121 天然气的类型
天然碳氢气体是石油的固定伴生物,或者以自由积聚的形式出现,构成气顶,或者溶解在石油中,构成它的馏分。组成天然气矿床的气体成分有甲烷、重碳氢化合物、氧、氮、硫化氢,有时也有一定数量的氩和氦。溶解于石油中的植物组分基本是烃族C1—C6,即甲烷、乙烷、丁烷、戊烷、己烷,包括烃族C4—C6的同分异构体。溶解气体中所含的重烃达到20%~40%,少数情况下达到60%~80%。溶解气体中的非烃类组分通常是氮和含硫化氢、氩、氦混合物的碳酸气。氮的含量从0到30%不等;CО2 含量在 0 到 10%~15%之间,H2S含量在0到6%之间。氢气和惰性气体含量很低。
碳氢化合物气体是天然气的组成部分,其中最常见的是甲烷(CH4)、氮气(N2)和碳酸气(CО2),它们都是在化学和生物化学过程中形成的(表19)。
表19 天然气组分的平均含量
122 天然气分类
最先提出天然气分类的是威尔南斯基(Вернадский),分类的主要依据是:① 形态,也就是气体在地球中的存在形式;② 化学成分;③ 形成历史。
1)根据气体的存在形态分为:在岩石孔隙中的含量;游离态(空气中);气体流——存在于火山活动、构造运动及地表中;气体蒸发;气体的液态溶液(存在于大洋、湖海、江河等各种水体中);气体的固态形式(被岩石和矿物吸附的气体)。
2)威尔南斯基根据其形成历史把天然气分为以下几类:地表气体;高温形成的气体;伴随构造运动过程渗透到地表的气体。
他把这些构造运动形成的气体按照组成成分分为氮气流、碳酸气流、甲烷气流、氢气流。
3)索科洛夫(Cоколов)根据天然气在自然界中的存在形式和化学成分对其进行了最详细的分类,参见表110。
4)按来源把气体分为两种——游离态和溶解气体(Бакиров и др,1993)。游离态的碳氢化合物气体可能呈以下几种形式存在:① 在单纯的气体矿床,而且在某些情况下这些气体矿床在同一个油气带是油气带与石油带交替出现,而在另一些情况下集中于单独的含气带;② 游离态——存在于石油矿床的气帽中。
溶解气体可以存在于石油中和地下水中。
但是游离态和溶解气体之间不存在明显的界限,因为在油气田气帽和石油及冲刷矿床的地下水之间存在着一个动态的相平衡。
表110 天然气体的分类
续表
123 天然气矿床的气体组成
1231 碳氢化合物
天然气矿床的碳氢化合气体主要由甲烷(CH4)和数量不定的混合物组成,混合物包括重同系乙烷C2H6,丙烷C3H8,丁烷C4H10及微量的戊烷和己烷。在石油矿床的气体中可能存在着液态的碳氢化合物,比C6更重。
重碳氢化合物的含量(从C2H6开始)取决于以下几个因素:① 原始有机物质的成分;② 有机物质的退化程度;③ 聚积过程。岩石封闭期所包含的吸溜气体可以提供重要的信息。
天然气体的碳氢化合物成分的特点是标准的及同构的丁烷和戊烷含量的千差万别,这取决于一系列的因素:有机物质的成分、退化的程度、气体矿床岩层的温度、压力条件等。
在碳氢化合物的组分中也会遇到碳酸气(CО2)、氮气(N2)、硫化氢(H2S)、氦气(Hе)和 氩气(Ar)。
为了测定天然气的碳氢化合物组分引入“干燥指数”这个概念——甲烷相对于其同族数量的百分比,同族也就是CH4/(C2H6及以上)。天然气的干燥指数也是其聚积方向的指标。因为甲烷的特点就是极其稳定,那么随着分子量的增加其聚积速度就减慢。
1232 同位素
天然气的同位素组成。正如希尔威尔门(Cильвермен)所指出的,甲烷、乙烷、丙烷等含量最丰富的是同位素13C。在甲烷和乙烷之间存在着明显的突变,以后13C分子量的增加不明显。氮的同位素是14N 和 15N。根据赫令格的分析,同位素比重的特点是富15N,按照这个标准是大气中的氮。他确认,对于石油、岩石有机物质和碳氢化合物气体,15N相应地发生变化,其同位素组成分别为×07%~14%、01%~17%、×1%~15%(表111)。
表111 天然气体的物理特性
有关天然气中硫的同位素组成,潘基纳亚通过研究得出这样的规律:随着地质年龄的增加硫重同位素所占的比重减少。此外,在形成硫化氢时,硫酸盐的微生物还原过程可能会表现出硫同位素32S/34S值的明显波动。
124 天然气的主要物理化特性
气体可以在孔状及裂隙状岩石中流动,而且可能通过岩石进行扩散。此外,气体可能溶解在石油和水中,从而在地壳中运移。气体的这些特性取决于它们的一系列物理特性,表112列举出了其中几个特性。
1241 气体的溶解
气体的溶解取决于一系列的因素:压力、温度、化学成分、地下水中盐的浓度。在压力小于5 MPa的条件下符合亨利定律:被溶解气体的数量与压力机溶解系数成正比。当压力增大以及气体成分复杂时,这种制约关系将变得复杂多样。总的说来,压力增加,气体的溶解度增大。
气体溶解度对温度的依赖关系如下:温度低于100 ℃时为反比例关系,高于100 ℃时是正比例关系。尤其是非极性气体(碳氢化合物和氮气)在高压下溶解度随着温度的增加而升高。
气体的化学成分也对溶解度有影响:水中极性气体的溶解度比非极性气体的溶解度要高出很多:二氧化碳在20 ℃时的溶解度相当于甲烷溶解度的27倍,是氮气溶解度的58倍。
1242 岩石圈对天然气的吸存方式
岩石圈中对天然气的吸存有几种形式(Бакиров,1993)。气体被吸存在坚硬的矿物岩石及有机体中。被吸存的气体存在于裂隙的表层或者岩石的孔隙中,岩石深处还有被吸存的气体。后者可能以气泡的形式存在于岩石晶体中。
1243 聚积
天然气(地壳气态矿物)学说的创始人是韦尔纳茨基(Вернадский)院士。他把天然气看作是自由聚积并在大气圈和地壳之间交换的产物,认为“地壳”的演化是天然气不断混合的过程,包括垂直方向,也包括水平方向的运动。在这个过程中,自然聚积从地球静压力高的区域趋向静压力低的区域。
气体的聚积导致某些构造中的气体贫乏,而在另外一些构造中又出现富集。如果在这种情况下形成天然气或者石油和天然气的大量聚积,那么这就被称作矿床,也就是石油和天然气矿床——这不是它们生成的地方,而是有利于其矿床形成的地方。
气体的聚积有各种形式:扩散、渗透、漂浮、涡流、液态下气体的运移。
扩散可能实际发生在任何环境:气体在气体中,气体在水中,气体在固态物质中。扩散时气体的交换可能发生在穿透岩石、液体或者气体的封闭孔隙中(彼此隔绝)。扩散的过程符合福柯定律:扩散与气体聚积梯度方向呈现正相关关系。随着气体物质分子的扩大,扩散系数降低,而随着温度的升高而扩大。
渗透(或者过滤)是最活跃的迁移形式,发生在有孔洞和缝隙相通的各层之间,构成一个开放的体系。渗透的发生受压力差影响,符合达西定律。显然,气体在渗透时的迁移比扩散时要显著得多。比如,甲烷中截面压差为每100 m2 2 个大气压:在格罗兹内或者巴库型砂岩或者粘土中,渗透率为003~004 D时,每平方千米的表面会向大气中散逸大于1 m3 的气体。或者在一百万年间散逸大于10亿m3 的气体。可惜这个过程既不能避免,也不能逆转,因此气体的积聚和矿床的形成只能在圈闭构造中,渗透层或者构造被实际的不透水层覆盖。在这种绝缘构造中气体的迁移运动完全没有终止,但是扩散代替了渗透,这个过程在几百年或者几百万年的过程中能够大大缩减矿床气体的藏量。
在自然界中不存在严格意义上的运移方式划分。根据运移机制的不同分为以下几类:
1)渗透式:① 以连通孔洞及裂隙为通道;② 以部分被水填充的孔洞及裂隙为通道;③ 与水合为一体(气体溶解在水中)。
2)扩散式——以被其他气体充满的孔洞或裂隙为通道。
3)渗透-扩散式。近期的研究非常关注液体中气体的运移:在漫长的时间里多次受到内动力(热力)作用的构造中含有水或者凝析油,其中的气体随之运移。这种构造可以是断裂带或者盆地,或者火山颈,由于热液物质的壳下喷射使得石油和天然气变热,并且随着气液热流的形成而富含内源气体,这个过程中进行着物质分异:富含轻质成分的处于运移的前缘,而富含较重成分的处于运移的后部或者侧翼。
这个过程中热液组分很容易溶解在气体中——随着在冷却积聚地带的进一步冷凝转变为气态物质。
气体在液体中的漂浮是多相液体的渗透现象。在大气层中,较轻的气体漂浮在较重的气体上面。在岩石的孔洞和裂隙中,气体以气泡的形式上浮。压缩至10 MPa的气体物质质量相当于同样体积的水质量的十分之一,这就是气体在水或石油中具有浮力的原因。
气体的涡流运动是气层中低层所特有的。
可溶状态下水对气体的运移在水圈和沉积层中起着巨大作用,尤其是在气体矿床的形成中所起的作用更大。
天然气的主要成分是甲烷(CH₄),天然气在燃烧过程中会产生一氧化碳(CO)与二氧化碳(CO2)两种气体。当其在空气中浓度达到10%时,可使人窒息死亡;空气中天然气(甲烷)含量达到5-15%时,遇着火源会发生爆炸。
1、使用燃气时,切不可擅自离开,应保持通风,防止天然气燃烧产生的一氧化碳与二氧化碳中毒;天然气表安装处也需开孔通风,不可关死;
2、不要将过满的炊具放在燃气灶上加热,以免水溢出浇灭火焰,导致燃气泄漏;
3、如遇供气突然中断,应关闭阀门,直至接到正常通气通知后,方可继续使用;
4、定期检查燃气管道是否漏气,发现漏点,要及时关掉总阀门,联系燃气公司人员处理,切勿私自处理;
5、用久的灶具,开关可能关不严,会造成燃气泄漏,需要及时更换开关;
6、不使用天然气时,要关闭总阀门,及各处分支阀门,并打开厨房门窗,保持通风;
7、安装使用燃气泄漏报警装置,保证居家安全;
8、定期主动联系天然气公司上门检漏,排查安全隐患。
天然气绝大多数是由气体化合物组成的混合体,由单一气体组分组成的较少见。
天然气中常见的化学组分有:烃类气(甲烷—丁烷)、二氧化碳、氮气、硫化氢、汞蒸气、氢气、氧气、一氧化碳和稀有气体(氦、氖、氩、氪、氙)等。
天然气的物理性质和化学性质与水和石油相比是完全不同的,通常为气态,容易流动。它的相对密度一般较空气轻(相对密度为05~08),其中只有二氧化碳(1519)和硫化氢(117)的相对密度较大。天然气一般情况下是无色的,但绝大多数都有特殊的气味,特别是非烃类气体如硫化氢组分更有特殊异味(臭鸡蛋味)。甲烷、乙烷等烃类气体可燃,无毒,但可使人窒息。二氧化碳、氮气等不可燃,硫化氢为毒性极强气体,空气中极少的含量就可以使人致死。
烃类天然气以甲烷(CH4)气为主,并含有总量不多、各自数量不等的重烃(C2—C5)气。其中非烃气以氮(N2)、二氧化碳(CO2)、硫化氢(H2S)较为常见。另外,天然气中还含有一氧化碳(CO)、二氧化硫(SO2)、氢(H2)、汞(Hg)以及氦(He)、氖(Ne)、氩(Ar)、氙(Xe)及氡(Rn)等痕量至微量的稀有气体。
问题一:家用煤气成分是什么? 家用燃气有三种
1 天然气 主要成分是CH4
2 液化石油气 主要成分是丙烷、丁烷
3 水煤气 主要成分是 H2 CO
现在大部分都是改造成天然气 具体你家是哪种燃气请向你处燃气供应公司咨询
问题二:家用天然气的主要成分是什么? 天然气:又称油田气、石油气、石油伴生气。
天然气的化学组成及其物理化学特性因地而异:
主要成分是甲烷,还含有少量乙烷、丁烷、戊烷、二氧化碳、一氧化碳、硫化氢等。无硫化氢时为无色无臭易燃易爆气体,密度多在06~08g/cm3,比空气轻。通常将含甲烷高于90%的称为干气,含甲烷低于90%的称为湿气。
天然气 广义指埋藏于地层中自然形成的气体的总称。但通常所称的天然气只指贮存于地层较深部的一种富含碳氢化合物的可燃气体,而与石油共生的天然气常称为油田伴生气。天然气由亿万年前的有机物质转化而来,主要成分是甲烷,此外根据不同的地质形成条件,尚含有不同数量的乙烷、丙烷、丁烷、戊烷、己烷等低碳烷烃以及二浮化碳、氮气、氢气、硫化物等非烃类物质;有的气田中还含有氦气。天然气是一种重要的能源,广泛用作城市煤气和工业燃料;在70年代世界能源消耗中,天然气约占 18%~19%。天然气也是重要的化工原料。
煤气是用煤或焦炭等固体原料,经干馏或汽化制得的,其主要成分有一氧化碳、甲烷和氢等。因此,煤气有毒,易于空气形成爆炸性混合物,使用时应引起高度注意。
家用液化气一般指液化石油气(简称液化气),是石油在提炼汽油、煤油、柴油、重油等油品过程中剩下的一种石油尾气,通过一定程序,对石油尾气加以回收利用,采取加压的措施,使其变成液体,装在受压容器内,液化气的名称即由此而来。它的主要成分有乙烯、乙烷、丙烯、丙烷和丁烷等,在气瓶内呈液态状,一旦流出会汽化成比原体积大约二百五十倍的可燃气体,并极易扩散,遇到明火就会燃烧或爆炸。因此,使用液化气也要特别注意。
问题三:家庭燃气的主要成分是什么? 甲烷
问题四:天然气的主要成因是什么?其化学成分有哪些 天然气是指自然界中天然存在的一切气体,包括大气圈、水圈、和岩石圈中各种自然过程形成的气体(包括油田气、气田气、泥火山气、煤层气和生物生成气等)。而人们长期以来通用的“天然气”的定义,是从能量角度出发的狭义定义,是指天然蕴藏于地层中的烃类和非烃类气体的混合物。在石油地质学中,通常指油田气和气田气。其组成以烃类为主,并含有非烃气体。
天然气蕴藏在地下多孔隙岩层中,包括油田气、气田气、煤层气、泥火山气和生物生成气等,也有少量出于煤层。它是优质燃料和化工原料。
天然气主要用途是作燃料,可制造炭黑、化学药品和液化石油气,由天然气生产的丙烷、丁烷是现代工业的重要原料。天然气主要由气态低分子烃和非烃气体混合组成。
随着天然气价格改革的加速落实,“十三五”大力推动天然气发展预期的逐步临近,以及近期天气转凉天然气使用量的大幅增加,天然气的发展将迎来历史性机遇
天然气是存
在于地下岩石储集层中以烃为主体的混合气体的统称,比重约065,比空气轻,具有无色、无味、无毒之特性。
天然气主要成分烷烃,其中甲烷占绝大多数,另有少量的乙烷、丙烷和丁烷,此外一般有硫化氢、二氧化碳、氮和水气和少量一氧化碳及微量的稀有气体,如氦和氩等。天然气在送到最终用户之前,为助于泄漏检测,还要用硫醇、四氢噻吩等来给天然气添加气味。
天然气不溶于水,密度为07174kg/Nm3,相对密度(水)为约045(液化)燃点(℃)为650,爆炸极限(V%)为5-15。在标准状况下,甲烷至丁烷以气体状态存在,戊烷以上为液体。甲烷是最短和最轻的烃分子。
有机硫化物和硫化氢(HS)是常见的杂质,在大多数利用天然气的情况下都必须预先除去。含硫杂质多的天然气用英文的专业术语形容为sour(酸的)。
天燃气每立方燃烧热值为8000大卡至8500大卡。每公斤液化气燃烧热值为11000大卡。气态液化气的比重为25公斤/立方米。每立方液化气燃烧热值为25200大卡。每瓶液化气重145公斤,总计燃烧热值159500大卡,相当于20立方天然气的燃烧热值。
天然气的成因是多种多样的,天然气的形成则贯穿于成岩、深成、后成直至变质作用的始终,各种类型的有机质都可形成天然气,腐泥型有机质则既生油又生气,腐植形有机质主要生成气态烃。
生物成因
成岩作用(阶段)早期,在浅层生物化学作用带内,沉积有机质经微生物的群体发酵和合成作用形成的天然气称为生物成因气。其中有时混有早期低温降解形成的气体。生物成因气出现在埋藏浅、时代新和演化程度低的岩层中,以含甲烷气为主。生物成因气形成的前提条件是更加丰富的有机质和强还原环境。
最有利于生气的有机母质是草本腐植型―腐泥腐植型,这些有机质多分布于陆源物质供应丰富的三角洲和沼泽湖滨带,通常含陆源有机质的砂泥岩系列最有利。硫酸岩层中难以形成大量生物成因气的原因,是因为硫酸对产甲烷菌有明显的 作用,H2优先还原SO42-→S2-形成金属硫化物或H2S等,因此CO2不能被H2还原为CH4。
甲烷菌的生长需要合适的地化环境,首先是足够强的还原条件,一般Eh>
问题五:天然气的主要成分是什么? 天然气是指从气田开采得到的含甲烷等烷烃的气体。
根据天然气中甲烷和其它烷烃的含量不同,将天然气分为两种:
一种是含甲烷多的称为干天然气(干气),通常含甲烷80~99%(体积),个别气田的甲烷含量可高达998%。
另一种是除含甲烷以外,还含有较多的乙烷、丙烷、丁烷的气体,称为湿天然气(湿气),或称多油天然气。
有时人们往往把含甲烷等烷烃的气体都叫做天然气,当然这是不很确切的。如从油田开采石油时,得到的含烷烃的气体,这叫油田气。油田气几乎全部是饱和的碳氢化合物,主要含甲烷、乙烷、丙烷和丁烷以及少量的轻汽油。此外,气体中有时还存在硫化氢、硫醇、二氧化碳和氢气。油田气的组成因地区和季节等条件而异,通常的组成为甲烷10~85%(体积)、乙烷0~20%、丙烷0~22%、丁烷0~20%、戊烷和高级烃类0~10%、氮气及稀有气体0~10%、硫化氢0~1%,二氧化碳少量。又如从炼油厂炼油时得到的含甲烷等低级烷烃的气体,这叫炼厂气。炼厂气是石油加工过程中副产的各种加工气体的总称,其中主要包括热裂化气、焦化气、催化裂化气、稳定塔气等。所以油田气和炼厂气虽然同样都是含有甲烷等烷烃的气体,但不能一概都称为天然气。
沼气和坑气的主要成分也是甲烷,由于环境的不同,其它杂质的含量也不一致。沼气是池沼淤泥中一些有机物发酵而产生的。坑气又叫瓦斯,是煤矿煤层里的一些有机残余的分解产物随着煤的开采而释出的。
问题六:家用天然气中的主要成分做检测该找什么部门呢? 天然气想要一份国家的安全检测报告,就需要通过国家认可的检测机构做评定,只有国家认可的机构才能够出具有权威性的报告,目前我国这样的机构不是很多,英格尔检测就是其中一家,能够提供天然气检测报告。
问题七:在办公室里喂小鱼,周六周日两天会不会把小鱼饿死? 小鱼很耐饿,一般不生病,不缺氧,一星期不喂都没问题,相反,如果喂多了,反而容易死。
问题八:天然气有毒吗 应该怎么注意 无毒。
天然气的主要成分是甲烷,也没有其他有毒的成分,比重也比空气轻,泄漏容易散去,但在较密闭的空间内泄漏遇明火有爆炸的风险。
一般说的煤气中毒是以前的水煤气(一氧化碳和氢气),现在很少有这个了,大部分使用燃气中毒是因为使用燃气热水器时不完全燃烧产生一氧化碳中毒的。也是以前老式的直排式热水器容易中毒,现在的热水器废气都排到室外就很少会中毒,当使用自然排风遇到大风直接吹向排气口的时候可能中毒,现在高档的热水器使用电力强排风就基本没有什么事了。
防止泄漏一般就检查皮管、接头有没有损坏,皮管如果使用高档的金属软管就好多了。
问题九:天然气的主要成分是什么?家用液化气的主要成 天然气 广义指埋藏于地层中自然形成的气体的总称。但通常所称的天然气只指贮存于地层较深部的一种富含碳氢化合物的可燃气体,而与石油共生的天然气常称为油田伴生气。天然气由亿万年前的有机物质转化而来,主要成分是甲烷,此外根据不同的地质形成条件,尚含有不同数量的乙烷、丙烷、丁烷、戊烷、己烷等低碳烷烃以及二氧化碳、氮气、氢气、硫化物等非烃类物质;有的气田中还含有氦气。天然气是一种重要的能源,广泛用作城市煤气和工业燃料;在70年代世界能源消耗中,天然气约占 18%~19%。天然气也是重要的化工原料。煤气是用煤或焦炭等固体原料,经干馏或汽化制得的,其主要成分有一氧化碳、甲烷和氢等。因此,煤气有毒,易于空气形成爆炸性混合物,使用时应引起高度注意。家用液化气一般指液化石油气(简称液化气),是石油在提炼汽油、煤油、柴油、重油等油品过程中剩下的一种石油尾气,通过一定程序,对石油尾气加以回收利用,采取加压的措施,使其变成液体,装在受压容器内,液化气的名称即由此而来。它的主要成分有乙烯、乙烷、丙烯、丙烷和丁烷等,在气瓶内呈液态状,一旦流出会汽化成比原体积大约二百五十倍的可燃气体,并极易扩散,遇到明火就会燃烧或爆炸。因此,使用液化气也要特别注意。
1、自喷方式。这和自喷采油方式基本一样。不过因为气井压力一般较高加上天然气属于易燃易爆气体,对采气井口装置的承压能力和密封性能比对采油井口装置的要求要高的多。
2、小油管排水采气法是利用在一定的产气量下,油管直径越小,则气流速度越大,携液能力越强的原理,如果油管直径选择合理,就不会形成井底积水。这种方法适应于产水初期,地层压力高,产水量较少的气井。
3、泡沫排水采气方法就是将发泡剂通过油管或套管加入井中,发泡剂溶入井底积水与水作用形成气泡,不但可以降低积液相对密度,还能将地层中产出的水随气流带出地面。这种方法适应于地层压力高,产水量相对较少的气井。
4、柱塞气举排水采气方法就是在油管内下入一个柱塞。下入时柱塞中的流道处于打开状态,柱塞在其自重的作用下向下运动。当到达油管底部时柱塞中的流道自动关闭,由于作用在柱塞底部的压力大于作用在其顶部的压力,柱塞开始向上运动并将柱塞以上的积水排到地面。
当其到达油管顶部时柱塞中的流道又被自动打开,又转为向下运动。通过柱塞的往复运动,就可不断将积液排出。这种方法适用于地层压力比较充足,产水量又较大的气井。
5、深井泵排水采气方法是利用下入井中的深井泵、抽油杆和地面抽油机,通过油管抽水,套管采气的方式控制井底压力。这种方法适用于地层压力较低的气井,特别是产水气井的中后期开采,但是运行费用相对较高。
扩展资料:
截至2017年,我国已探明天然气地质储量仅为144万亿方,占技术可采储量的17%。
除去大量未探明天然气储量,《中国天然气发展报告(2018)》数据显示,2018年我国已探明天然气储量中未动用占比超过44%,即使在当前的技术水平下,剩余的经济可采储量仍有39万亿立方米,其中大部分资源的开发成本相对于中缅管道进口气等仍具有明显的价格优势。
-天然气
欢迎分享,转载请注明来源:品搜搜测评网