腐叶土。
一般到公园的大树底下就能有腐叶土挖,这种土一般都腐熟完全了,很多的腐叶败枝,消毒之后就可以直接使用了,其中含有比较多的虫卵,挖回家之后需要经过暴晒和浸泡多菌灵消毒之后就可以了。这种土非常适合喜酸性的花卉,比如兰花、栀子花、茉莉等等,而且腐叶土中还含有比较丰富的营养,能够促进花卉的生长。
松针土。
我们这边的公园最常见的就是松树了,在松树底下随便就能挖到松针土和松球,这两种都是非常好的养花材料,挖的时候要挖那些黑褐色的松软土壤,这样的额一般都是腐熟完全的,松针土的通透性强,透水排水能力好,含有比较丰富的有机质,非常适合养花了。
塘泥。
塘泥是与唐中的泥土,含有很多鱼的饲料和粪便,营养物质丰富,一般都能够拿来养护名贵的花卉,比如兰花、山茶等等,不过它最好能够跟其他的土壤混合,比如河沙、营养土等等。
什么是高岭土
一种以高岭石或多水高岭石为主要成分,质地纯净的细粒粘土,系首先发现于我国景德镇附近的高岭村而得名。据历史文献记载,景德镇高岭村一带的粘土在清初开采极盛,至光绪年间始渐衰落,并以洁白、细腻而闻名开世,为制坯不可缺少的原料。于 是当镇上瓷工遂沿用村名"高岭"名之,以便与他处所产瓷土区别。后又引伸之,凡与高岭地方所产的高岭土有相同产状和用途者,皆称高岭,如星子高岭、抚州高岭等。
高岭英文读作"Kaoling",后德国学者李希霍芬(Richthofen)按音译成"Kao-lin",介绍于欧美矿物学界,经一百多年广泛采用,遂成世界通用之名称。
一般高岭土原矿中含有少量蒙脱石、伊利石、水铝英石、以及石英、云母、黄铁矿、方解石、有机质等杂质。经过手选或精制加工后高岭土可达到高岭石的理论组成。其理论组成是:SiO24654%、Al2O3395%、H2O1396%。纯净高岭土外观呈白色或浅灰色。含杂质时呈黄、灰、青、玫瑰等色。原矿呈致密块状或疏松土状,质软,有滑腻感,硬度小于指甲。比重2。4~2。6。干燥后粘舌有吸润性。耐火度高,可达1770~1790℃。中、低可塑性,具良好的绝缘性和化学稳定性。煅烧白度高,达60~90%不等。主要用来制作日用陶瓷、工业陶瓷、建筑卫生陶瓷与耐火材料。也作为造纸、橡胶和塑料制品、油漆、纺织等的充填料或白色颜料。高岭土按成因可分为原生与次生高岭土二种。我国著名产地是江西景德镇、江苏苏州及湖南南界牌、山西大同等地。
高岭土
开放分类: 化工、造纸、瓷器、自然资源、粘土
高龄土的用途
质纯的高岭土具有白度高、质软、易分散悬浮于水中、良好的可塑性和高的粘结性、优良的电绝缘性能;具有良好的抗酸溶性、很低的阳离子交换量、较好的耐火性等理化性质。因此高岭土已成为造纸、陶瓷、橡胶、化工、涂料、医药和国防等几十个行业所必需的矿物原料。有报道称,日本还有将高岭土用于代替钢铁制造切削刀具、车床钻头和内燃机外壳等方面应用。特别是最近几年,现代科学技术飞速发展,使得高岭土的应用领域更加广泛,一些高新技术领域开始大量运用高岭土作为新材料,甚至原子反应堆、航天飞机和宇宙飞船的耐高温瓷器部件,也用高岭土制成。
目前,全球高岭土总产量约为4000万吨(该数据属于简单的国与国产量的相加,其中没有统计原矿的贸易量,包含较多的重复计算),其中精制土约为2350万吨。造纸工业是精制高岭土最大的消费部门,约占高岭土总消费量的60%。据加拿大Temanex咨询公司提供的数据,2000年全球纸和纸板总产量约为31900万吨,全球造纸涂料用高岭土总用量为约1360万吨。
高岭土在造纸工业的应用十分广泛。主要有两个领域,一个是在造纸(或称抄纸)过程中使用的填料,另一个是在表面涂布过程中使用的颜料。对于一般文化纸,填料量占纸重量的10-20%。对于涂布纸和纸板(主要包括轻量涂布纸、铜版纸和涂布纸板),除了需要填料外,还需要颜料,填、颜料用的高岭土所占比重为纸重的20-35%。高岭土应用于造纸,能够给予纸张良好的覆盖性能和良好的涂布光泽性能,还能增加纸张的白度、不透明度,光滑度及印刷适性,极大改善纸张的质量。
高龄土的工艺特性
旭日芳华
1.白度和亮度
白度是高岭土工艺性能的主要参数之一,纯度高的高岭土为白色。高岭土白度分自然白度和煅烧后的白度。对陶瓷原料来说,煅烧后的白度更为重要,煅烧白度越高则质量越好。陶瓷工艺规定烘干105℃为自然白度的分级标准,煅烧1300℃为煅烧白度的分级标准。白度可用白度计测定。白度计是测量对3800—7000 波长光的反射率的装置。在白度计中,将待测样与标准样(如BaSO4、MgO等)的反射率进行对比,即白度值(如白度90即表示相当于标准样反射率的90%)。
亮度是与白度类似的工艺性质,相当于4570 波长光照射下的白度。
高岭土的颜色主要与其所含的金属氧化物或有机质有关。一般含Fe2O3呈玫瑰红、褐**;含Fe2+呈淡蓝、淡绿色;含MnO2呈淡褐色;含有机质则呈淡黄、灰、青、黑等色。这些杂质存在,降低了高岭土的自然白度,其中铁、钛矿物还会影响煅烧白度,使瓷器出现色斑或熔疤。
2.粒度分布
粒度分布是指天然高岭土中的颗粒,在给定的连续的不同粒级(以毫米或微米筛孔的网目表示)范围内所占的比例(以百分含量表示)。高岭土的粒度分布特征对矿石的可选性及工艺应用具有重要意义,其颗粒大小,对其可塑性、泥浆粘度、离子交换量、成型性能、干燥性能、烧成性能均有很大影响。高岭土矿都需要进行技术加工处理,是否易于加工到工艺所要求的细度,已成为评价矿石质量的标准之一。各工业部门对不同用途的高岭土都有具体的粒度和细度要求。如美国对用作涂料的高岭土要求小于2μm的含量占90—95%,造纸填料小于2μm的占78—80%。
3.可塑性
高岭土与水结合形成的泥料,在外力作用下能够变形,外力除去后,仍能保持这种形变的性质即为可塑性。可塑性是高岭土在陶瓷坯体中成型工艺的基础,也是主要的工艺技术指标。通常用可塑性指数和可塑性指标来表示可塑性的大小。可塑性指数是指高岭土泥料的液限含水率减去塑限含水率,以百分数表示,即W塑性指数=100(W液性限度-W塑性限度)。可塑性指标代表高岭土泥料的成型性能,用可塑仪直接测定泥球受压破碎时的荷重及变形大小可得,以kg·cm表示,往往可塑性指标越高,其成型性能越好。高岭土的可塑性可分为四级。
可塑性强度可塑性指数可塑性指标
强可塑性>1536
中可塑性7—1525—36
弱可塑性1—7<25
非可塑性<1
4.结合性
结合性指高岭土与非塑性原料相结合形成可塑性泥团并具有一定干燥强度的性能。结合能力的测定,是在高岭土中加入标准石英砂(其质量组成025—015粒级占70%,015—009mm粒级占30%)。以其仍能保持可塑泥团时的最高含砂量及干燥后的抗折强度来判断其高低,掺入的砂越多,则说明这种高岭土结合能力就越强。通常凡可塑性强的高岭土结合能力也强。
5.粘性和触变性
粘性是指流体内部由于内摩擦作用而阻碍其相对流动的一种特征,以粘度来表示其大小(作用于1单位面积的内摩擦力),单位是Pa·s。粘度的测定,一般采用旋转粘度计,以在含70%固含量的高岭土泥浆中的转速来衡量。在生产工艺中,粘度具有重要意义,它不仅是陶瓷工业的重要参数,对造纸工业影响也很大。据资料表明,国外用高岭土作涂料,在低速涂布时要求粘度约05Pa·s,高速涂布时要求小于15Pa·s。
触变性指已经稠化成凝胶状不再流动的泥浆受力后变为流体,静止后又逐渐稠化成原状的特性。以厚化系数表示其大小,采用流出粘度计和毛细管粘度计测定。
粘性和触变性与泥浆中矿物成分,粒度及阳离子类型有关,一般,蒙脱石含量多的,颗粒细的,交换性阳离子以钠为主的,其粘度和厚化系数高。因此工艺上常用添加可塑性强的粘土、提高细度等方法提高其粘性和触变性,用增加稀释电解质和水分等方法降低之。
6.干燥性能
干燥性能指高岭土泥料在干燥过程中的性能。包括干燥收缩、干燥强度和干燥灵敏度等。
干燥收缩指高岭土泥料在失水干燥后产生的收缩。高岭土泥料一般在40—60℃至多不超过110℃温度下就发生脱水而干燥,因水分排出,颗粒距离缩短,试样的长度和体积就要发生收缩。干燥收缩分线收缩和体收缩,以高岭土泥料干燥至恒重后长度及体积变化的百分数表示。高岭土的干燥线收缩一般在3—10%。粒度越细,比表面积越大,可塑性越好,干燥收缩越大。同一类型的高岭土,因掺合水的不同,其收缩也不同,多者,收缩大。在陶瓷工艺中,干燥收缩过大,坯体容易发生变形或开裂。
干燥强度指泥为干燥至恒重后的抗折强度。
干燥灵敏度指坯体干燥时,可能产生变形和开裂倾向的难易程度。灵敏度大,在干燥过程中容易变形和开裂。一般干燥灵敏度高的高岭土(干燥灵敏度系数K>2)容易形成缺陷;低者(干燥灵敏度系数K<1)在干燥中比较安全。
7.烧结性
烧结性是指将成型的固体粉状高岭土坯体加热至接近其熔点(一般超过1000℃)时,物质自发地充填粒间隙而致密化的性能。气孔率下降到最低值,密度达到最大值的状态,称为烧结状态,相应的温度称为烧结温度。继续加热时,试样中的液相不断增加,试样开始变形,此时温度即称转化温度。烧结温度与转化温度的间隔称烧结范围。烧结温度和烧结范围在陶瓷工业中是决定坯料配方、选择窑炉类型的重要参数。试料以烧结温度低、烧结范围宽(100—150℃)为宜,工艺上可以用掺配助熔原料及将不同类型的高岭土按比例掺配的方法控制烧结温度及烧结范围。
8.烧成收缩
烧成收缩性是指已干燥的高岭土坯料在烧成过程中,发生一系列物理化学变化(脱水作用、分解作用、生成莫来石,易熔杂质熔化生成玻璃相充填于质点间的空隙等),而导致制品收缩的性能,也分为线收缩和体收缩两种。同干燥收缩一样,烧成收缩太大,容易导致坯体开裂。另外,焙烧时,坯料中若混有大量的石英,它将发生晶型转化(三方→六方),使其体积膨胀,也会产生反收缩。
9.耐火性
耐火性是指高岭土抵抗高温不致熔化的能力。在高温作业下发生软化并开始熔融时温度称耐火度。其可采用标准测温锥或高温显微直接测定,也可用M.A.别兹别洛道夫经验公式进行计算。
耐火度t(℃)=[360+Al2O3-R2O]/0228
式中:Al2O3为SiO2和Al2O3分析结果之和为100时其中Al2O3所占的质量百分比;R2O为SiO2和Al2O3分析结果之和为100时其它氧化物所占的质量百分比。
通过此公式计算耐火度的误差在50℃以内。
耐火度与高岭土的化学组成有关,纯的高岭土的耐火度一般在1700℃左右,当水云母、长石含量多,钾、钠、铁含量高时,耐火度降低,高岭土的耐火度最低不小于1500℃。工业部门规定耐火材料的R2O含量小于15—2%,Fe2O3小于3%。
10.悬浮性和分散性
悬浮性和分散性指高岭土分散于水中难于沉淀的性能。又称反絮凝性。一般粒度越细小,悬浮性就越好。用于搪瓷工业的高岭土要求有良好的悬浮性。一般据分散于水中的样品经一定时间的沉降速度来确定其悬浮性能的好坏。
11.可选性
可选性是指高岭土矿石经手工挑选,机械加工和化学处理,以除去有害杂质,使质量达到工业要求的性能。高岭土的可选性取决于有害杂质的矿物成分、赋存状态、颗粒大小等。石英、长石、云母、铁、钛矿物等均属有害杂质。高岭土选矿主要包括除砂、除铁、除硫等项目。
12.离子吸附性及交换性
高岭土具有从周围介质中吸附各种离子及杂质的性能,并且在溶液中具较弱的离子交换性质。这些性能的优劣主要取决于高岭土的主要矿物成分,见表8。
表8 不同类型高岭土的阳离子交换容量
矿物成份特点阳离子交换容量
高岭石为主2—5mg/100g
埃洛石为主13mg/100g
含有机质(球土)10—120mg/100g
13.化学稳定性
高岭土具有强的耐酸性能,但其耐碱性能差。利用这一性质可用它合成分子筛。
14.电绝缘性
优质高岭土具有良好的电绝缘性,利用这一性质可用之制作高频瓷、无线电瓷。电绝缘性能的高低可以用它的抗电击穿能力来衡量。
高龄土的传说
做瓷器用的瓷土,现在世界上都把它叫做“高岭土”,这高岭土就出产在景德镇的高岭村呢!
高岭村的瓷土是怎样被发现的?
那是在很久很久以前,高岭村有一家姓盛的穷苦夫妻,他们佃了大地主张剥皮的几亩薄田,一年到头,风里来,雨里去,好不容易打下一点儿粮食,可张剥皮的阎王账一翻,算盘珠一响,就会给刮去了。他们靠着红薯、萝卜和野菜当餐,日子苦得就像黄连一样。
盛家夫妻日子过得虽然清苦,但心地却特别善良。听到谁家揭不开锅,他们就宁愿自己挨饿,也要省出点口粮送去。因此,村里人都称他们是“好心的盛家”。
有一年冬天,天气特别寒冷,北风吹过来,就像刀子刮人一样。这一天清早,大风凛冽,雪花纷飞,盛家男人正抱着一捆柴禾,准备送到前村的一个孤苦伶仃的高老太婆家去。她打开屋门,只见屋檐下躺着个白发苍苍的老公公,这老公公衣衫破烂,满脸焦黄,冻得在瑟瑟发抖,嘴里还不停地发出痛苦地唤叫。
盛家男人见了,急忙放下柴禾,走上前把老公公扶进屋里。他一边脱下自己的破棉袄,披在老公公身上,一边忙喊妻子倒碗热水来。
盛家男人问:“老公公,你是哪个村的?这大冷的天,出门来做什么?”
那老公公深深地叹了口气,答道:“我家住在很远的地方,因为给地主老财逼得没办法,只好出外投亲,没想到病倒在这里。”男人一听,忙安慰说:“老公公,你莫急,病了,救现在我家养病,等好了,开了春再走吧!”
那老公公感动地点点头。这时,盛家妻子端来了一碗热开水,送到那老公公跟前,请他喝下暖暖身子。老公公摇摇头说:“我实在饿得吃不消了,想喝碗热粥,不知有没有?”
这对夫妻听了,感到很为难,因为他们家的米缸,早就空了,拿什么熬粥呢?盛家妻子正想对老公公直说,但她男人看到老公公饥饿痛苦的样子,心中实在不忍,就暗把妻子一拉,走进厨房,悄悄地说:“你去张剥皮家里借一升米来,熬粥给老公公喝吧。”妻子一听要她去张剥皮假借米,吓了一跳!提起这张剥皮,高岭村方圆几十里,谁不知他是个吸血的蚂蟥,叮人是越叮越深,不吸饱血是死不松口的。谁也不敢上他家去借东西。
盛家男人见妻子犹豫,又推了她一把,要她快去。
妻子借来米,男人生火熬粥,一会儿工夫,一大碗香喷喷,热腾腾的米粥端到了老公公的面前。老公公见了,也不客气,一口气就把粥喝了下去。
说也奇怪,老公公把这碗粥一喝下去,原来焦黄的脸,顿时红润起来,精神也好了,病也好像烟消云散了。这时,老公公站了起来,把破棉袄还给盛家男人,说:“你们真是名不虚传的:好心的盛家。我没有什么好报答你们,我走后,你们可到村后东南面的松山顶上一口气挖它个九九八十一锄,那时,就有办法偿还张剥皮的一升米了。”老公公说罢,抬脚走了。
盛家夫妻听了,感到十分奇怪,他们型:老公公躺在屋里,怎么会知道他们上张剥皮嫁借了米?莫非他是神仙不成?待夫妻俩出屋再看,那老公公早已不见踪影。
回到屋里,盛家夫妻真的扛起了把锄头,上了村后东南面的松山顶,奋力举锄挖了起来。一锄,二锄……三十、四十……挖到那九九八十一锄时,奇迹出现了:那黑沉沉的泥土,一下变成了白花花的,胜家男人用手捧起来,一捏,哈,软乎乎得就像糯米粉一样,在捧到鼻子尖闻闻,竟是香喷喷的,捏一点放进嘴里尝尝,又是甜滋滋的,跟真的糯米粉一模一样。
这下可乐坏了盛家夫妻俩。他们想到村里穷苦人家正在受苦挨饿,就兴冲冲地跑回村去,把穷苦人都叫了来,挑起大筐、小桶熙熙攘攘地来到了松山顶,大伙动手,锄呀、挖呀、装呀、挑呀,挖去一层,立刻又长出一层……这时候,穷人们哪个欢乐劲就不用说了啦!
穷人们兴高采烈地将“糯米粉”各自挑回家去,有时做汤团,有时做糍粑,真像过年一样。
这事被张剥皮知道了。他急急忙忙爬上松山顶一看,瞧得眼也红了,嘴也馋了。他把一帮狗腿家丁叫来,,团团围住了松山顶,把穷人们赶下山去,并且在四周钉上“张府”的木牌,说这松山是他家祖传的宝山,谁要再到松山来挖糯米粉,就要送官究办。穷人们听了,无不气恨。
再说,张剥皮叫人挖了一大筐,抬回家去做汤团,汤团做好了,张剥皮把全家都叫到大厅前,手捻着他那几根胡须,得意洋洋地说:“今天我请客,大家尽量地吃,吃完了,我们还可以上山去挖。哈哈!这下我可发大财了,”说着,张剥皮带头吃起来。
张剥皮囫囵一口就吞下了一只汤团,汤圆刚落肚,就双手捧住肚子,妈呀!妈的倒在地上打起滚来。家里人走前一看,哪里有什么汤团,碗里的汤圆全变成了石头,张剥皮肚子里有块石头,痛得他呼天叫地,一直闹到天亮,便活活地疼死了。
张剥皮一死,高岭村的男女老少可高兴了。盛家夫妻又领着穷人们上了松山顶,到了山顶一看,发现原先挖出来的“糯米粉”全部变成了石头。这时,大家就更恨张剥皮了。
这天晚上,盛家夫妻在梦里,只见老公公又来到跟前,说:“松山顶上的石头,可以拿来做瓷器,做成的瓷器能跟玉器一样的值钱哩!”第二天清早,盛家夫妻就和全村的穷人们来到了松山顶,只见满山全都是银光闪闪的土石,盛家夫妻按照那老公公嘱咐的话,将挖起的土石做成一个个碗和杯的坯子来,放进窑里一烧,果然个个晶莹洁白,真象玉器一样。
高岭村的穷人们把这些玉器般的瓷碗、瓷杯挑到镇上去卖,百姓们看了,都是喜爱万分,一忽儿就被抢购一空。
从此,高岭村的穷人们在盛家夫妻的带领下,改行挖土建窑烧瓷器了。松山因地处高岭,就改名叫高岭山,山上的瓷土,就叫做高岭土了。
高龄土
开放分类: 土壤、材料、电缆
高龄土的用途
高岭土具有白度高、质软、易分散悬浮于水中、良好的可塑性和高的粘结性、优良的电绝缘性能;具有良好的抗酸溶性、很低的阳离子交换量、较好的耐火性等理化性质。因此高岭土已成为造纸、陶瓷、橡胶、化工、涂料、医药和国防等几十个行业所必需的矿物原料。有报道称,日本还有将高岭土用于代替钢铁制造切削刀具、车床钻头和内燃机外壳等方面应用。特别是最近几年,现代科学技术飞速发展,使得高岭土的应用领域更加广泛,一些高新技术领域开始大量运用高岭土作为新材料,甚至原子反应堆、航天飞机和宇宙飞船的耐高温瓷器部件,也用高岭土制成。
高龄土可提高电缆的体积电阻率,使产品有较高的电绝缘性,并且分散性好,与基料的交联性得到改善,起到一定的补强作用。
高岭土在造纸工业的应用十分广泛。主要有两个领域,一个是在造纸(或称抄纸)过程中使用的填料,另一个是在表面涂布过程中使用的颜料。对于一般文化纸,填料量占纸重量的10-20%。对于涂布纸和纸板(主要包括轻量涂布纸、铜版纸和涂布纸板),除了需要填料外,还需要颜料,填、颜料用的高岭土所占比重为纸重的20-35%。高岭土应用于造纸,能够给予纸张良好的覆盖性能和良好的涂布光泽性能,还能增加纸张的白度、不透明度,光滑度及印刷适性,极大改善纸张的质量。
目前,全球高岭土总产量约为4000万吨(该数据属于简单的国与国产量的相加,其中没有统计原矿的贸易量,包含较多的重复计算),其中精制土约为 2350万吨。造纸工业是精制高岭土最大的消费部门,约占高岭土总消费量的60%。据加拿大Temanex咨询公司提供的数据,2000年全球纸和纸板总产量约为31900万吨,全球造纸涂料用高岭土总用量为约1360万吨
高龄土的工艺特性
1.白度和亮度
白度是高岭土工艺性能的主要参数之一,纯度高的高岭土为白色。高岭土白度分自然白度和煅烧后的白度。对陶瓷原料来说,煅烧后的白度更为重要,煅烧白度越高则质量越好。陶瓷工艺规定烘干105℃为自然白度的分级标准,煅烧1300℃为煅烧白度的分级标准。白度可用白度计测定。白度计是测量对3800— 7000 波长光的反射率的装置。在白度计中,将待测样与标准样(如BaSO4、MgO等)的反射率进行对比,即白度值(如白度90即表示相当于标准样反射率的 90%)。
亮度是与白度类似的工艺性质,相当于4570 波长光照射下的白度。
高岭土的颜色主要与其所含的金属氧化物或有机质有关。一般含Fe2O3呈玫瑰红、褐**;含Fe2+呈淡蓝、淡绿色;含MnO2呈淡褐色;含有机质则呈淡黄、灰、青、黑等色。这些杂质存在,降低了高岭土的自然白度,其中铁、钛矿物还会影响煅烧白度,使瓷器出现色斑或熔疤。
2.粒度分布
粒度分布是指天然高岭土中的颗粒,在给定的连续的不同粒级(以毫米或微米筛孔的网目表示)范围内所占的比例(以百分含量表示)。高岭土的粒度分布特征对矿石的可选性及工艺应用具有重要意义,其颗粒大小,对其可塑性、泥浆粘度、离子交换量、成型性能、干燥性能、烧成性能均有很大影响。高岭土矿都需要进行技术加工处理,是否易于加工到工艺所要求的细度,已成为评价矿石质量的标准之一。各工业部门对不同用途的高岭土都有具体的粒度和细度要求。如美国对用作涂料的高岭土要求小于2μm的含量占90—95%,造纸填料小于2μm的占78—80%。
3.可塑性
高岭土与水结合形成的泥料,在外力作用下能够变形,外力除去后,仍能保持这种形变的性质即为可塑性。可塑性是高岭土在陶瓷坯体中成型工艺的基础,也是主要的工艺技术指标。通常用可塑性指数和可塑性指标来表示可塑性的大小。可塑性指数是指高岭土泥料的液限含水率减去塑限含水率,以百分数表示,即W塑性指数=100(W液性限度-W塑性限度)。可塑性指标代表高岭土泥料的成型性能,用可塑仪直接测定泥球受压破碎时的荷重及变形大小可得,以kg·cm表示,往往可塑性指标越高,其成型性能越好。高岭土的可塑性可分为四级。
可塑性强度可塑性指数可塑性指标
强可塑性>1536
中可塑性7—1525—36
弱可塑性1—7<25
非可塑性<1
4.结合性
结合性指高岭土与非塑性原料相结合形成可塑性泥团并具有一定干燥强度的性能。结合能力的测定,是在高岭土中加入标准石英砂(其质量组成025— 015粒级占70%,015—009mm粒级占30%)。以其仍能保持可塑泥团时的最高含砂量及干燥后的抗折强度来判断其高低,掺入的砂越多,则说明这种高岭土结合能力就越强。通常凡可塑性强的高岭土结合能力也强。
5.粘性和触变性
粘性是指流体内部由于内摩擦作用而阻碍其相对流动的一种特征,以粘度来表示其大小(作用于1单位面积的内摩擦力),单位是Pa·s。粘度的测定,一般采用旋转粘度计,以在含70%固含量的高岭土泥浆中的转速来衡量。在生产工艺中,粘度具有重要意义,它不仅是陶瓷工业的重要参数,对造纸工业影响也很大。据资料表明,国外用高岭土作涂料,在低速涂布时要求粘度约05Pa·s,高速涂布时要求小于15Pa·s。
触变性指已经稠化成凝胶状不再流动的泥浆受力后变为流体,静止后又逐渐稠化成原状的特性。以厚化系数表示其大小,采用流出粘度计和毛细管粘度计测定。
粘性和触变性与泥浆中矿物成分,粒度及阳离子类型有关,一般,蒙脱石含量多的,颗粒细的,交换性阳离子以钠为主的,其粘度和厚化系数高。因此工艺上常用添加可塑性强的粘土、提高细度等方法提高其粘性和触变性,用增加稀释电解质和水分等方法降低之。
6.干燥性能
干燥性能指高岭土泥料在干燥过程中的性能。包括干燥收缩、干燥强度和干燥灵敏度等。
干燥收缩指高岭土泥料在失水干燥后产生的收缩。高岭土泥料一般在40—60℃至多不超过110℃温度下就发生脱水而干燥,因水分排出,颗粒距离缩短,试样的长度和体积就要发生收缩。干燥收缩分线收缩和体收缩,以高岭土泥料干燥至恒重后长度及体积变化的百分数表示。高岭土的干燥线收缩一般在3— 10%。粒度越细,比表面积越大,可塑性越好,干燥收缩越大。同一类型的高岭土,因掺合水的不同,其收缩也不同,多者,收缩大。在陶瓷工艺中,干燥收缩过大,坯体容易发生变形或开裂。
干燥强度指泥为干燥至恒重后的抗折强度。
干燥灵敏度指坯体干燥时,可能产生变形和开裂倾向的难易程度。灵敏度大,在干燥过程中容易变形和开裂。一般干燥灵敏度高的高岭土(干燥灵敏度系数K>2)容易形成缺陷;低者(干燥灵敏度系数K<1)在干燥中比较安全。
7.烧结性
烧结性是指将成型的固体粉状高岭土坯体加热至接近其熔点(一般超过1000℃)时,物质自发地充填粒间隙而致密化的性能。气孔率下降到最低值,密度达到最大值的状态,称为烧结状态,相应的温度称为烧结温度。继续加热时,试样中的液相不断增加,试样开始变形,此时温度即称转化温度。烧结温度与转化温度的间隔称烧结范围。烧结温度和烧结范围在陶瓷工业中是决定坯料配方、选择窑炉类型的重要参数。试料以烧结温度低、烧结范围宽(100—150℃)为宜,工艺上可以用掺配助熔原料及将不同类型的高岭土按比例掺配的方法控制烧结温度及烧结范围。
8.烧成收缩
烧成收缩性是指已干燥的高岭土坯料在烧成过程中,发生一系列物理化学变化(脱水作用、分解作用、生成莫来石,易熔杂质熔化生成玻璃相充填于质点间的空隙等),而导致制品收缩的性能,也分为线收缩和体收缩两种。同干燥收缩一样,烧成收缩太大,容易导致坯体开裂。另外,焙烧时,坯料中若混有大量的石英,它将发生晶型转化(三方→六方),使其体积膨胀,也会产生反收缩。
9.耐火性
耐火性是指高岭土抵抗高温不致熔化的能力。在高温作业下发生软化并开始熔融时温度称耐火度。其可采用标准测温锥或高温显微直接测定,也可用M.A.别兹别洛道夫经验公式进行计算。
耐火度t(℃)=[360+Al2O3-R2O]/0228
式中:Al2O3为SiO2和Al2O3分析结果之和为100时其中Al2O3所占的质量百分比;R2O为SiO2和Al2O3分析结果之和为100时其它氧化物所占的质量百分比。
通过此公式计算耐火度的误差在50℃以内。
耐火度与高岭土的化学组成有关,纯的高岭土的耐火度一般在1700℃左右,当水云母、长石含量多,钾、钠、铁含量高时,耐火度降低,高岭土的耐火度最低不小于1500℃。工业部门规定耐火材料的R2O含量小于15—2%,Fe2O3小于3%。
10.悬浮性和分散性
悬浮性和分散性指高岭土分散于水中难于沉淀的性能。又称反絮凝性。一般粒度越细小,悬浮性就越好。用于搪瓷工业的高岭土要求有良好的悬浮性。一般据分散于水中的样品经一定时间的沉降速度来确定其悬浮性能的好坏。
11.可选性
可选性是指高岭土矿石经手工挑选,机械加工和化学处理,以除去有害杂质,使质量达到工业要求的性能。高岭土的可选性取决于有害杂质的矿物成分、赋存状态、颗粒大小等。石英、长石、云母、铁、钛矿物等均属有害杂质。高岭土选矿主要包括除砂、除铁、除硫等项目。
12.离子吸附性及交换性
高岭土具有从周围介质中吸附各种离子及杂质的性能,并且在溶液中具较弱的离子交换性质。这些性能的优劣主要取决于高岭土的主要矿物成分,见表8。
表8 不同类型高岭土的阳离子交换容量
矿物成份特点阳离子交换容量
高岭石为主2—5mg/100g
埃洛石为主13mg/100g
含有机质(球土)10—120mg/100g
13.化学稳定性
高岭土具有强的耐酸性能,但其耐碱性能差。利用这一性质可用它合成分子筛。
14.电绝缘性
优质高岭土具有良好的电绝缘性,利用这一性质可用之制作高频瓷、无线电瓷。电绝缘性能的高低可以用它的抗电击穿能力来衡量。
高龄土的世界生产布局
世界上有60多个国家和地区生产高岭土。根据1996年美国“Mineral Commadity Summaries”资料看,1995年世界高岭土总产量为1 9037万t,比1994年增长5%。美国、英国、乌克兰、中国、巴西是世界主要的高岭土生产国,其产量合计占世界总产量的78%。
美国是世界最大的高岭土生产国,1995年高岭土产量达949万t,占世界高岭土总产量的50%左右;英国是欧洲高岭土的最大生产国,1995年高岭土产量达265万t,其ECC国际有限公司是英国乃至世界上最大的高岭土生产公司,其产量占全英高岭土产量的90%以上,年生产能力为250万t,若加上在美国和巴西等地的分公司产量,ECC公司年产高岭土可达500万t左右。
中国是世界上第三大高岭土生产国,1995年高岭土产量为14793万t,1996年为23535万t。中国目前有县以上高岭土矿山企业100余个,乡镇企业或采矿点700余个。中国高岭土生产能力估计超过300万t,选矿能力50余万t。中国高岭土主要产区在江苏、广东、广西、福建和江西等省 (区)。年产10万t高岭土原矿的矿山企业有:江苏苏州中国高岭土公司;广东湛江高岭土公司、茂名市南山阁瓷土公司、茂名高岭土公司、茂名石化矿业公司;福建龙岩高岭土公司。机选能力在10万t以上的矿山企业有:江苏苏州中国高岭土公司和广东湛江高岭土公司。
此外,中国现有煤系高岭土企业20余个,年产能力约30万t。目前在建和拟建的煤系高岭土矿山企业10余个,年设计能力20余万t吨。
(1)气孔率高。多孔陶瓷的重要特征是具有中较多的均匀可控的气孔。气孔有开口气孔和闭口气孔之分,开口气孔具有过滤、吸收、吸附、消除回声等作用,而闭口气孔则有利于阻隔热量、声音以及液体与固体微粒传递。
(2)强度高。多孔陶瓷材料一般由金属氧化物、二氧化硅、碳化硅等经过高温煅烧而成,这些材料本身具有较高的强度,煅烧过程中原料颗粒边界部分发生融化而粘结,形成了具有较高
强度的陶瓷。
(3)物理和化学性质稳定。多孔陶瓷材料可以耐酸、碱腐蚀,也能够承受高温、高压,自身洁净状态好,不会造成二次污染,是一种绿色环保的功能材料。
(4)过滤精度高,再生性能好。用作过滤材料的多孔陶瓷材料具有较窄的孔径分布范围和较高的气孔率与比表面积,被过滤物与陶瓷材料充分接触,其中的悬浮物、胶体物及微生物等污染物质被阻截在过滤介质表面或内部,过滤效果良好。多孔陶瓷过滤材料经过一段时间的使用后,用气体或者液体进行反冲洗,即可恢复原有的过滤能力。
材质
(1)高硅质硅酸盐材料,它主要以硬质瓷渣、耐酸陶瓷渣及其他耐酸的合成陶瓷颗粒为骨料,具有耐水性、耐酸性,使用温度达700℃。
(2)铝硅酸盐材料,它以耐火粘土熟料、烧矾土、硅线石和合成莫来石颗粒为骨料。具有耐酸性和耐弱碱性,使用温度达1 000℃。
(3)精陶质材料,它以多种粘土熟料颗粒与粘土等混合烧结,得到微孔陶瓷材料。
(4)硅藻土质材料,它主要以精选硅藻土为原料,加粘土烧结而成。用于精滤水和酸性介质。
(5)纯炭质材料,它以低灰分煤或石油沥青焦颗粒为原料,或加入部分石墨,用稀焦油粘结烧制而成,用于耐水、冷热强酸、冷热强碱介质以及空气的消毒和过滤等。
(6)刚玉和金刚砂材料,它以不同型号的电熔刚玉和碳化硅颗粒为骨料,具有耐强酸、耐高温的特性
(7)堇青石、钛酸铝材料,其特点是热膨胀系数小,因而广泛用于热冲击环境。
添加剂
(1)助熔剂
陶瓷助熔剂的主要作用是降低烧成温度,增加液相,扩大烧成范围,提高坯体的力学强度和化学稳定性。常用的助熔剂有长石、珍珠岩、滑石、蛇纹石、硅灰石、石灰石、白云石等。
(2)增塑剂
陶瓷增塑剂主要作用是提高陶瓷坯体的整体塑性,保证坯体具有一定的强度,使坯体在烧成前保持原有形状。常用的增塑剂有粘性土、木节土、球土等。
(3)粘结剂
粘结剂是指为了提高坯体的强度或防止粉末偏析而添加到陶瓷坯料中的具有粘结作用的添加剂。粘结剂一般选择易于在烧结前或烧结过程除掉的物质,如淀粉、石蜡、羧甲基纤维素、聚乙烯醇等。水玻璃具有较好的粘性,水分挥发后留下的硅酸钠可以作为陶瓷的成分,所以也常被用作粘结剂。
(4)致孔剂
加入致孔剂是为了提高陶瓷的气孔率、扩大比表面积。致孔剂主要有天然有机细粉、煤粉、石灰石、白云石、烧沸石、珍珠岩、浮石等。一般来讲,增加致孔剂的用量可以提高陶瓷的气孔率,但是会引起陶瓷强度下降,因此必须控制致孔剂的添加比例。以石灰石和白云石作致孔剂时,在煅烧过程分解生成的CaO和MgO具有助熔作用,如果在煅烧温度过高、时间过长,会与原料中的部分物质形成玻璃相,填充部分已形成的气孔,降低陶瓷的气孔率
(5)流变剂
浆料的流动性能保证浆料在浸渍过程中能渗透到有机泡沫中,并均匀地涂敷在泡沫网络的孔壁上。浆料的触变性即要求浆料具有在静止时处于凝固状态,但在外力作用下又恢复流动性的特性。良好的触变性可以保证在浸渍浆料和挤出多余浆料时,在剪切作用下降低粘度,提高浆料的流动性,有助于成型,而在成型结束时,浆料的粘度升高,流动性降低。这就使得附着在孔壁上的浆料容易固化而定型,避免了因为浆料的流动造成坯体严重堵孔而影响制品的均匀性。
(6)分散剂
为了提高浆料的固含量,无论是水基体系还是非水基体系均需加入分散剂。分散剂可以提高浆料的稳定性,阻止颗粒再团聚,进而提高浆料的固含量。
(7)消泡剂和表面活性剂
为了防止浆料在浸渍和挤出多余浆料的过程中起泡而影响制品的性能,需加入消泡剂,一般采用低分子量的醇和硅酮。陶瓷浆料为水基浆料时,如果有机泡沫与浆料之间的润湿性差,在浸渍浆料时就会出现泡沫结构的交叉部分附着较厚的浆料,而在结构的桥部和棱线部分附着很薄的浆料的现象。这种情况严重时会导致烧结过程中坯体开裂,使多孔陶瓷的强度明显降低。因此,通常采用添加表面活性剂的方法以改善陶瓷浆料与有机泡沫体之间的附着性来解决此问题。
制备
发泡工艺
发泡工艺是陶瓷组分添加有机或无机化学物质,通过化学反应等产生挥发气体,经干燥和烧成制成多孔陶瓷。发泡工艺与泡沫浸渍工艺相比,更容易控制制品的形状、成分和密度,并可制备各种气孔形状和大小的多孔陶瓷,特别适用于制备闭气孔的陶瓷材料。用来做发泡剂的化学物质有很多种类,例如,用碳化钙、氢氧化钙、铝粉硫酸铝和双氧水作发泡剂;由亲水性聚氨脂塑料和陶瓷泥浆同时发泡制备多孔陶瓷;用硫化物和硫酸盐混合作发泡剂等。
添加成孔剂工艺
此工艺是通过在陶瓷配料中添加造孔剂,利用造孔剂在坯体中占据一定的空间,然后经过烧结,造孔剂离开而形成气孔来制备多孔陶瓷。添加造孔剂制备多孔陶瓷的工艺流程与普通的陶瓷工艺流程相似。造孔剂的种类有无机和有机两类,无机造孔剂有碳酸铵、碳酸氢铵、氯化铵等高温可分解的盐类,以及煤粉、碳粉等。有机造孔剂主要是天然纤维、高分子聚合物和有机酸等。造孔剂颗粒的形状和大小决定了多孔陶瓷材料气孔的形状和大小。多孔陶瓷材料的成型方法与普通陶瓷的成型方法类似,主要有模压、挤压、等静压、扎制、注射和粉浆浇注等。
有机泡沫浸渍工艺
有机泡沫浸渍法是用有机泡沫浸渍陶瓷浆料,干燥后烧掉有机泡沫,获得多孔陶瓷的一种方发泡工艺法。该法适于制备高气孔率、开口气孔的多孔陶瓷。这种方法制备的泡沫陶瓷是目前最主要的多
孔陶瓷之一。
溶胶-凝胶工艺
溶胶- 凝胶工艺主要利用凝胶化过程中胶体粒子的堆积以及凝胶处理、热处理等过程中留下小气孔,形成可控多孔结构。这种方法大多数产生纳米级气孔,多用来生产微孔陶瓷。溶胶-凝胶工艺是一种新的制备多孔陶瓷的工艺,与其它工艺相比有其独特之处。例如,用溶胶-凝胶法制备氧化铝多孔陶瓷,与颗粒混合、泡沫浸渍、喷雾干燥颗粒等方法相比较,溶胶-凝胶法可进一步改善氧化铝多孔陶瓷孔径分布的控制、相变、纯度及显微结构。
挤出成型多孔蜂窝陶瓷
蜂窝陶瓷的成型方法有许多种,挤出成型是最普遍采用的制造方法之一。它的工艺流程为:原料合成-混和-挤出成型-干燥-烧成制品
固相烧结工艺
固相烧结工艺利用微细颗粒易于烧结的特点,在骨料中加入相同组分的微细颗粒,在一定的温度下微细颗粒通过蒸发和迁移,在大颗粒连接部烧结,从而将大颗粒连接起来。由于每一粒骨料仅在几个点上与其他颗粒发生连接,因而在烧结体中形成大量的三维贯通孔道。
凝胶注模工艺
凝胶注模工艺源于20世纪90年代,美国橡树岭国家实验室最早将传统陶瓷成型技术与高分子化学反应结合在一起,研制出这种新型陶瓷制备工艺。凝胶注模工艺过程是一个原位成型过程,主要利用有机单体或少量添加剂的化学反应原位凝固成型,获得具有良好微观均匀性和一定强度的坯体,而后烧结制得成品。
冷冻干燥工艺
在该工艺中,让冰将柱状的凝胶包围和隔离着,并且控制溶液中冰的生长方向为单向生长,冰溶化后纤维就形成了。在另外一种制备孔陶瓷的冻干工艺中,溶剂是直接由固态到气态升华而排除的。通过控制金属盐溶液的冷冻方向获得了方向性好、气孔率很高(>90%)的多孔陶瓷。
自蔓延高温合成(SHS) 工艺
燃烧合成, 又称自蔓延高温合成用燃烧合成技术制备多孔材料的主要过程是放热反应,化学反应释放出来的热量维持反应的自我进行,合成新物质的同时获得了所期望的多孔材料,包括具有一定形状的多孔材料。燃烧合成过程总是伴随着烧结现象,烧结体的孔隙度很高,可以达到50%左右,甚至更高。SHS与常规方法相比主要有以下特点和优势:合成反应过程迅速,能大量节省能源,产品纯度高,工艺相对简单,适合于制备各类无机材料。SHS 存在的主要不足之处是反应快迅速,试样的烧结尺寸难以控制。
水热-热静压工艺
该工艺通过水作为压力传递介质制备各种孔径多孔陶瓷。其简单制备步骤为:硅凝胶和10%(质量百分数)的水混合,置于高压釜中(压力10—15MPa,温度300℃),通过水蒸汽的挥发而制成多孔陶瓷。水热-热静压工艺中,反应时间一般为10—180 min。在25MPa下处理60min,制得的多孔陶瓷材料体积密度为088 g/cm,孔体积为059cm/g,孔尺寸分布范围为30~50nm,抗压强度高达80MPa。多孔陶瓷水热-热静压工艺具有以下优点:制得的多孔陶瓷材料抗压强度高、性能稳定、孔径分布范围广。
组织遗传制备工艺
该工艺是利用植物材质(木材、竹子等)的天然多孔组织,将其在800~1000℃下和惰性气体环境中热解碳化得到与木材多孔结构几乎完全相同的碳预制体。然后以碳预制体为模板,1600℃时液态硅蒸发形成的硅蒸汽渗入模板与碳化合形成多孔碳化硅陶瓷。该工艺过程简单,成本低廉,但制品的孔结构主要决定于材质本身的组织,可设计性较差,同时SiC的转化率相对较低。也可将木材在真空中浸渍渗入树脂,之后在1200℃左右热解,冷却后得到一定孔隙率的木材陶瓷。
离子交换法
层状硅酸纳晶体与十八烷基三甲基溴化铵在水中充分混合, 硅酸盐层间的阳离子与铵盐阳离子将自发地进行交换, 由于铵盐离子体积较大, 硅酸盐的片层结构会因铵盐的引入而发生弯曲变形, 弯曲的片层之间发生缩聚, 将有机物包围在片层当中, 经高温烧结除去有机物, 即形成多孔SiO2。目前,人们正在研究这种多孔材料的稳定性和比表面积问题, 并期望将其应用于催化或吸附系统中。
应用
载体
多孔陶瓷具有良好的吸附能力和活性。被覆催化剂后,反应流体通过泡沫陶瓷孔道,将大大提高转化效率和反应速率。由于多孔陶瓷具有比表面积高、热稳定性好、耐磨、不易中毒、低密度等特点,作为汽车尾气催化净化器载体已被广泛使用除了作催化剂载体外,它还可以作为其它功能性载体,例如药剂载体、微晶载体、气体储存等。
过滤和分离
1.超纯水的制备和除菌
用硅藻土或粘土熟料质制成的多孔陶瓷滤芯,已用于饮水、石油油井注水用水等的除菌和净化,还用于注射液的消毒过滤,以及电子工业、医药工业、光学透镜研磨用的超纯水的净化等。
2.废水处理
用多孔陶瓷过滤工业废水和生活污水已成为废水处理和净化的重要发展方向,适用各种污染废水,效率高,成本低。
3.腐蚀性流体过滤
多孔陶瓷的强耐腐蚀性使其在过滤酸性、碱性等腐蚀性液体或气体时显示出特有的优势。
4.熔融金属过滤
经多孔陶瓷的过滤能除去熔融金属中大部分的夹杂物和气体等杂质,提高金属材料的强度等内在质量。特别在电子元件、电线用金属和精密铸造用金属方面尤其重要。
5.高温气体过滤
高温烟气的除尘、高温煤气的净化等高温气体的过滤都必须使用耐高温的多孔陶瓷。
6医药工业食品工业过滤
多孔陶瓷由于具有耐高温、耐腐蚀和良好的生物、化学相容性,因而可用于医药工业中的疫苗、酶、病毒、核酸、蛋白质等生理活性物质的浓缩、分离、精制等。在食品、饮料工业中,特别适用于色、香、味强的饮料及低度酒类的过滤,并可望在啤酒(尤其是生啤)的生产中发挥不可替代的作用。
7.放射性物质的过滤
核电厂等产生大量放射性废物,经过燃烧能成为化学稳定的固体粉末,多孔陶瓷能将其固化,保管起来方便又经济。
吸音材料
多孔陶瓷具有连通开气孔,当声波传入时,在很小的气孔内受力振荡。振动受到的摩擦和阻碍,使声波传播受到抑制,导致声音衰减,从而起到吸音的作用。是一种消除噪声公害,益于人们身心健康的好材料。作为吸音材料的多孔陶瓷要求较小的孔径(20~150/um),相当高的气孔率(>60%)及较高的机械强度。陶瓷所具有的优良的耐火性和耐候性,使它可用于变压器、道路、桥梁等的隔音。现在已在高层建筑、隧道、地铁等防火要求极高的场合及电视发射中心、影剧院等有较高隔音要求的场合使用,效果很好。
隐身材料
多孔陶瓷吸波涂料是一种研制较多的吸波材料,它比铁氧体、复合金属粉末等吸波涂料的密度低、吸波性能好,而且还可以有效地减弱红外辐射信号。另外,多孔陶瓷具有良好的力学性能、热物理性能和化学稳定性,能满足隐身的要求。著名的F-117隐身飞机的尾喷管就使用了多孔陶瓷基吸波材料达到飞机隐身的目的。
隔热保温材料
由于多孔陶瓷具有巨大的气孔率和低的基体热传导系数,其最传统的应用是作为隔热材料。传统的窑
炉、高温电炉其内衬多为多孔陶瓷。为增加其隔热性能还可将内部气体抽真空。目前世界上最好的隔热材料正是这种多孔陶瓷材料。高级的多孔陶瓷隔热材料还可用于航天飞机的外壳隔热。除此以外,由于其多孔性还可以作为换热材料用,且换热充分。
多孔介质燃烧器
多孔介质燃烧器有功率大、范围可调、高功率密度、极低的C0和N0x排放量、安全稳定燃烧等优点。而且很重要的一点是,多孔介质燃烧器的结构紧凑,尺寸大大减小,制造成本低,系统效率较高,消除了额外能耗。
生物工程材料
在传统生物陶瓷基础上研究开发的多孔生物陶瓷,由于生物相容性好,理化性能稳定,无毒副作用的特点而被用于制作生物材料。当用于修补骨缺损部位时,新生物将逐渐进入多孔陶瓷珊瑚状孔隙内,慢慢将多孔陶瓷吸收,最终,这种多孔陶瓷将由新生骨制质取代。与传统生物陶瓷相比,生物体内不会残留任何异物,因而不易感染。国外利用多孔生物陶瓷修复头盖骨、大腿骨、脊椎骨、人造齿根等临床实验均已获成功。
散气(布气)材料
多孔陶瓷还可用于气-液、气-粉两相混合,即通常所说的布气、散气。通过多孔陶瓷的散气作用,使两相接触面积增大而加速反应。目前活性污泥法处理城市污水中使用的多孔陶瓷布气装置就比较成功,不仅布气效果好,而且使用寿命长。利用多孔陶瓷材料将气体吹入粉料中,使粉料处于疏松和流化状态,有利于混匀、传热和均匀受热,能加速反应,防止团聚,便于粉料的输送、加热、干燥和冷却等,特别在水泥、石灰、和氧化铝粉等粉料生产及输送中有着良好的应用前景。
新能源材料
1) 多孔陶瓷因其与液体和气体的接触面积大,使电解池的槽电压比使用一般材料低得多,而成为优良的电解隔膜材料,可大大降低电解槽电压,提高电解效率,节约电能和昂贵的电极材料。目前陶瓷隔膜材料已用在化学电池、燃料电池、光化学电池中,特别是固体氧化物电池。
2)利用多孔陶瓷制备多孔电极。以多孔气体扩散电极为例,它的比表面积不但比平板电极提高3~5个数量级,而且液相传质层的厚度也从平板电极的10cm压缩到1O~10cm,从而大大提高电极的极限电流密度,减少浓差极化。
敏感元件
陶瓷传感器的敏感元件工作原理是当微孔陶瓷元件置于气体或液体介质中时,介质的某些成分被多孔体吸附或与之反应,使微孔陶瓷的电位或电流发生变化,从而检验出气体或液体的成分。比较常用的有温度传感器、湿度传感器、气体传感器以及多功能传感器。
微孔膜
陶瓷分离膜因耐高温、耐酸碱、抗生物侵蚀、不老化、寿命长等优点,被开发应用于食品工业、生物化工、能源工程、环境工程、电子技术等领域。随着材料科学技术的发展,纳米级多孔无机膜的制备和应用成为人们目前研究的热点。微孔无机膜还应用于光学、电子学、磁学等领域。
存在的问题:
材料的脆性;缺乏完整材料的大规模生产系统;缺乏对材料的孔径大小、形状分布等的精确控制方法;缺乏连续生产工艺;缺乏将孔结构与力学性能相联系的有效模型;材料间连接技术的不足;多孔泡沫制备中溶剂提取法的简化;合成催化剂的活性和尺寸选择性;完整的膜净化方法;生产成本高。
土球苗木就是移植时,挖出来的苗木带泥球,就是不敲除掉根部纠缠的泥块,在切掉部分根系之后,一般把这个带泥的根部修整成一个圆球状,故称为土球苗木。这样做的好处在“固定根系,泥球带水,保证根部对水分和无机盐的吸收,提高苗木成活率”。
石头一般由碳酸钙和二氧化硅组成。
石头,一般指由大岩体遇外力而脱落下来的小型岩体,多依附于大岩体表面,一般成块状或椭圆形,外表有的粗糙,有的光滑,质地坚固、脆硬。可用来制造石器,采集石矿。在几千年前,我们的祖先就是用石头来生火。
现代工业很多原材料都是石头:铁矿石、铜矿石、铝矿石……数不胜数;石头可以用来建筑,石头可以收藏,石头可以佩戴,石头可以作书名,石头可以做“石锅脆肠”。
岩石可以按照其成因分为三大类,但由于自然界是连续体,很难真正依据我们的分类分成三种岩性,因此会存在一些过渡性的岩石,好比说凝灰岩(火山灰尘与岩块落入地表或水中堆积胶结而成)就可能被归於沉积岩或火成岩,但大抵是我们还是可以分为主要的三大类:沉积岩、火成岩、变质岩。
本区表壳岩的定年研究,曾采用Rb-Sr全岩等时线法、单颗粒锆石蒸发法和Sm-Nd全岩等时线法等。山东第八地质队首先进行了开拓性工作,对羊圈地区的黑云二辉斜长片麻岩用Rb-Sr全岩等时线测得2760Ma的年龄,同时分别测得三个镁铁质—超镁铁质岩Sm-Nd模式年龄均稍大于3000Ma。稍后,徐惠芬(1998)对采自羊圈村东300m沟中的黑云二辉斜长片麻岩,用单颗粒锆石U-Pb蒸发法获得最大年龄值为2761Ma,最小为2572Ma。本次研究中主要对沂水岩群中原称林家官庄岩组中的变基性岩进行了全岩Sm-Nd同位素年龄测定。
一、采样位置和周围的地质情况
本区变质表壳岩总称为沂水岩群,可分为三个岩组。其中两个岩组大致相当于原称的石山官庄岩组和林家官庄岩组。另一岩组可称为北下庄岩组。岩组之间未见直接的上下叠置关系。岩群的总体产状为NE向,倾向SE,倾角46°~60°,褶皱变形强烈。
测定Sm-Nd同位素年龄的样品主要采自林家官庄村南约1km的林家官庄岩组中(图1-1),岩石主要为二辉斜长角闪岩(五个)和透辉斜长角闪岩(一个)。该区地表第四系覆盖较广,露头不连续。样品均采自相距不远的采石坑,岩石均比较新鲜。
二、样品的岩相学特点
用于年龄测定的六个样品,按岩性可分为两种岩石类型。
1透辉斜长角闪岩(YS-28)
岩石呈黑绿色,细粒,块状构造。镜下呈花岗粒状变晶结构,粒度03~05mm,主要由斜长石、浅闪石质角闪石和次透辉石组成,副矿物有柱状磷灰石、锆石和极少量磁铁矿。斜长石(An=55±)呈多边形粒状,部分具细而密的聚片双晶,但有的很不完整,少量具有肖钠长石双晶。浅闪石质角闪石呈柱一粒状,与斜长石共生,两者均为岩石的主要成分。前者具多色性:Np呈黄绿色,Ng呈棕绿色,Ng∧c=20°。另见有少量呈蓝绿色较大长柱状的角闪石,具密集的(010)双晶纹,形成较晚。次透辉石呈粒状,黄绿色,具弱多色性,含量相对较少。
2二辉斜长角闪岩(YS-24a,YS-24b,YS-25a,YS-26,YS-27)
手标本特征与透辉斜长角闪岩相似。镜下呈花岗柱粒状变晶结构,组成矿物主要有斜长石、普通角闪石、次透辉石和紫苏辉石,副矿物主要为磁铁矿(YS-24b样品中含量较多是一例外,可能还有钛磁铁矿)。
斜长石有两类:一类斜长石〔P11,An=67~70)为细粒状,大部分具发育不好的聚片双晶,个别双晶纹略显弯曲(YS-26),这是组成岩石的主体矿物;另一类斜长石(Pl2,An=40±)呈微粒状,略显聚片双晶,与Hb2共生。
普通角闪石也有两种,且先后生成。第一期普通角闪石(Hb1)呈不规则柱状,Np=黄绿,Nm=绿,属浅闪石质角闪石。第二期普通角闪石(Hb2)呈细粒状,产于较大紫苏辉石和次透辉石晶体的边部以及裂隙中,具多色性:Np呈浅黄,Ng呈蓝绿,属镁角闪石。紫苏辉石(XMg=051~056)为较大的不规则柱状体,以具有多色性(Np呈粉色,Ng呈浅绿色)和平行消光为特征,少数显示斑块状的波状消光和模糊的环状消光。常见角闪石的(110)柱面平行片理排列,呈连续或不连续的条带。透辉石(XMg=065~082)呈粒状,浅灰绿色,大量被包于普通角闪石晶体中,成分相当于次透辉石。
三、样品的岩石化学和稀土地球化学特征
样品的岩石化学和稀土地球化学分析结果以及AFM图和稀土模式图详见第二章第二节,这里只简要地描述其总体情况。
六个样品的w(SiO2)均小于50%(4825%~4998%),多属基性岩类。大部分样品的w(TiO2)为1%左右,YS-28中则稍低(068%)。样品YS-24b在镜下所见磁铁矿含量较多,因此化学成分中w(Fe2O3)也较高,可达632%,w(TiO2)也高达248%,换算的标准矿物中存在钛磁铁矿,这个样品中的磁铁矿也较其它样品高出一倍以上。w(MgO)为422%~952%,大部分介于6%与7%之间。w(Na2O)比较稳定,一般为246%~327%,绝大部分小于3%。w(K2O)最大的仅为062%,一般介于039%与059%之间,属于低钾类型,也可能与亏损有关。w(K2O/Na2O)=015~025。w(CaO/Al2O3)=066~088,比世界其它地区太古宙同类岩石偏高。在AFM图上,它们都落于拉斑玄武岩区,但多数样品接近钙碱性岩界线。
六个样品中,YS-24b的w(∑REE)最高(8976×10-6),可能与伴生较多的钛磁铁矿有关;其余样品则较低,为2755×10-6~4496×10-6。用益田(AMasuda)值标准化的稀土模式有两类,一为平坦型(YS-24a,YS-25,YS-26,YS-27,YS-28),另一为轻稀土富集型(YS-24b)。部分样品(YS-25a,YS-28)略显Eu异常,大部分样品Eu异常不明显。在w(La/Yb)—w(La)的相关图中,它们落在大陆拉斑玄武岩与钙碱性玄武岩的过渡区,与在A-F-M图上显示的情况基本一致。w(Rb)为7×10-6~12×10-6,与Jahn等统计的太古宙玄武岩的w(Rb)(平均值为6×10-6~9×10-6)基本一致。部分岩石的w(Rb/Sr)值为006~007,w(Sr/Ba)值为37,w(Cr/Ni)值为16~2。
四、Sm-Nd同位素年龄测定方法和测定结果
Sm-Nd同位素年龄在原地质矿产部同位素年代开放研究实验室测定。样品粉碎至200目,称取一定重量用HF+HNO3溶解。溶液分成两部分,一份加稀释剂用于w(Sm),w(Nd)的测定,另一份用于w(143Nd/144Nd)的测定。用AG50W×8(H+)阳离子交换柱和HDEHP交换柱分离纯净Sm和Nd。同位素测定采用MAT-261固体同位素质谱计,双(Re)带,M+离子形式,多法拉第接收器接收。质量分馏用w(146Nd/144Nd)=07219改正。用JM Nd2O3标定的w(143Nd/144Nd)=0511125±8(2σ),w(Sm/Nd)值测定精度达01%。Sm,Nd流程空白近似5×10-11g。年龄用York(1969)回归分析法计算,εNd(t)值误差用Fletcher和Rosman(1982)方法计算。测定的结果见表6-1。由六个全岩样品根据表6-1计算出的Sm-Nd等时线年龄为2997±78Ma(见图6-1),w(143Nd/144Nd)的初始值为0510894±9(2σ),εNd(t)=+38±03。
表6-1 变基性岩Sm-Nd同位素年龄数据
注:表中w(147Sm/144Nd)和w(143Nd/144Nd)个别重行计算结果与沈其韩等(1992,1993)数据稍有出入。
图6-1 山东沂水变基性岩Sm-Nd同位素等时线年龄图
五、讨论
1本区用于Sm-Nd定年的样品,按岩性分为透辉斜长角闪岩(一个)和二辉斜长角闪岩(5个)两类,每类岩石由于矿物含量有一定的变化,故其岩石化学和稀土特征也有一些差异。这种差异是由原始岩浆分异造成的,后来的变质作用未产生明显的影响。这些岩石多位于AFM图的钙碱性玄武岩和拉斑玄武岩过渡的拉斑玄武岩区。样品的w(147Sm/144Nd)值比较均一,表明原岩的原始岩浆是比较均一的,适于Sm-Nd全岩等时线年龄的测定。
2如前所述,沂水幅羊圈地区的黑云二辉斜长片麻岩曾做过两种方法的定年,一是山东第八地质队用全岩Rb-Sr等时线测得年龄为2760Ma,二是徐惠芬曾采取羊圈东300m处的同类岩石,利用其中的单颗粒锆石做了U-Pb蒸发法定年,获得最大年龄值为2761Ma,最小年龄值为2572Ma。同一地区侵位于这套岩石中的紫苏花岗岩类的锆石U-Pb一致线年龄为2770Ma和2706Ma。Rb-Sr年龄一般属变质年龄,因此2760Ma和2770Ma应代表黑云二辉斜长片麻岩和紫苏花岗岩类的变质年龄。而作为黑云二辉片麻岩和二辉斜长麻粒岩的形成年龄显然应大于2770Ma。笔者等曾在果房村—东院公路之南采石场采得黑云二辉花岗闪长岩(YS9573),从中选取紫红色锆石,其三组晶体用蒸发法测定的年龄十分一致,均为2531Ma。另一种锆石特征与上述锆石相近,但测得的年龄为2910Ma,推断为表壳岩中的残余锆石。这个数值与本次获得的变基性岩的Sm-Nd等时线年龄(2997Ma)十分相近,由此可推知2997Ma这一年龄值应代表本区表壳岩的形成时代,相当于中太古代。中国地质大学(北京)顾德林等(1997)在沂水北进行1∶5万高桥幅地质填图时,在图幅南部胡家庄村附近采取了二辉斜长角闪岩、紫苏斜长角闪岩等六个样品进行Sm-Nd全岩同位素等时线定年,获得了2986±136Ma的数据。该数据与笔者在林家官庄所采标本测得的数据完全一致;进一步证明,本区表壳岩确属中太古代,并填补了山东缺少这一时代岩石记录的空白。它与晚太古代紫苏花岗质岩石共同组成汞丹山地块,是山东目前已知的最古老地体之一。
3由于山东中、东部中太古代表壳岩系的相继发现,使以往中太古代岩系仅限于华北陆台北缘的认识得到更新,为华北陆台古老地层的分布和古老构造格局的探索提供了新的思路。
4本区中太古代表壳岩被晚太古代(2700~2500Ma)的紫苏花岗闪长岩和紫苏花岗岩系列所侵入,花岗质岩石中常见有许多麻粒岩相岩石(例如黑云二辉斜长片麻岩、二辉斜长麻粒岩等)呈捕虏体出现,而这些花岗质岩石已经受到麻粒岩相变质改造,但这些表壳岩的变质特征与花岗质岩石的变质特点并不一致。由此可见,在花岗质杂岩侵入之前,已存在一次更早的麻粒岩相变质;而表壳岩的形成年龄如前述为2997Ma,即为3000Ma,其变质作用的发生应在此年龄之后。至于表壳岩的Rb-Sr年龄为2776Ma,似为变质年龄的上限,它又与紫苏花岗岩的锆石U-Pb年龄2770Ma相近;因此第一期的麻粒岩相的变质作用时间应早于2770Ma,至少在2800Ma以前。前面曾提到花岗质岩石中的继承性残余锆石的蒸发年龄为2910Ma,由此推知第一期的麻粒岩相变质作用发生的时间大致为2900~2800Ma,也许2900Ma是早期麻粒岩相变质作用的主要时期。
5用于Sm-Nd同位素等时线定年的岩石均为遭受麻粒岩相变质的基性岩石,相当于拉斑玄武岩成分,大离子亲石元素的含量十分相近,它们的稀土元素分布模式具有平坦型和轻稀土富集两种。岩石的εNd(t)值为38±03,说明物源来自亏损地幔。但值得注意的是六个样品中只有两个样品的tDM值接近2997Ma(2942Ma和2968Ma),其它四个样品则均小于2900Ma,与一般情况下tDM值应大于或等于等时线年龄存在矛盾。模式年龄大小与很多因素有关,这包括物质源区的假设,岩石组成物质由源区分异的时间、计算方法,实验分析误差等以及样品稀土分馏的程度。如果样品w(147Sm/144Nd)值接近假设亏损地幔源区的该值时,小的分析误差将使误差无限放大。本区样品tDM值偏小的原因尚待进一步深入研究,但目前的状况并不影响Sm-Nd同位素年龄的测试精度。
欢迎分享,转载请注明来源:品搜搜测评网