镍渣堆积密度在25到30g/cm3之间。镍渣的密度受到多种因素的影响,包括渣中的化学成分、温度、压力和冷却速率等。一般来说,镍渣的密度在25-35g/cm3之间。其中,密度较高的镍渣通常含有较高比例的镍、铁等重金属元素,这些元素的原子量较大,因此会使得渣的密度增加。此外,渣的冷却速率也会影响其密度,通常来说,冷却速率越快,渣的密度越高。
不锈钢渣多为镍铁合金的冶炼渣,可分为干渣和水渣,目前的工艺以干渣为主,干渣中的镍铁合金颗粒被包裹在固体废渣中,要想回收镍铁合金颗粒,必须对不锈钢渣进行破碎和研磨,以打破连生体结构,使镍铁合金颗粒得以单体解离,研磨后的不锈钢渣中镍铁合金与废渣基本已完全解离,镍铁合金的比重远大于废渣的比重,因此利用重力选矿的原理即可有效处理这些不锈钢渣。
破碎设备采用粗破颚式破碎机将原料破碎至30mm—50mm,破碎后的镍渣送入棒磨机进行研磨,研磨后的合金颗粒得到解离。这里采用棒磨机而不使用球磨机的原因在于球磨机将矿物研磨的粒度过于细,不适合下一步的分选。而棒磨机的研磨粒度刚好适合镍渣的下一步分选。而且棒磨机研磨后的矿物颗粒将会呈现规则的类圆型,非常适合跳汰机对镍渣的分选。无形中可以增加镍渣的回收效果。
处理不锈钢渣的分选设备主要是跳汰机,利用铁合金与废渣间比重的差异进行重力分选,最终获得纯净的镍铁合金颗粒和废渣。镍铁合金颗粒可回收进行再次熔炼,废渣经脱水后可销向新型建材厂制成水泥或新型建筑材料,整个过程基本实现不锈钢渣的全部吸收和利用。处理过程全部使用循环水,且对水质要求不高,不会对环境产生二次污染。
部分大型不锈钢渣处理生产线中用到了强磁辊和脱水筛等设备,强磁辊作用在于磨矿前回收有弱磁性的低镍合金部分,降低棒磨机的磨矿负担,提高工艺流程的效率,同时也为整体生产线今后的维护打下坚定的基础,强磁辊的利用有效减少了棒磨机的清仓次数,从一定程度上提高了生产线的总效率。脱水筛的作用是对铁合金颗粒和废渣进行脱水作业,一方面回收可再次利用的水源,另一方面降低物料的含水量,对后期的运输和保存有着重要的意义。
巩义市孝义高科机械厂是国内专业的成套选矿设备与烘干设备设计与制造企业,一直以来奉行
“以人为本,科技创新”的原则。受到广大客户的一致青睐。多年来为国内外提供了上万套优质的球磨机、磁选机、烘干机,专业提供成套的选矿与烘干设备,为客户设计方案。
镍渣分析成分意思是对其他金属含量的分析。根据查询相关资料得知,除了镍外,镍渣中还可能含有其他金属,比如铁、铬、钴等。这些金属的含量和比例对于镍渣处理和利用的方案有很大的影响,所以分析成分。
镍冶金渣资源化利用现状分析论文
摘要:镍冶金渣作为重要的二次资源,含有铁、镍、铜等有价金属。随着镍需求量的增大,排放的镍渣也越来越多,若不能得到合理利用,既造成资源浪费,又污染环境。本文对镍冶金渣资源化利用现状进行分析,并讨论了进一步资源化的方向。
关键词:镍冶金渣;资源化;有价金属;建筑材料
随着我国对有色金属需求量增大,每年有色冶金渣的数量不断增长,这些冶炼弃渣由于未得到合理利用,不仅占用大量的土地资源,同时对环境有着潜在的威胁,从而不利于可持续发展,因此有色冶金渣的资源化利用就有着十分重要的意义。中国是世界上镍资源消费最大的国家,每生产1t镍约排除6~16t渣,仅金川集团的镍冶金渣堆存量多达4000万t,每年还新增约200万t[1-3]。镍渣的组成因其矿石种类和冶炼工艺不同而变化较大。以金川镍闪速炉渣的物相组成为例,主要由铁氧化物、硅氧化物、钙和镁的氧化物组成,渣中含有约40%的铁元素,还含有一定数量的有色金属元素镍、铜、钴;铁主要以铁橄榄石形式存在,橄榄石间充填的非晶态玻璃质并且机械夹杂着大颗粒镍硫[4]。镍渣的处理已经成为镍冶炼过程的重要工序,如何正确有效的回收再利用这些二次资源,使得镍冶炼过程顺畅,解决排渣占地和环境污染等问题,成为镍冶金发展循环经济的主要问题。本文对目前镍渣资源化利用进行综述,再利用的主要研究包括:有价金属的提取,用作填充材料,制作微晶玻璃,生产建材等[5-7]。
1、镍渣资源化利用现状
11有价金属提取
倪文[8]等利用以焦炭为还原剂的熔融还原法提取闪速炉水淬镍渣中的有价铁,探讨了不同碱度,不同还原温度,不同还原时间对提铁率的影响。结果表明控制100g渣配加347gCaO、404gCaO和85g焦炭,熔融温度为1500℃,还原时间为180min,铁的还原率达9632%。王爽[9]等将镍渣、氧化钙和焦粉制备成含碳球团进行深度还原回收有价金属铁、镍和铜,结果表明碱度对有价金属的回收率有影响,适当提高碱度可以促进金属相生长,改变形态结构有利于后续分离,碱度过高会使金属相中产生杂质,当碱度确定为10时,铁、铜、镍的回收率分别为9104%、5693%、5580;镍渣中的铁经深度还原后以金属铁的形式存在,镍和铜主要与铁以固溶体形式存在。卢雪峰[10]等利用自制小型直流电弧炉对镍渣进行硅钙合金回收,以焦炭和为还原剂,控制镍渣、生石灰及还原剂的比例,可以获得相应的的硅钙合金。肖景波[11]等对镍渣进行铁、镍、镁回收,实验过程将镍渣破碎后的粉末进行酸浸,向酸浸液中加入氧化剂与pH控制剂生成铁沉淀物,分离后与硫酸作用生成硫酸铁溶液,精制后采用氧化沉淀法获得高纯铁沉淀物;沉铁溶液加入硫化物生成硫化镍沉淀,经分离、洗涤、干燥制得镍精矿;提镍溶液加入助剂LN除杂,得到精制硫酸镁溶液与氨水反应制得氢氧化镁产品。
12生产充填材料
镍渣被用于井下填充材料技术相对成熟,既解决了镍渣的资源化问题,又可以降低填充成本,减少水泥的消耗,降低水泥生产过程中环境污染。目前水淬渣用作充填材料关键在于对活性渣进行激发,激发方式分为机械激发和化学激发。传统的机械激发采用普通机械球磨进行物理细化,高能球磨可以使矿渣迅速细化,增加比表面积,增大水化反应面提高物料的物理化学活性。镍渣经过高能球磨处理后,抗压强度会显著提高。化学激发利用激发剂与矿渣的化学反应生成具有水硬胶凝性能的物质来提高矿渣的活性,激发剂多采用硫酸盐类、碳酸盐类等。杨志强[12]等采用机械活化和化学活化两种方式进行实验研究。
结果表明,机械活化镍渣、脱硫石膏、电石渣、水泥熟料的最佳比表面积分别为620,200,200,300m2/kg,化学活化以脱硫石膏和电石渣为主,硫酸钠和水泥熟料为辅,前两者比例相同各占总量5%时,镍渣充填体强度最高;加入3%的硫酸钠和2%的水泥熟料可以提高激发效果;外加0156%的PC高效减水剂,配置胶砂比为1∶4,料浆浓度为79%的充填浆料完全满足矿山对充填体的强度要求,可以替代水泥应用于金川矿山交接充填采矿。高术杰[13]等利用水淬二次镍渣制备矿山充填材料,利用脱硫石膏和电石渣等物质激发生成大量水化产物,产生较高充填强度。并且水淬镍渣充填料的'流动度好于P425水泥充填料的流动度。结果表明,脱硫膏与电石渣比为1∶1混合再与少量硫酸钠及水泥熟料配置复合激发剂,具有较好地激发效果。
13制作高附加值玻璃
微晶玻璃和泡沫玻璃均数高附加值玻璃,微晶玻璃具有玻璃和陶瓷的双重特性,比陶瓷亮度高,比玻璃韧性强。泡沫玻璃具有不燃烧、不变形、热学性能稳定、力学强度较高且易加工的优点。王亚利[14]等对镍渣熔融炼铁剩余熔渣制备微晶玻璃进行了研究。提铁二次渣经过均化→澄清→浇注→晶化→退火→研磨→抛光制备出符合建筑装饰国家标准的微晶玻璃,确定了最优原料比。冯桢哲[15]等以镍渣和废玻璃为主要原料,添加碳酸钠作为发泡剂,烧制出泡沫玻璃。探讨了碳酸钠添加量、发泡温度、保温时间对泡沫玻璃质量的影响,结果表明,主要原料镍渣和废玻璃分别为20%和80%,外加5%~7%的碳酸钠发泡剂、2%的硼酸为稳泡剂和2%的硼砂为助溶剂,在870℃下恒温1h,可以制备出总气孔率为8514%,抗折强度高达2062MPa的镍渣基泡沫玻璃。
14生产建材
镍渣的主要成分是SiO2、Al2O3、Fe2O3,利用镍渣生产硅酸盐水泥可以部分替代黏土和铁粉,减少能源消耗。镍渣中存在的少量镍、铜、钴等元素对降低熟料的液相最低共熔点和黏度有积极的作用,可以改善其易烧性,有利于熟料矿物的形成。吴阳[16]等用镍渣替代铁粉制备道路硅酸盐水泥,通过合理配料制备出以C3S,C2S和C4AF为主要矿物的道路硅酸盐水泥熟料,其强度、矿物组成、安全性等性能符合国标要求;最佳条件为镍渣掺杂量(质量分数)10%,煅烧温度1370℃。王顺祥[17]等探讨了镍渣不同细度和不同掺杂量对硅酸盐水泥水化特性的影响。结果表明,随着镍渣的掺量增加,使得水泥浆体凝结时间延长,水化反应放热减少,硬化水泥砂浆的抗压强度、抗折强度讲师;相反,随着镍渣细度的提高可以改善上述影响,并且有利于硬化水泥浆体的结构致密化。镍渣作为混凝土掺合料和集料使用,能够提高混凝土的强度,并且镍渣结构致密且金属含量较高,含有大量的橄榄石,使得镍渣硬度高,从而使掺入镍渣后的混凝土耐磨度提高。李浩[18]等研究了镍渣砂掺量对混凝土耐磨性的影响,当镍渣粉、粉煤灰、镍渣砂同时掺入混凝土中,掺量分别为10%、10%、40%时,混凝土的耐磨性最好。丁天庭[19]等基于镍渣的掺量对混凝土的抗压强度影响进行研究,当镍渣掺量为20%时,混凝土的抗压强度最大,当镍渣掺量为50%时,混凝土的抗压强度最小。
2、发展趋势
资源利用率低,资源紧缺,产业结构不合理成为制约我国经济社会发展的战略问题。结合我国目前矿产资源现状来看,镍渣中含有的主体金属是铁,应该以提铁为主进行资源化利用,不但可以缓解我国铁矿石资源压力,而且有利于可持续发展,又可增加企业效益。提铁后的二次渣还可以用来制备微晶玻璃,充填材料等建筑材料,镍渣资源得到充分利用。
3、结语
镍渣作为重要的二次资源,含有铁、镍、钴、铜等有价元素,单纯提取有价金属经济性有限,并且存在二次渣的废弃问题;单纯做非金属资源处理造成对有价金属元素的浪费;因此,将有价金属提取后的二次渣进行非金属资源处理更有利于达到镍渣的高效化和生态化利用。
参考文献
[1]张燕云熔融氧化法富集镍渣中铁资源的热力学研究[D]兰州:兰州理工大学,2018
[2]李国洲,张燕云,马泳波,等镍冶金渣综合利用现状[J]中国冶金,2017,27(8):1-5
[3]李小明,沈苗,王翀,等镍渣资源化利用现状及发展趋势分析[J]材料导报,2017,31(5):100-105
[4]刘晓民,杨书航,张晓亮,等金川镍渣的工艺矿物性质分析[J]矿产综合利用,2018(1):82-85
[5]谢庚金川镍渣多组分综合利用研究[D]陕西:西安建筑科技大学,2015
[6]郭亚光,朱荣,裴忠冶,等镍渣熔融还原提铁动力学[J]中国有色冶金,2017,46(5):75-80
;欢迎分享,转载请注明来源:品搜搜测评网