀薄的大气层,虽然大气层的温度依然很高,但已低于太阳表面温度。因此,大气层将吸收一部分太阳光,从而在光谱中形成暗区,这一切都由科彻霍夫进行了验证。这样,根据暗区在光谱中的位置,就可求出存在于太阳大气层中的各种化学元素。
瑞典物理学家安德斯·琼斯·安格斯特姆是第一位涉足这一领域的科学家。1862年,他指出太阳光谱中某个范围内的暗区位置与太阳光穿过氢气后形成光谱中的暗区相吻合,这一发现表明太阳上含有氢元素。
此后,其他科学家也开始了这方面的研究。至今,我们已经知道太阳质量的3/4是氢这种最简单的元素,而其他1/4中的绝大多数是氦。经计算,氢和氦占了太阳质量的98%。
除氢和氦以外,在10000个太阳大气原子中,含有43%的氧、30%的碳、95%的氖、63%的氮、23%的镁、052%的铁和035%的硅,除此之外,还含有8%左右的微量元素。这一发现完全推翻了亚里士多德时代人们有关太阳的基本化学成分不同于地球的理论。时至今日,我们已经知道了宇宙中任何天体的化学成分都与地球类似。
欢迎分享,转载请注明来源:品搜搜测评网