镍氢电池的特点:
镍氢电池(NIMH)是现代电子产品中使用最为广泛的绿色环保电池之一,具有单体容量大、放电特性平稳、通用性强、发热量小等优点。缺点是体积大、自身重量大。
镍氢电池的特性:
镍氢电池标称电压12V,在充足电的情况下可达135V,与普通AA类碱性电池电压相近,基本上可以通用,镍氢电池的放电特性非常好,放电曲线也非常平滑,到电力快要消耗完时,电压突然跌落,这一点接近于镍铬电池,但是瞬间放电电流不如镍铬电池。另外,镍氢电池采用无汞设计,这对于环境保护具有重大意义。
镍铬电池的容量比镍氢电池或锂离子电池低,具有低阻抗特性,对于需要短时间大电流的应用场合很具吸引力。但镍铬电池如果未经充分放电又进行充电,或者长时间处于小电流放电状态,就会产生枝状晶体,引起“记忆效应”,从而导致电池内阻变大,容量变小,缩短了电池寿命。如果在充电前进行完全放电,使每节电池的电压降到1.0V左右,就能消除引起“记忆效应”的枝状晶体,恢复电池的性能。镍氢电池具有较高的容量,但其自放电率也较高,约为镍铬电池的二倍。在初始阶段其放电率尤高(每天放掉1%)。所以镍氢电池不宜用于需要长时间保持电池容量的场合。就充电方式而言,两种电池非常相似,都是以恒流的方式进行充电,可采用快速、标准或者涓流的方式进行充电。它们都能以超过2C(C为电池容量,单位为安培)的速率进行充电(但一般采用C/2速率)。由于存在内部损耗,充电效率一般小于100%,所以,在采用C/2的速率充电时,通常需要两个多小时才能把电池充满。充电过程中的损耗随着充电速率和电池的不同而不同。在恒流充电时,电池电压会缓慢达到峰值(ΔV/Δt变为0),镍氢电池需在这个峰值点终止快速充电,镍铬电池的充电须在峰值点后当电池电压开始下降时(ΔV/Δt变为负)即终止快速充电,否则会导致电池内压力和温度上升而损坏电池。当充电速率大于C/2时,则要监测电池的电压和温度,因为当电池快充满时,电池的温度会急剧上升。对于镍铬电池和镍氢电池,还可以采用比较简便的涓流充电,这时只会造成极小的温升,不会损坏电池,也就无需终止涓流充电或者监测电池的电压。允许的最大涓流随着电池类型和环境温度的不同而不同,典型条件下C/15较为安全。
镍氢电池是由氢离子和金属镍合成,电量储藏比镍镉电池多30%,比镍镉电池更轻,运用寿数也更长,而且对环境无污染。镍氢电池的缺点是价格比镍镉电池要贵许多,功能比锂电池要差。
镍氢电池中的“金属”部分实践上是金属氢化物。
用在镍氢电池的制造上,它们首要分为两大类。最常见的是AB5一类,A是稀土元素的混合物(或许)再加上钛(Ti);B则是镍(Ni)、钴(Co)、锰(Mn),(或许)还有铝(Al)。而一些高容量电池的“含多种成分”的电极则首要由AB2构成,这里的A则是钛(Ti)或许钒(V),B则是锆(Zr)或镍(Ni),再加上一些铬(Cr)、钴(Co)、铁(Fe)和(或)锰(Mn)。所有这些化合物扮演的都是相同的角色:可逆地构成金属氢化物。电池充电时,氢氧化钾(KOH)电解液中的氢离子(H+)会被释放出来,由这些化合物将它吸收,防止构成氢气(H2),以坚持电池内部的压力和体积。当电池放电时,这些氢离子便会经由相反的进程而回到原来的地方。
作业原理
充电
当快速充电时,能够透过充电器内的微电脑去防止电池过充的状况产生。如今的镍氢电池含有一种催化剂,能够及时的解除因为过充所形成的风险。2H2 + O2 --催化剂--> 2H2O
可是这个反响只要从过充开始的时刻算起的 C ÷ 10 小时内有效(C = 电池标示的容量)。当充电程序开始后,电池的温度会上升的很明显,有些极速充电器(低于1小时)内含风扇来防止电池过热。
有的厂商以为:运用一些简单的恒流(且电流要小)充电器,不论有没有计时器,都能够安全地为镍氢电池充电,答应的长时刻充电电流为 C/10h (电池的标称电量除以10小时)。实践上,一些造价低价的无线电话基地台和最便宜的电池充电器正是这样作业的。虽然这或许是安全的,但对电池的寿数或许会有不良影响。根据松下公司(Panasonic)的《镍氢电池充电攻略》:长时间运用涓流办法(以很小的电流长时刻充电)充电有或许导致电池损坏;为了防止损伤电池,涓流充电的电流应限制在 0033×C每小时 到 005×C每小时 之间,最长充电时刻为20小时。
对于镍氢电池的长时间保养来说,运用低频脉冲-大电流的的充电办法要比运用涓流充电办法更能坚持好电池状态。
新买回来的,或许是长时刻未运用的镍氢电池,需求一段“激活”时刻来回复电池电量。因而,一些新的镍氢电池需求通过几回充电-放电循环才能到达它们的标称电量。电池充电时,要留意充电器周围的散热,太故意用什么风扇吹没有什么必要,但要留意的是充电器周围不要放置太多杂物。一般用户在运用电池的进程中,电池往往没有专用的寄存包;用户在替换电池后,会习惯性的把电池随手放好,而不论所放的地方是否洁净、湿润。这样的结果便是电池简单弄脏、触点易与金属物如钥匙等触摸和简单受潮,而这些都是电池的大敌。主张:用户应该设置一个电池专用放置点,并坚持电池的清洁。
放电
在电池的运用进程中,也有必要小心。对于串联在一同的几颗电池(比方数码相机中4颗AA电池的一般排列办法),要防止电池彻底耗尽电能,进而发作“反向充电”(Reverse charging)。这会对电池产生不行挽回的危害。不过,一般这些设备(比方之前提到的数码相机)能够检测串联电池的放电电压,当它下降到必定程度时,便自动关闭,以保护电池。单颗电池并不会有以上的风险,只会一向放电,直到电压为0。这不会对电池形成危害,实践上,周期性地将电放完然后再充溢有利于坚持电池的容量与质量。
镍氢电池具有较高的自放电效应,约为每个月30%或更多。这要比镍镉电池每月20%的自放电速率高。电池充得越满,自放电速率就越高;当电量下降到必定程度时,自放电速率又会稍微下降。电池寄存处的温度对自放电速率有十分大的影响。正因如此,长时刻不必的镍氢电池最好是充到40%的“半满”状态。
低自放电效应的镍氢电池在2005年推出市面,出产商声称在20℃室温寄存一年后仍可保存70至85%电量,而且能够以一般的镍氢电池充电机进行充电。某些低自放电效应的镍氢电池在低温下有比碱性电池及锂离子电池更佳的放电特性。
MSDS应用的行业:
涉及:胶粘剂,胶浆;文具-修正液;涂料、油漆;再加工塑料粒;锂电池;聚氯乙烯(PVC);
铁丝,铝纸;聚氯乙烯(PVC)包装材料;芳香剂;消毒杀菌剂(手);泡沫塑料;润唇膏;润肤霜;摩沙膏;
LCS检测认证机构,拥有目前国内专业的化学分析评估工程师队伍,多年从事大量化学品的MSDS报告编制。可在3天内为您提供规范权威的MSDS评估报告,我们将对出具的每一份MSDS报告的准确性负责。提升产品品质,打响企业品牌,为产品附一份高质量、精专业的MSDS报告,可与我们联系办理编制。
镍氢电池优点
1、耐过充过放,
2、高速放电能力强,
3、使用安全,尤其是滥用条件下;
4、相对便宜;5
功率密度大
缺点电压低,能量密度低
锂电池的主要优点:
锂电池电压平台高:单体电池的平均电压为37V或32V,约等于3只镍镉电池或镍氢电池的串联电压,便于组成电池电源组;
相对电池而言锂电池能量密度高。具有高储存能量密度,目前已达到460-600Wh/kg,是铅酸电池的约6-7倍;
相对铅酸电池而言锂电池重量轻,相同体积下重量约为铅酸产品的1/5-6;
锂电池使用寿命相对较长,使用寿命可达到6年以上,磷酸亚铁锂为正极的电池用1CDOD充放,有可以使用1000次的记录;
具备高功率承受力,其中电动汽车用的磷酸亚铁锂锂离子电池可以达到15-30C充放电的能力,便于高强度的启动加速;
自放电率低,无记忆效应;
锂电池高低温适应性强,可以在-20℃--60℃的环境下使用,经过工艺上的处理,可以在-45℃环境下使用;
绿色环保,不论生产、使用和报废,都不含有、也不产生任何铅、汞、镉等有毒有害重金属元素和物质。
锂电池的缺点:
1、锂电池均存在安全性差,有发生爆炸的危险。
2、钴酸锂材料的锂电池不能大电流放电,安全性较差。
3、锂电池均需保护线路,防止电池被过充过放电。
4、生产要求条件高,成本高。
聚合物锂电池优点:
1、单体电池的工作电压高达36v~38v远高于镍氢和镍镉电池的12V电压。
2、容量密度大,其容量密度是镍氢电池或镍镉电池的15~25倍,或者更高。
3、自放电小,在放置很长时间后其容量损失也很小。
4、寿命长,正常使用其循环寿命可达到500次以上。
5、没有记忆效应,在充电前不必将剩余电量放空,使用方便。
6、安全性能好。
聚合物锂电池的缺点:
1、电池成本高,电解质体系提纯困难。
2、需要保护线路控制,过充或者过放都会使电池内部化学物质的可逆性遭到破坏,从而严重影响电池的寿命。
充足电后,立即断开充电电路,镍镉蓄电池的电动势可达15V左右,但很快就下降到131-136V。 镍镉蓄电池的端电压随充放电过程而变化,可用下式表示:
U充=E充+I充R内
U放=E放-I放R内
从上式可以看出,充电时,电池的端电压比放电时高,而且充电电流越大,端电压越高;放电电流越大,端电压越低。
当镍镉蓄电池以标准放电电流放电时,平均工作电压为12V。采用8h率放电时,蓄电池的端电压下降到11V后,电池即放完电。 蓄电池充足电后,在一定放电条件下,放至规定的终止电压时,电池放出的总容量称为电池的额定容量,容量Q用放电电流与放电时间的乘积来表示,表示式如下:
Q=I·t(Ah)
镍镉蓄电池容量与下列因素有关:
① 活性物质的数量;
②放电率;
③ 电解液。
放电电流直接影响放电终止电压。在规定的放电终止电压下,放电电流越大,蓄电池的容量越小。
使用不同成分的电解液,对蓄电池的容量和寿命有一定的影响。通常,在高温环境下,为了提高电池容量,常在电解液中添加少量氢氧化锂,组成混合溶液。实验证明:每升电解液中加入15~20g含水氢氧化锂,在常温下,容量可提高4%~5%,在40℃时,容量可提高20%。然而,电解液中锂离子的含量过多,不仅使电解液的电阻增大,还会使残留在正极板上的锂离子(Li+)慢慢渗入晶格内部,对正极的化学变化产生有害影响。
电解液的温度对蓄电池的容量影响较大。这是因为随着电解液温度升高,极板活性物质的化学反应也逐步改善。 电解液中的有害杂质越多,蓄电池的容量越小。主要的有害杂质是碳酸盐和硫酸盐。它们能使电解液的电阻增大,并且低温时容易结晶,堵塞极板微孔,使蓄电池容量显著下降。此外,碳酸根离子还能与负极板作用,生成碳酸镉附着在负极板表面上,从而引起导电不良,使蓄电池内阻增大,容量下降。 在正常使用的条件下,镍镉电池的容量效率ηAh为67%-75%,电能效率ηWh为55%~65%,循环寿命约为2000次。
容量效率ηAh和电能效率ηWh计算公式如下:
I放·t放
ηAh= ---------- X 100%
I充·t充
U放·I放·t放
ηAh= --------------- X 100%
U充·I充·t
(U充和U放应取平均电压) 镍镉电池使用过程中,如果电量没有全部放完就开始充电,下次再放电时,就不能放出全部电量。比如,镍镉电池只放出80%的电量后就开始充电,充足电后,该电池也只能放出80%的电量,这种现象称为记忆效应。
电池全部放完电后,极板上的结晶体很小。电池部分放电后,氢氧化亚镍没有完全变为氢氧化镍,剩余的氢氧化亚镍将结合在一起,形成较大的结晶体。结晶体变大是镍镉电池产生记忆效应的主要原因。
电池会贮存这一放电渠道并在下次循环中将其作为放电的终点,尽管电池本身的容量能够使电池放电到更低的渠道上。在以后的放电进程中电池将只记住这一低容量。同样在每一次运用中,任何一次不彻底的放电都将加深这一效应,使电池的容量变得更低。
知道回忆效应
电池回忆效应是指电池的可逆失效,即电池失效后可从头回复的性能。电池长时刻经受特定的作业循环后,主动坚持这一特定的倾向。这个最早界说在镍镉电池,镍镉的袋式电池不存在回忆效应,烧结式电池有回忆效应。意思是说,电池如同回忆用户日常的充、放电幅度和形式,日久就很难改动这种形式,不能再做大幅度充电或放电。而现在的镍金属氢(俗称镍氢)电池不受这个回忆效应界说的约束,但有惰性,前几回要激活才行,一般能够充放电300-500次,过后就会发现继续时刻越来越短,短得你想换手机。用旧的电池包好放在冰箱里几天然后再用会有所提高性能。
由于传统工艺中负极为烧结式,镉晶粒较粗,假如镍镉电池在它们被彻底放电之前就从头充电,镉晶粒简单集合成块而使电池放电时构成次级放电渠道。要消除这种效应,有两种办法,一是选用小电流深度放电(如用 01C 放至 0V)一是选用大电流充放电(如 1C)几回。
在实际应用中,消除回忆效应的办法有严厉的规范和一个操作流程。操作不妥会适得其反。关于镍镉电池,正常的保护是定时深放电:均匀每运用一个月(或30次循环)进行一次深放电(放电到10V/每节,即exercise),往常运用是尽量用光电池或用到关机等手法能够缓解回忆效应的构成,但这个不是exercise,由于仪器(如手机)是不会用到10V/每节才关机的,必需求专门的设备或线路来完成这项作业,幸好许多镍氢电池的充电器都带有这个功能。电池会贮存这一放电渠道并在下次循环中将其作为放电的终点,尽管电池本身的容量能够使电池放电到更低的渠道上。在以后的放电进程中电池将只记住这一低容量。同样在每一次运用中,任何一次不彻底的放电都将加深这一效应,使电池的容量变得更低。
锂离子电池
锂离子电池的正极资料通常有锂的活性化合物组成,负极则是特殊分子结构的碳。常见的正极资料首要成分为 LiCoO2,充电时,加在电池两极的电势迫使正极的化合物释出锂离子,嵌入负极分子排列呈片层结构的碳中。放电时,锂离子则从片层结构的碳中分出,从头和正极的化合物结合。锂离子的移动发作了电流,化学反响原理尽管很简单,然而在实际的工业生产中,需求考虑的实际问题还是许多:正极的资料需求添加剂来坚持屡次充放的活性,负极的资料需求在分子结构级去设计以包容更多的锂离子;填充在正负极之间的电解液,除了坚持稳定,还需求具有杰出导电性,减小电池内阻。
锂离子电池一般都带有办理芯片和充电操控芯片。其中办理芯片中有一系列的寄存器,存有容量、温度、ID、充电状况、放电次数等数值。这些数值在运用中会逐渐变化。运用说明中的“运用一个月左右应该全充放一次”的做法首要的作用应该便是修正这些寄存器里不妥的值,使得电池的充电操控和标称容量符合电池的实际状况。充电操控芯片首要操控电池的充电进程。锂离子电池的充电进程分为两个阶段,恒流快充阶段(电池指示灯呈**时)和恒压电流递减阶段(电池指示灯呈绿色闪耀)。
恒流快充阶段,电池电压逐渐升高到电池的规范电压,随后在操控芯片下转入恒压阶段,电压不再升高以确保不会过充,电流则随着电池电量的上升逐渐减弱到零,而终究完成充电。电量计算芯片通过记录放电曲线(电压,电流,时刻)能够抽样计算出电池的电量,这便是咱们在 Battery InformaTIon里读到的wh值。而锂离子电池在屡次运用后,放电曲线是会改动的,假如芯片一向没有机会再次读出完好的一个放电曲线,其计算出来的电量也便是不精确的。所以咱们需求深充放来校准电池的芯片。
欢迎分享,转载请注明来源:品搜搜测评网