7825化成分数
=100分之7528
=313/4
小数化成分数分两种情况:
(1)整数部分为“0”时,是一位小数,就是十分之几,两位小数就是百分之几,三位小数就是千分之几……最后约分成最简分数。 例: 01=1/10 02=2/10=1/5 011=11/100 0111=111/1000 ……
(2)整数部分不为“0”时,用整数部分加上零点几,再把整数部分和小数部分都转变成分数,小数部分变成分数的方法同上。
48化成分数是4又4/5也可以写作24/5
过程:
48就是4不变。
08乘以10得8,分母为10,即8/10。
分子分母上下同除以2,化简后就是4/5。
故:
48化成分数是4又4/5。
扩展资料:
小数化分数的方法:
小数化分数,小数点前不变,小数点后面有N位分子就乘以10的N次方,分母为10的N次方,然后约分化简。
例如:15就是1不变,05乘以10得5,分母为10,化简后就是3/2,又如2124,就是2不变,0124乘以1000就是124,分母为1000,化间后为2又250分之31。
其次要记住一些常量。
例如025=1/4,0125=1/8,05=1/2,02=1/5,033…3=1/3等等
416化成分数是4又25分之4,等于25分之104。分数的定义和概念是:
(1)分数的定义
把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。
(2)分数单位
把单位“1”平均分成若干份,表示其中一份的数叫做分数单位。
(3)分数的意义
在分数里,中间的横线叫做分数线;分数线下面的数叫做分母,表示把单位“1”平均分成多少份;分数线上面的数叫做分子,表示有这样的多少份。
(4)分数的基本性质
分数的分子和分母同时乘或者除以一个不为零的数,分数的大小不变。
2、分数的分类
分数分为真分数和假分数。
真分数分为整数和带分数。
(1)真分数:分子比分母小的分数叫做真分数,真分数小于1。
(2)假分数:分子比分母大或分子和分母相等的分数叫做假分数,假分数大于或者等于1。
(3)带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。
3、分数的读写
(1)真分数、假分数的读法和写法
①读法:先读分母、再读“分之”,后读分子。例如:$\frac{1}{2}$读作二分之一,$\frac{3}{2}$读作二分之三。
②写法:写真分数或假分数时,先写出分数线,再写分母,最后写分子。
(2)带分数的读法和写法
读法:先读带分数的整数部分,再读分数部分,并在两者之间加读“又”字。例如:$1\frac{1}{2}$读作:一又二分之一。
写法:写带分数时,先写带分数的整数部分,后写分数部分。
4、分数的大小比较
(1)约分
定义:把一个分数化成和它相等,但分子和分母都比较小的分数叫约分。
最简分数:分子和分母互质的分数叫做最简分数。
约分的方法
①逐次约分:用分子和分母的公因数(1除外)逐次去除分子和分母,直到得出最简分数为止。
②一次约分:用分子和分母的最大公因数去除分子和分母,直接得到最简分数。
③特殊分数的约分:分子、分母末尾有零的,可以先划去同样多的0,再约分。
(2)通分
定义:把异分母分数分别化成和原来分数相等的同分母分数叫通分。
通分的方法:先求出几个分数的分母的最小公倍数,把它作为这几个分数的公分母,然后依据分数的基本性质,把原分数分别化成以公分母为分母的分数。
(3)分数的大小比较
①同分母分数:分母相同的两个分数,分子大的分数比较大。
②同分子分数:分子相同的两个分数,分母小的分数比较大。
③分子分母都不相同的分数:先通分,把它们化成分母相同的分数,然后进行比较。也可以先把各个分数分别化成小数后再比较大小。
④带分数:先比较整数部分,整数部分大的那个带分数就大,如果整数部分相同,再比较它们的分数部分,分数部分大的那个带分数就大。
⑤假分数:将假分数化成带分数或整数后再比较大小。
325化成分数是:4分之13 (带分数是:3又1/4)
解析:分数和小数的互化
1、分数→小数:用分子除以分母
2、小数→分数:改写成分母是10,10,1000……的分数后再约分 。
3、一个最简分数,如果分母中除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数。
扩展资料:
小数化成分数方法:
1、将小数化为以10,100为分母的分数。
2、约分。将分数约分成最简分数。
3、如果该分数是真分数(即分子比分母小),那么约分到最简就好了。但如果是假分数,有些题目可以直接保留,有些需要将其化为带分数。
4、假分数化为带分数,以假分数的分母为分母,然后用假分数的分子除以分母,商的整数部分写在左边,余数作为带分数的分子。
欢迎分享,转载请注明来源:品搜搜测评网