黄金
是在自然界中以游离状态存在
而不能人工合成的天然产物。按其来源的不同和提炼后含量的不同分为生金和熟金等。
生金
生金亦称天然金、荒金、原金,是要被提炼为熟金的对象,是从矿山或河底冲积层开采出,没有经过熔化提炼的黄金。生金分矿金和沙金两种。
矿金
矿金,也称合质金,产于矿山、金矿,大都是随地下涌出的热泉通过岩石的缝细而沉淀积成,常与石英夹在岩石的缝隙中,矿石经过开采、粉碎、淘洗,大颗的金可以直接拣取,小粒的可用水银溶解。矿金大多与其他金属伴生,其中除黄金外还有银、铂、锌等其他金属,在其他金属未提出之前称为合质金。矿金产于不同的矿山而所含的其他金属成分不同,因此,成色高低不一,一般在50%-90%之间。
沙金
沙金,是产于河流底层或低洼地带,于是石沙混杂在一起,经过淘洗出来的黄金。沙金起源于矿山,是由于金矿石露出地面,经过长期风吹雨打,岩石被风化而崩裂,金便脱离矿脉伴随泥沙顺水而下,自然沉淀在石沙中,在河流底层或砂石下面沉积为含金层,从而形成沙金。沙金的特点是:颗粒大小不一,大的像蚕豆,小的似细沙,形状各异。颜色因成色高低而不同,九成以上为赤**,八成为淡**,七成为青**。
熟金
熟金是生金经过冶炼、提纯后的黄金,一般纯度较高,密度较细,有的可以直接用于工业生产。常见的有金条、块、锭和各种不同的饰品、器皿、金币以及工业用的金丝、片、板等。由于用途不同,所需成色不一,或因没有提纯设备,而只熔化未提纯,或提的纯度不够,形成成色高低不一的黄金。人们习惯上根据成色的高低分为纯金、赤金、色金3种。按含金量不同分为清色金、混色金、k金。
黄金
经过提纯后达到相当高的纯度的金称为纯金,一般指达到996%以上成色的黄金。
赤金
和纯金的意思接近,但因时间和地方的不同,赤金的标准有所不同,国际市场出售的黄金,成色达996%的称为赤金。而境内的赤金一般在992%-996%之间。
色金
色金,也称“次金”、“潮金”,是指成色较低的金。这些黄金由于其他金属含量不同,成色高的达99%,低的只有30%。按含其他金属的不同划分,黄金又可分为清色金、混色金、k金等。
清色金
清色金指黄金中只掺有白银成分,不论成色高低统称清色金。清色金较多,常见于金条、锭、块及各种器皿和金饰品。
混色金
混色金是指黄金内除含有白银外,还含有铜、锌、铅、铁等其他金属。根据所含金属种类和数量不同,可分为小混金、大混金、青铜大混金、含铅大混金等。
K金
K金是指银、铜按一定的比例,按照足金为24k的公式配制成的黄金。一般来说,K金含银比例越多,色泽越青;含铜比例大,则色泽为紫红。中国的k金在解放初期是按每k415%的标准计算,1982年以后,已与国际标准统一起来,以每k为41666%作为标准。
高纯金
杂质含量﹤0001%的纯金,采用电解精炼和区域熔炼相联合的方法可制成>5N的高纯金,主要用于半导体器件和大规模集成电路中的键合用金丝及用于溅射的靶材以及高纯度金基合金等。
金锭
以金元素为主的长方梯形或长方体锭材,主要用于电气、电子、珠宝、装饰等行业。金锭按化学成分分成四个牌号:IC-Au99995、IC-Au9999、IC-Au9995、IC-Au9950。每块金锭质量为1kg、3kg、125kg。金锭表面应平整、洁净,边、角完整,无飞边、毛刺,不允许有空洞、夹层、裂纹、过度收缩和夹杂物,也不允许有除浇铸切口以外的其他机械加工痕迹。
超细金粉
平均粒径在017~025um范围内的球形或近似球形的金属粉未,其中金的质量分数≥9999%,牌号为FAuH-1,比表面积为185~195m/g,松散密度为60~69g/cm,振实密度为68-69g/cm 在全部金的同位素中,只有金-197属于稳定的同位素,含量接近所有金的100%。其他18种同位素均带有放射性,当中以金-195的半衰期最长,但只有186日。
金曾经被建议作为核武器中一种盐弹(Salted bomb)的原料,而钴是另一种建议且较为人知的原料,可制成钴弹(Cobalt bomb)。一层天然金的外罩经由热核武器(thermonuclear weapon)放出的密集高能量中子通量(neutron flux)放射后,会发生核转变(Nuclear transmutation)成为有半衰期2697日的放射性同位素Au-198,制造出约411 MeV的伽马射线,显著增加了武器核微粒(Nuclear fallout)几天的放射性。此武器的制造、测试及使用仍未被人所知。 各种价态 虽然金是一种贵重金属,它仍然会形成很多不同类型的化合物,其中金所呈氧化态大多在-1至+5之间,主要为一价金(Au(I)) 及三价金(Au(III))。一价金是最常见的氧化态,多为与较“软”的配体(如硫醚、硫醇负离子及叔膦)形成的配合物,通常呈直线形结构。其中一个例子便是二氰合金(I)离子(Au(CN)2),是氰化法提金时溶液中金的主要存在形态。一价金不易与水形成配离子。二元卤化金如氯化金(I)(AuCl)为锯齿形的聚合物长链结构,金原子以直线形排列。大部分含金药物中的金也都为正一氧化态。
三价金也是一种常见的氧化态,例子有三氯化金(AuCl3)、三氧化二金(Au2O3)、氯金酸(HAuCl4,可由金溶于王水得到)等,为d结构,呈平面正方形构型。
金也可以呈二价、五价或负一价。二价金化合物通常含Au-Au键,呈抗磁性,例如[Au(CH2)2P(C6H5)2]2Cl2。氙也可作配体,与金(II)形成[AuXe4](Sb2F11)2。 Au(V)是已知金的最高氧化态,特征化合物为五氟化金(AuF5)。 Au(-I)的例子则包括众多金化物,如金化铯(为氯化铯型结构)、 金化铷、金化钾及金化四甲基铵((CH3)4NAu)。
许多含金化合物的分子晶体有亲金相互作用,以R-Au…Au-R表示,也称金键,强度与氢键相当,键长在300pm左右。该相互作用是分子间作用力的一个新类型,使不少晶体中存在“金链”、“金面”、双分子缔合(R-Au…Au-R)或大环分子内金键,并具有一些特殊性质,目前正在广泛研究之中。
金也可以生成很多簇合物, 其中的金多为分数氧化态,例如八面体型的{Au(P(C6H5)3)}6,以及属于二元金──氧族元素化合物的AuS。它含等量的Au(I)和Au(III)。 含有金-金属键的配合物 金可以形成众多配合物,其中一类是含有金-金属键的简单配合物,如Au2、AgAu、AuSn等,它们存在于气相中,其他化合物如(Ph3PAu)2Fe(CO)4等也已被合成。另外一类是金原子簇配合物,其原子簇可含2个、3个、6个、9个或11个金原子,如{[(Ph3P)Au]3O}BF4、[N(PPh3)2]{Au[Co(CO)4]2}等。
1) 铁粉芯 常用铁粉芯是由碳基铁磁粉及树脂碳基铁磁粉构成。在粉芯中价格最低。饱和磁感应强度值在14T左右;磁导率范围从22~100;初始磁导率μi随频率的变化稳定性好;直流电流叠加性能好;但高频下损耗高。铁粉芯初始磁导率随直流磁场强度的变化。铁粉芯初始磁导率随频率的变化 (2)坡莫合金粉芯 坡莫合金粉芯主要有钼坡莫合金粉芯(MPP)及高磁通量粉芯(High Flux)。 MPP 是由81%Ni、2%Mo及Fe粉构成。主要特点是:饱和磁感应强度值在7500Gs左右;磁导率范围大,从14~550;在粉末磁芯中具有最低的损耗;温度稳定性极佳,广泛用于太空设备、露天设备等;磁致伸缩系数接近零,在不同的频率下工作时无噪声产生。主要应用于300kHz以下的高品质因素Q滤波器、感应负载线圈、谐振电路、在对温度稳定性要求高的LC电路上常用、输出电感、功率因素补偿电路等, 在AC电路中常用, 粉芯中价格最贵。 高磁通粉芯HF是由50%Ni、50%Fe粉构成。主要特点是:饱和磁感应强度值在15000Gs 左右;磁导率范围从14~160;在粉末磁芯中具有最高的磁感应强度,最高的直流偏压能力;磁芯体积小。主要应用于线路滤波器、交流电感、输出电感、功率因素校正电路等, 在DC 电路中常用,高DC 偏压、高直流电和低交流电上用得多。价格低于MPP。 (3) 铁硅铝粉芯(Kool Mμ Cores) 铁硅铝粉芯由9%Al、5%Si, 85%Fe粉构成。主要是替代铁粉芯,损耗比铁粉芯低80%,可在8kHz以上频率下使用;饱和磁感在105T 左右;导磁率从26~125;磁致伸缩系数接近0,在不同的频率下工作时无噪声产生;比MPP有更高的DC偏压能力;具有最佳的性能价格比。主要应用于交流电感、输出电感、线路滤波器、功率因素校正电路等。有时也替代有气隙铁氧体作变压器铁芯使用。 2. 软磁铁氧体(Ferrites) 软磁铁氧体 软磁铁氧体是以Fe2O3为主成分的亚铁磁性氧化物,采用粉末冶金方法生产。有Mn-Zn、Cu-Zn、Ni-Zn等几类,其中Mn-Zn铁氧体的产量和用量最大,Mn-Zn铁氧体的电阻率低,为1~10 欧姆-米,一般在100kHZ 以下的频率使用。Cu-Zn、Ni-Zn铁氧体的电阻率为102~104 欧姆-米,在100kHz~10 兆赫的无线电频段的损耗小,多用在无线电用天线线圈、无线电中频变压器。磁芯形状种类丰富,有E、I、U、EC、ETD形、方形(RM、EP、PQ)、罐形(PC、RS、DS)及圆形等。在应用上很方便。由于软磁铁氧体不使用镍等稀缺材料也能得到高磁导率,粉末冶金方法又适宜于大批量生产,因此成本低,又因为是烧结物硬度大、对应力不敏感,在应用上很方便。而且磁导率随频率的变化特性稳定,在150kHz以下基本保持不变。随着软磁铁氧体的出现,磁粉芯的生产大大减少了,很多原来使用磁粉芯的地方均被软磁铁氧体所代替。 国内外铁氧体的生产厂家很多,在此仅以美国的Magnetics公司生产的Mn-Zn铁氧体为例介绍其应用状况。分为三类基本材料:电信用基本材料、宽带及EMI材料、功率型材料。 电信用铁氧体的磁导率从750~2300, 具有低损耗因子、高品质因素Q、稳定的磁导率随温度/时间关系, 是磁导率在工作中下降最慢的一种,约每10年下降3%~4%。广泛应用于高Q滤波器、调谐滤波器、负载线圈、阻抗匹配变压器、接近传感器。宽带铁氧体也就是常说的高导磁率铁氧体,磁导率分别有5000、10000、15000。其特性为具有低损耗因子、高磁导率、高阻抗/频率特性。广泛应用于共模滤波器、饱和电感、电流互感器、漏电保护器、绝缘变压器、信号及脉冲变压器,在宽带变压器和EMI上多用。功率铁氧体具有高的饱和磁感应强度,为4000~5000Gs。另外具有低损耗/频率关系和低损耗/温度关系。也就是说,随频率增大、损耗上升不大;随温度提高、损耗变化不大。广泛应用于功率扼流圈、并列式滤波器、开关电源变压器、开关电源电感、功率因素校正电路。 (二) 带绕铁 1.硅钢片铁芯 硅钢片是一种合金,在纯铁中加入少量的硅(一般在45%以下)形成的铁硅系合金称为硅钢。该类铁芯具有最高的饱和磁感应强度值为20000Gs;由于它们具有较好的磁电性能,又易于大批生产,价格便宜,机械应力影响小等优点,在电力电子行业中获得极为广泛的应用,如电力变压器、配电变压器、电流互感器等铁芯。是软磁材料中产量和使用量最大的材料。也是电源变压器用磁性材料中用量最大的材料。特别是在低频、大功率下最为适用。常用的有冷轧硅钢薄板DG3、冷轧无取向电工钢带DW、冷轧取向电工钢带DQ,适用于各类电子系统、家用电器中的中、小功率低频变压器和扼流圈、电抗器、电感器铁芯,这类合金韧性好,可以冲片、切割等加工,铁芯有叠片式及卷绕式。但高频下损耗急剧增加,一般使用频率不超过400Hz。从应用角度看,对硅钢的选择要考虑两方面的因素:磁性和成本。对小型电机、电抗器和继电器,可选纯铁或低硅钢片;对于大型电机,可选高硅热轧硅钢片、单取向或无取向冷轧硅钢片;对变压器常选用单取向冷轧硅钢片。在工频下使用时,常用带材的厚度为02~035毫米;在400Hz下使用时,常选01毫米厚度为宜。厚度越薄,价格越高。 2.坡莫合金 坡莫合金铁芯 坡莫合金常指铁镍系合金,镍含量在30~90%范围内。是应用非常广泛的软磁合金。通过适当的工艺,可以有效地控制磁性能,比如超过105的初始磁导率、超过106的最大磁导率、低到2‰奥斯特的矫顽力、接近1或接近0的矩形系数,具有面心立方晶体结构的坡莫合金具有很好的塑性,可以加工成1μm的超薄带及各种使用形态。常用的合金有1J50、1J79、1J85等。1J50 的饱和磁感应强度比硅钢稍低一些,但磁导率比硅钢高几十倍,铁损也比硅钢低2~3倍。做成较高频率(400~8000Hz)的变压器,空载电流小,适合制作100W以下小型较高频率变压器。1J79 具有好的综合性能,适用于高频低电压变压器,漏电保护开关铁芯、共模电感铁芯及电流互感器铁芯。1J85 的初始磁导率可达十万105以上,适合于作弱信号的低频或高频输入输出变压器、共模电感及高精度电流互感器等。 3、非晶及纳米晶软磁合金(Amorphous and Nanocrystalline alloys) 硅钢和坡莫合金软磁材料都是晶态材料,原子在三维空间做规则排列,形成周期性的点阵结构,存在着晶粒、晶界、位错、间隙原子、磁晶各向异性等缺陷,对软磁性能不利。从磁性物理学上来说,原子不规则排列、不存在周期性和晶粒晶界的非晶态结构对获得优异软磁性能是十分理想的。非晶态金属与合金是70年代问世的一个新型材料领域。它的制备技术完全不同于传统的方法,而是采用了冷却速度大约为每秒一百万度的超急冷凝固技术,从钢液到薄带成品一次成型,比一般冷轧金属薄带制造工艺减少了许多中间工序,这种新工艺被人们称之为对传统冶金工艺的一项革命。由于超急冷凝固,合金凝固时原子来不及有序排列结晶,得到的固态合金是长程无序结构,没有晶态合金的晶粒、晶界存在,称之为非晶合金,被称为是冶金材料学的一项革命。这种非晶合金具有许多独特的性能,如优异的磁性、耐蚀性、耐磨性、高的强度、硬度和韧性,高的电阻率和机电耦合性能等。由于它的性能优异、工艺简单,从80年代开始成为国内外材料科学界的研究开发重点。目前美、日、德国已具有完善的生产规模,并且大量的非晶合金产品逐渐取代硅钢和坡莫合金及铁氧体涌向市场。 中国自从70年代开始了非晶态合金的研究及开发工作,经过“六五”、“七五”、“八五”期间的重大科技攻关项目的完成,共取得科研成果134项,国家发明奖2项,获专利16项,已有近百个合金品种。钢铁研究总院现具有4条非晶合金带材生产线、一条非晶合金元器件铁芯生产线。生产各种定型的铁基、铁镍基、钴基和纳米晶带材及铁芯,适用于逆变电源、开关电源、电源变压器、漏电保护器、电感器的铁芯元件,年产值近2000万元。“九五”正在建立千吨级铁基非晶生产线,进入国际先进水平行列。 目前,非晶软磁合金所达到的最好单项性能水平为: 初始磁导率 μo = 14 × 104 钴基非晶最大磁导率 μm= 220 × 104 钴基非晶矫顽力 Hc = 0001 Oe 磁性材料
钴基非晶矩形比 Br/Bs = 0995 钴基非晶饱和磁化强度 4πMs = 18300Gs 铁基非晶电阻率 ρ= 270μΩ/cm 常用的非晶合金的种类有:铁基、铁镍基、钴基非晶合金以及铁基纳米晶合金。其国家牌号及性能特点见表及图所示,为便于对比,也列出晶态合金硅钢片、坡莫合金1J79 及铁氧体的相应性能。这几类材料各有不同的特点,在不同的方面得到应用。 牌号基本成分和特征: 1K101 Fe-Si-B 系快淬软磁铁基合金 1K102 Fe-Si-B-C 系快淬软磁铁基合金 1K103 Fe-Si-B-Ni 系快淬软磁铁基合金 1K104 Fe-Si-B-Ni Mo 系快淬软磁铁基合金 1K105 Fe-Si-B-Cr(及其他元素)系快淬软磁铁基合金 1K106 高频低损耗Fe-Si-B 系快淬软磁铁基合金 1K107 高频低损耗Fe-Nb-Cu-Si-B 系快淬软磁铁基纳米晶合金 1K201 高脉冲磁导率快淬软磁钴基合金 1K202 高剩磁比快淬软磁钴基合金 1K203 高磁感低损耗快淬软磁钴基合金 1K204 高频低损耗快淬软磁钴基合金 1K205 高起始磁导率快淬软磁钴基合金 1K206 淬态高磁导率软磁钴基合金 1K501 Fe-Ni-P-B 系快淬软磁铁镍基合金 1K502 Fe-Ni-V-Si-B 系快淬软磁铁镍基合金
蜗牛原液是我们大家很多人都很熟悉的一种护肤产品,也有不少人都使用过,但对于其成分很少有人清楚,那么我们便要了解一下蜗牛原液的成分是什么?蜗牛原液有美白作用吗?
蜗牛原液的成分是什么
蜗牛原液的主要成分有:蜗牛分泌物滤液、Dermaflux水动能因子、尿囊素、骨胶原、天然抗菌肽、海藻糖、蘑菇葡聚糖、维生素C、维生素B5、丰富的微量元素等等。蜗牛原液有强大的修复能力,能有效对抗衰修复疤痕,因此蜗牛类护肤品深受大众喜爱。蜗牛分泌物滤液融合ALLANTOIN、尿囊素、蛋白酶、葡萄糖醛酸和丰富的微量元素,独特的新生配方能:(1)深入肌底,自动锁定肌肤的内部缺水问题,智能化修护肌肤细胞,强效保湿补水;(2)有效修补伤痕,帮助皮肤对抗自由基,具保湿、伤口愈合、抗发炎、刺激细胞再生的作用;(3)还有利于去除老旧角质,加速细胞再生、减少皮肤皱纹及疤痕的作用。
蜗牛原液有美白作用吗
正规厂家出品的蜗牛原液确实是具有一定的美白效果,但是现在产品太多了,有好多假的产品也随之而来,所以在选择的时候千万不能够贪图便宜,必须要买正规大品牌的才可以。除了使用护肤品之外,平时也可以多吃一些含维生素c和e的食物,比如说柠檬,西红柿,猕猴桃等等,长期食用它们也能够帮助淡化身体的黑色素,美白皮肤。蜗牛原液可以适用于各种肌肤的问题,例如美白补水,痘痘修复,疤痕淡化斑等,都是一种全能日常的护肤品,蜗牛原液其实就是从蜗牛里的粘液中提取出来的蜗牛原液也叫蜗牛粘液提取物,它还有保湿消肿消炎的作用,在医疗上能治疗皮肤的疤痕,可以使皮肤表面变得光滑润嫩。
蜗牛原液有修复红血丝功能吗
蜗牛原液能修复红血丝。说到修复效果,几乎没有能好得过蜗牛原液的。天然蜗牛原液被称为护肤黄金液,修复紧致提亮肤色效果确实好。蜗牛原液之所以有修复功效,是因为蜗牛自身有独特的修复方法,当皮肤或贝壳损伤时,可分泌粘液来对伤口进行自我修复。蜗牛在爬行时会在地上留下一行粘液,这是它体内分泌出的一种液体,粘液里富含蛋白质和胶原蛋白、弹性蛋白、甘醇酸、软骨素、尿囊素等多种天然再生成份。蜗牛的多种天然成份能快速改善过敏性肌肤、粉刺痤疮、修复痘印、疤痕、毛孔粗大,防止皮肤老化、水份和养份的流失,增强肌肤弹性等多种功效。
蜗牛原液有毒吗
没有。蜗牛原液对皮肤很好。蜗牛原液是蜗牛的黏液提取出来的,蜗牛的粘液无毒,是蜗牛保持体表湿润的分泌物,是由蜗牛的足腺所分泌出来的。而且蜗牛也没有毒,甚至有一种把蜗牛直接放脸上的蜗牛美容法。蜗牛美容是日本一家美容机构推出的美容疗法。美容过程大约持续60分钟左右,首先要清洗面部,然后再将蜗牛放在面颊和前额上,让蜗牛们随心所欲地爬动。
会有害。是无铅制程,那对身体危害还小一点,但是锡本身也是一种重金属,他进入人体之后,对人体也有危害,人经常接触这些重金属物质,会通过呼吸,进食之前没有认真洗手,通过手沾在食物上进入人体,对人体造成危害。
SMT贴片在PCB基础上进行加工的系列工艺流程,PCB(PrintedCircuitBoard)为印刷电路板。SMT是表面组装技术(表面贴装技术)(SurfaceMountedTechnology的缩写),是电子组装行业里最流行的一种技术和工艺。
扩展资料:
锡膏印刷-->零件贴装-->回流焊接-->AOI光学检测-->维修-->分板。
电子产品追求小型化,以前使用的穿孔插件元件已无法缩小。电子产品功能更完整,所采用的集成电路(IC)已无穿孔元件,特别是大规模、高集成IC,不得不采用表面贴片元件。产品批量化,生产自动化,厂方要以低成本高产量,出产优质产品以迎合顾客需求及加强市场竞争力。
电子元件的发展,集成电路(IC)的开发,半导体材料的多元应用。电子科技革命势在必行,追逐国际潮流。可以想象,在intel、amd等国际cpu、图像处理器件的生产商的生产工艺精进到20几个纳米的情况下,smt这种表面组装技术和工艺的发展也是不得以而为之的情况。
生态系统的组成成分:非生物的物质和能量、生产者、消费者、分解者。其中生产者为主要成分。
不同的生态系统有:森林生态系统、草原生态系统、海洋生态系统、淡水生态系统(分为湖泊生态系统、池塘生态系统、河流生态系统等)、农田生态系统、冻原生态系统、湿地生态系统、城市生态系统。
其中,无机环境是一个生态系统的基础,其条件的好坏直接决定生态系统的复杂程度和其中生物群落的丰富度;生物群落反作用于无机环境,生物群落在生态系统中既在适应环境,也在改变着周边环境的面貌,各种基础物质将生物群落与无机环境紧密联系在一起,而生物群落的初生演替甚至可以把一片荒凉的裸地变为水草丰美的绿洲。
生态系统各个成分的紧密联系,这使生态系统成为具有一定功能的有机整体。
1 约100-160 C,也就是预热区
2 Flux作用:这个要看预热区的时间和温度,一般要求预热区位于90-120s之间,使flux完全发挥作用,并且PCBA吸热充分;在以上条件下的flux会完全发挥作用。
3 正常情况下,flux比较轻,融化后并作用完成后会浮到熔融态焊点上方,flux本身不会形成空洞void;但flux作用不完全时,焊盘表面就不干净,会有污染物,污染物则会形成void
欢迎分享,转载请注明来源:品搜搜测评网