频谱和功率谱的区别:
1两个的来源不同:时间信号的频谱就是时间信号的傅里叶变换,功率谱等于信号振幅谱的平方除以样本长度。
2功率谱是个确定值,但是频谱对于一个随机过程而言是个随机值。功率谱是功率谱密度函数的简称,它定义为单位频带内的信号功率。它表示了信号功率随着频率的变化情况,即信号功率在频域的分布状况。功率谱表示了信号功率随着频率的变化关系。
3只能对宽平稳的各态历经的二阶矩过程谈功率谱,其存在性取决于二阶局是否存在并且二阶矩的Fourier变换收敛;而频谱的存在性仅仅取决于该随机过程的该样本的Fourier变换是否收敛。
扩展资料:
信号若随着时间变化,且可以用幅度来表示,都有其对应的频谱。包括可见光(颜色)、音乐、无线电波、振动等都有这样的性质。当这些物理现象用频谱表示时,可以提供一些此信号产生原因的相关信息。例如针对一个仪器的振动,可以借由其振动信号频谱的频率成分,推测振动是由哪些元件所造成。
在广播及通信的领域中,频谱会由许多不同的信号来源共享。每个广播电台及电视台所传送信号的频率均需在各自指定的范围内,称为“信道”。当许多广播同时发送信号时,各个信道上有各自独立的信息,广播的频谱即为所有个别信道信号的总和,分布在很广的频率范围内。
任何一个广播接收器只能接收到单一的电压对时间信号,因此会使用LC电路来选择单一的信道或频率范围,然后将接收到的信息解调制,得到需要的信息。若将接收器各频率下信号的强弱对应频率绘图,所得的就是其接收信号的频谱。
——功率谱
——频谱
一个非正弦的信号由一个正弦的基频信号和基频整数倍的正弦信号组成,把非基波的这些信号称做谐波。
由于波形不同,基频信号和各谐波的分量是不同的,频谱分析就是对这些分量的幅度和频率特性的描述。如在频谱分析仪上可看到一跟根不同高度不同频率的谱线。
肯定没有物理意义的,物理定义上没有负频率的说法。
但是有数学含义,双边谱的数学对称性好,便于分析。——也就是说,便于从频域作数学计算。(一般都是计算机的高速处理)
单边谱的物理意义明显。各有优势吧。
连续频谱是频率成分在给定频率范围内连续分布的频谱。频谱分析一般是对一段时间内的信号进行采样并进行傅里叶变换,得到的频谱可能是连续的,也可能是单一或断续的。频谱扫描是对某频率范围内各频率进行过滤,发现其幅值大小。对时间无限短的信号进行频谱分析,得到的是瞬时频谱。例如:当信号是由两个不同频率的成分组成时,连续频谱分析可以得到两个不同频率的成分,频谱扫描可以依次发现信号中包含的两个不同频率成分,瞬时频谱则是一种与上述两个频率都不同的频率成分。
频谱分析的意义是很明确的,就是分析信号的频率构成。更确切地说就是用来分析信号中都含有哪几种正弦波成份。反过来说就是,该信号可以用哪几种频率的正弦波来合成出来。方波信号、正弦波信号、三角波信号以及白噪声信号等这些信号的频域与时域间关系明确,并且具有一定特性,熟练掌握这些典型信号的频谱分析可为实际工程分析做参考。频谱分析在工程测试中应用广泛,譬如研究噪声频谱寻找噪声污染源;又如在机床齿轮机器故障诊断中,通过测量齿轮箱上的振动信号,进行频谱分析,确定最大频率分量,再根据机床转速和转动链找出故障齿轮;再譬如螺旋桨设计中,可通过频谱分析确定螺旋桨的固有频率和临界转速,确定其转速范围等等。\r\n将信号在时间域中的波形转变为频率域的频谱,进而可以对信号的信息作定量解释。\r\n测试信号的频域分析是把信号的幅值、相位或能量变换以频率坐标轴表示,进而分析其频率特性的一种分析方法,又称为频谱分析。对信号进行频谱分析可以获得更多有用信息,如求得动态信号中的各个频率成分和频率分布范围,求出各个频率成分的幅值分布和能量分布,从而得到主要幅度和能量分布的频率值。\r\n由时间函数求频谱函数的傅里叶变换公式就是将该时间函数乘以以频率为系数的指数函数之后,在从负无限大到正无限大的整个区间内,对时间进行积分,这样就得到了与这个时间函数对应的,以频率为自变量的频谱函数。频谱函数是信号的频域表示方式。根据上述傅里叶变换公式,可以求出常数(直流信号)的频谱函数为频域中位于零频率处的一个冲激函数,表示直流信号就是一个频率等于零的信号。与此相反,冲激函数的频谱函数等于常数,表示冲激函数含有无限多个、频率无限密集的正弦成分。同样的,单个正弦波的频谱函数就是频域中位于该正弦波频率处的一对冲激函数。\r\n利用傅里叶变换的方法对信号进行分解,并按频率展开,使其成为频率的函数,进而在频率域中对信号进行研究和处理的一种过程,称为频谱分析。
欢迎分享,转载请注明来源:品搜搜测评网