两个正弦函数相乘,利用积化和差公式
u(t)=[-cos(314t+157+15700t+314)+cos(314t+157-15700t-314)]/2
角频率314对应频率为50Hz,角频率15700对应频率2500Hz
因此,u(t)包含2500±50Hz,即2550和2450两种频率成分
两个正弦函数相乘,利用积化和差公式。
u(t)=[-cos(314t+157+15700t+314)+cos(314t+157-15700t-314)]/2
角频率314对应频率为50Hz,角频率15700对应频率2500Hz。
因此,u(t)包含2500±50Hz,即2550和2450两种频率成分。
是不是应当这么说:“模拟信号抽样后包含哪些频率成分?”
首先是抽样信号的基波和它的各次谐波,其次是原有模拟信号的频率成分,接着是分布在抽样信号的基波和它的各次谐波两侧的,原有模拟信号的频率成分。
滤波器的主要功能和作用如下:
一、滤波器的功能
回路功能:使某一频段的信号顺利通过,过滤掉其他频段的信号,因此实际上是一种选频回路。滤波器是微弱信号测量中非常重要的回路,模拟滤波器在种信号处理中几乎是必不可少的。下面的信号是经过低通过滤波器的。
二、滤波器的作用
1、分离有用信号和噪声,提高信号的抗干扰性和噪声比。
2、过滤不感兴趣的频率成分,提高分析精度。
3、从复杂的频率成分中分离出单一的频率成分。
主要用于过滤干扰信号。滤波器通常用于在微弱信号放大的同时增加滤波功能和取样信号之前。
滤波器简介
滤波器是一种选频装置,可以使信号中特定的频率成分通过,而极大地衰减其他频率成分。利用滤波器的这种选频作用,可以滤除干扰噪声或进行频谱分析。换句话说,凡是可以使信号中特定的频率成分通过,而极大地衰减或抑制其他频率成分的装置或系统都称之为滤波器。
滤波器,是对波进行过滤的器件。“波”是一个非常广泛的物理概念,在电子技术领域,“波”被狭义地局限于特指描述各种物理量的取值随时间起伏变化的过程。
该过程通过各类传感器的作用,被转换为电压或电流的时间函数,称之为各种物理量的时间波形,或者称之为信号。因为自变量时间是连续取值的,所以称之为连续时间信号,又习惯地称之为模拟信号(Analog Signal)。
滤波是信号处理中的一个重要概念,在直流稳压电源中滤波电路的作用是尽可能减小脉动的直流电压中的交流成分,保留其直流成分,使输出电压纹波系数降低,波形变得比较平滑。
赫兹( 英文 :Hertz) 是计算频率的单位,属于公制的一种,意为每秒的周期性震动次数。其命名取自德国物理学家海因里希·鲁道夫·赫兹。其符号是“ Hz ”。 在电路中电流表的指针能够来回摆动,电路中产生的是交变电流(alternative current),简称交流(AC)在交变电流中,电流在每秒内周期性变化的次数叫频率(FREQUENCY )。频率的单位是赫兹(hertz),简称赫,符号为HZ,目前我国电网的交流供电频率为50HZ 物理学上的: 物质在1秒内完成周期性变化的次数叫做频率,常用f表示。 物理中频率的单位是赫兹(Hz),简称赫,也常用千赫(kHz)或兆赫(MHz)或GHz做单位。1kHz=1000Hz,1MHz=1000000Hz 1GHz=1000MHz。频率f是周期T的倒数,即f =1/T,波速=波长频率。而像中国使用的电是一种正弦交流电,其频率是50Hz,也就是它一秒钟内做了50次周期性变化。 另外,我们听到的声音也是一种有一定频率的波。人耳听觉的频率范围约为20-20000HZ,超出这个范围的就不为我们人耳所察觉。 在天文潮汐学中,由于各种天体活动周期长,以赫兹的单位显示不便,频率常用的单位为:cph,即cycle per hour。如最常见的M2分潮的周期约为1242小时,则其频率通常表示为008051cph。 交流电周期的倒数叫做频率(用符号f表示),即 它表示正弦交流电流在单位时间内作周期性循环变化的次数,即表征交流电交替变化的速率(快慢)。频率的国际单位制是赫兹(Hz)。角频率与频率之间的关系为 w = 2pf 大家知道,声音是由振动产生的。所谓的声音频率,就是发声源的振动频率。频率的单位是赫兹(HERZ,以证实电磁波存在的德国物理学家赫兹的名字命名),也就是1秒内振动的次数。大自然及人类可能制造出的声音,从1赫兹,到几十万赫兹,范围跨度极大,但并不是所有的声波振动,都是人耳能听到的。 人耳的可闻音域范围,是20赫兹到20000赫兹。20赫兹以下的声波,称为“次声波”,能量很强烈时,身体可以感觉到(比如地震的时候),但耳朵是听不到的。能量极强的次声波甚至可以杀人。高于20000赫兹的称为“超声波”,人耳也听不到,但很多动物,如狗,蝙蝠,可以听到。人耳对高频的感知力会随年龄增长而衰减,所以幼年时几乎人人能听到2万赫兹的声音,但中年以后,很多人就只能听到15000赫兹甚至更低了,听不见极高频了。国外甚至有学生发明了一种以极高频讯号为铃声的手机,因为这种手机响铃时,只有年轻的学生能听到,年龄大的老师,已经听不到了。 在人耳可闻的这个20-20000赫兹的音域范围内,大致来说,200赫兹以下,就是我们一般所说的“低频”。而再细分的话,50赫兹以下,是我们一般称为“极低频”的频段。这个极低频,对于喇叭系统而言,是非常昂贵的。因为小喇叭一般都无法播出这么低的低频,只有大喇叭,而且是优质的,昂贵的大喇叭,才能较好地重播出50赫兹以下的音乐信号。 对于耳机而言,播出50赫兹以下的极低频,不费吹灰之力,你看看任何耳塞或耳机的频响指标,都会延伸到50赫兹以下。然而,BUT,我要转折一下,耳机播出来的极低频,是不够真实的。关键原因,是因为50赫兹以下的极低频,其实人是靠耳朵和身体共同感知的。也就是所谓“打心口”的低音,那就是极低频了。耳机只能把信号作用于人的耳膜,无法对人身体产生任何效果,所以耳机里听到的极低频,是不完整的,不够真实的。任何耳机都是如此,哪怕是大奥。 自然乐器中,主要频率成分在200赫兹以下低频段的,有低音鼓、大鼓、低音吉他、低音提琴(DOUBLE-BASS)、电贝司等。另外,大提琴、男声、钢琴、吉他等的声音也有延伸到低频段的成分。举个例子,人说话的“鼻音”就在低频段内。加重低频段,会造成鼻音过于浓重。 从200-6000赫兹的中间频段,就是俗称的“中频”。(中频和高频的分野,没有一个业界统一公认的数值。) 中频段是自然音乐能量最集中,最重要的频段,也是人耳听觉最灵敏的频段。可以说,高低频再好,如果中频出问题,就统统报销,毫无挽救余地。而中频如果好,高低频哪怕一塌糊涂,也往往可听。 大体地说,如果说,低频影响的是声音的丰满度、混厚度、力度,那中频影响的就是声音的明亮度、清晰度和透明度。由于中频跨度很大,一般又被分为中频下段、中频上段。当然这个分界又是没有一个定规的。我个人觉得,1000赫兹以下可以归入中频下段,而4000赫兹以上可以称之为中频上段了。 大多数自然乐器的基音,是落在中频段。人声能量最集中的地方,是500-1000赫兹。很多自然乐器的泛音,也主要落在中频段,比如吉他,泛音就主要落在2000-5000赫兹。中提琴、大提琴也是如此。 我们平时所说的“齿音”,是在中频上段(或可称“高频下段”),大约6000-8000赫兹,能量最集中。很多流行歌曲的录音,是经过激励器处理的,如果处理时把6000-8000赫兹能量加强过头,就很容易出现齿音过重。 影响距离感的最敏感的频段是4000-5000赫兹。这个频段能量强,会显得音像距离听者近,而弱的话,会显得声音较远。 最影响声音明亮度的,是2000-3000赫兹。这个频段能量弱,会显得声音暗淡,朦胧,发虚。能量强,则会显得声音过于明亮和温暖,甚至发楞。这个频段发挥正常的话,声音才会呈现出健康的明亮感。 6000赫兹以上,一直延伸到大约2万赫兹,就是我们所谓的“高频”。几乎没有什么乐器的基音落在高频段,简单地说,高频段都是各个乐器的泛音。然而,绝对不要小看了泛音。各种自然乐器的声音,听上去是否真实,能否把各种乐器一一区分开,很大程度上靠的就是高频泛音,因为各种不同乐器的泛音频率成分的比例,是绝不相同的。电子合成器之所以能模拟出各种乐器的声音,就是靠模拟其高频泛音列。 特别出彩的,要算是所谓“极高频”,也就是12000-20000赫兹的讯号。我们听到的三角铁、铃、镲的高频泛音,就是典型的极高频。此外,长笛、短笛、铜管乐器的高频泛音,甚至小提琴的高频泛音,也可以到达1万赫兹左右。所以高频延伸若不好,播不好1万赫兹以上的信号,对这些乐器的质感和真实音色,是损害很大的。 0-250hz是低频 250-1khz中频 1khz-3khz高频 前面部分极低频,后面部分极高频。
欢迎分享,转载请注明来源:品搜搜测评网