土壤的功能:为陆生植物提供营养源和水分,是植物生长、进行光合作用,进行能量交换的主要场所。土壤是一种重要的环境要素。
土壤环境问题主要有:土壤侵蚀、水土流失、土地沙漠化、土壤盐渍化、土壤贫化,和土壤污染等。
一、土壤的组成
土壤由固相(矿物质、有机质)、液相(土壤水分或溶液)和气相(土壤空气)等三相物质四种成分有机地组成。
按容积计,在较理想的土壤中矿物质约占38—45%,有机质约占5—12%,孔隙约占50%。按重量计,矿物质占固相部分的90—95%以上,有机质约占1—10%。
二、土壤的物理化学性质
一土壤的物理性质
土壤的物理性质包括土壤的颗粒组成、排列方式、结构、孔隙度以及由此决定的土壤的密度、容重、粘结性、透水性、透气性等。
二土壤胶体及土壤吸附交换性
土壤胶体是指土壤中颗粒直径小于2mm或小于1 mm,具有胶体性质的微粒。一般土壤中的粘土矿物和腐殖质都具有胶体性质。直径小于2mm的胶粒带有大量的负电荷。
1、土壤胶体的类型
2、土壤胶体的性质:
⑴、巨大的表面积和表面能;
⑵、电荷性质:以负电荷为主;
⑶、分散性和凝聚性:
溶胶(←分散作用)(凝聚作用→)凝胶
3、土壤的吸附作用
土壤的吸附作用 :生物吸附 ——吸收 机械吸附——过滤 物理吸附——分子吸附 化学吸附——生成沉淀物 物理化学吸附——离子交换
离子交换作用: 阳离子交换 阴离子交换
阳离子交换是指土壤胶体吸附的阳离子与土壤溶液中的阳离子进行交换,阳离子由溶液进入胶核的过程称为交换吸附,被置换的离子进入溶液的过程称解吸作用。
各种阳离子的交换能力与离子价态、半径有关。一般价数越大,交换能力越大;水合半径越小,交换能力越大。一些阳离子的交换能力排序如下:
Fe3+>Al3+>H+>Ca2+>Mg2+>K+>NH+>Na+
在土壤吸附交换的阳离子的总和称为阳离子交换总量,其中K+、Na+、Ca2+、Mg2+、NH+称之为盐基性离子。在吸附的全部阳离子中,盐基性离子所占的百分数称为盐基饱和度:
交换盐基离子总量(mol/100g)
盐基饱和度=——————————————— ×100
阳离子交换总量(mol)
当土壤胶体吸附的阳离子全是盐基离子时呈盐基饱和状态,称为盐基饱和的土壤。正常土壤的盐基饱和度一般在70—90%。盐基饱和度大的土壤,一般呈中性或碱性,盐基离子以Ca2+离子为主时,土壤呈中性或微碱性;以 Na+为主时,呈较强碱性;盐基饱和度小则呈酸性。
阴离子交换:由于在酸性土壤中有带正电的胶体,因而能进行阴离子交换吸附。阴离子吸附交换能力的强弱可以分成:①易被土壤吸收同时产生化学固定作用的阴离子:H2PO4-、HPO42-、PO43-、SiO32-及其某些有机酸阴离子;②难被土壤吸收的阴离子:Cl-、NO3-、NO2-;③介于上面两类之间的阴离子:SO42-、CO32-及某些有机阴离子。阴离子被土壤吸附的顺序为:
C2O42->C6O7H53-> PO43- > SO42 -> Cl- > NO3-
(三)土壤的酸碱性和氧化-还原
1、土壤的酸碱度
土壤的酸碱度取决于土壤溶液中的H+ 和OH-的含量。土壤中的H+主要是二氧化碳溶于水形成的碳酸、有机物分解产生的有机酸以及某些少数无机酸、Al3+水解产生的。土壤中的OH-主要来自碳酸钠、碳酸氢钠、碳酸钙以及胶粒表面交换性Na+水解产生的。
(2)土壤的碱度
土壤碱性主要来自土壤Na2CO3、NaHCO3、CaCO3以及胶体上交换性Na+,它们水解显碱性。
土壤胶体+Na+Û土壤胶体+H+ + NaOH
土壤的碱度也用pH表示,含Na2CO3 、Na2HCO3 、的土壤的pH值一般大于85。含CaCO3的石灰性土壤Ph值约在70—85之间。
强碱性土壤(Ph85—10)除含有易溶性盐类外,主要与胶粒吸附的交换性Na+有关。通常把交换性Na+占交换量的百分数称为碱化度 。
2、土壤的氧化-还原反应
土壤由固相(矿物质、有机质)、液相(土壤水分或溶液)和气相(土壤空气)等三相物质四种成分有机地组成。
按容积计,在较理想的土壤中矿物质约占38—45%,有机质约占5—12%,孔隙约占50%。按重量计,矿物质占固相部分的90—95%以上,有机质约占1—10%。
土壤的主要成分包括矿物质、有机质、土壤水分和土壤空气。矿物质占土壤的很大比重,主要是各种硅酸盐,其具体成分视形成土壤的岩层性质而有所变化。有机质中最重要的是腐殖质,是植物残体在微生物作用下形成的复杂含氮化合物。土壤颗粒大小不等,有沙粒、粉粒、泥粒、胶粒等。
土壤的功能作用
1、调节功能
土壤作为自然界组成部分,与其他环境因素的交互过程中所发挥的功能。水分循环功能;养分循环功能;碳存储功能;缓冲过滤功能;分解转化功能。
2、动植物栖息地功能
以保护稀有动植物为目的,确保土壤能够为植物和动物提供栖息场所。
3、作物生产功能
土壤可以固定植物根系,具有自然肥力,能够促进作物生长,进行农业生产。这是土壤被人类最早认识的功能之一,包括农业、林业生产,粮食作物和经济作物生产。
4、人居环境功能
土壤作为人类生活和居住的环境,有提供建筑、休闲娱乐场所,维护人类健康发展的功能。健康良好的土壤在提升城市环境质量中发挥着重要的作用。
5、自然文化历史档案功能
土壤有作为历史档案,有记录自然变化和人文历史的功能。
一般包括粒度成分、矿物成分和液相成分。
①粒度成分。
土粒按粒径大小及其性质的近似性归并成粒组,用各粒组占总土重的百分数表示土的粒度成分。
②矿物成分。
土中的粗碎屑颗粒多由石英、长石、云母等原生矿物组成。原生矿物经风化,可溶物被溶蚀后形成不溶于水的次生矿物。
③液相成分。
土中的液相成分通常不全是自由水。根据水分子的活动性可分为毛细管水、结合水、结构水等类型。结合水是土粒与水发生复杂物理-化学作用的产物。
土粒表面常分布有具游离电价的原子或离子,它们能吸引极性水分子形成水化膜。在水化膜中直接与土粒相接触,并牢固被吸引的水称吸附结合水(强结合水)。远离颗粒表面的水构成浓差渗透吸附结合水(弱结合水)。
扩展资料:
一、分类
地壳上的土,种类繁多,为便于研究与实际应用,可按土的工程性质近似地归类,粒度组成一直是土的分类的基本依据。世界上几个国家的土的粒组界限值见表。
按粒度,土首先分为颗粒直径大于0074毫米者占 50%以上的粗粒土和颗粒直径小于0074毫米者占50%以上的细粒土,粗粒土再细分的标准仍是粒度组成,颗粒直径大于 2毫米者占50%以上的为砾石类土,否则为砂类土。
但细粒土的性质与粒度的关系不如其与水的关系密切,故世界各国普遍采用塑性指标作为划分细粒土的标准。分类方法是将实际测得的塑性指标值点在塑性图上,据其位置归类。此外,还有以地质成因或矿物成分为划分标准的分类法。
二、水理性质
土的水理性质一般指的是粘性土的液限、塑限(由实验室测得)及由这两个指标计算得来的液性指数和塑性指数。这几个指标也是工程中必需提供的。对于饱和粘性土还有灵敏度和触变性。
粘性土由于含水量的不同,分为固态、可塑状态和流动状态,这即是粘性土的稠度状态。各稠度状态间的临界含水量称界限含水量,界限含水量随粘粒含量和矿物成份的不同变化较大,也反映出工程地质性质的显著差别。
因此界限含水量及界限含水量与天然含水量的关系,即塑性指数和液性指数,往往作为土的分类和确定地基承载力的重要参数。
天然状态下的粘性土具有一定的结构。当受到外来因素的扰动时,土粒间的胶结物质以及土粒、离子、水分子所组成的平衡体系受到破坏,土的强度降低和压缩性增大。土的结构性对强度的这种影响,一般用灵敏度来反映。
-土
土壤是由固体、液体和气体三类物质组成的。固体物质包括土壤矿物质、有机质和微生物等。液体物质主要指土壤水分。气体是存在于土壤孔隙中的空气。土壤中这三类物质构成了一个矛盾的统一体。它们互相联系,互相制约,为作物提供必需的生活条件,是土壤肥力的物质基础。
土壤是成分很复杂的混合物,一般情况下主要含有二氧化硅,各种有机物,金属氧化物等等化合物和一部分金属单质(像金、石墨等稳定的金属或非金属)
土壤的成分并不是单一的,而且不同地方的土壤成分也大有不同,比如东北三江平原的黑土富含各种有机物,而华南常见的红土却富含铁的氧化物,所以要想确切知道土壤到底是由什么元素构成几乎是不可能的。
不过从广义来说,元素周期表上所包含的所有稳定的、不稳定的元素(不包括表后面的部分人造放射性元素)几乎都可以在土壤中找到,只是不同的土壤中各种元素的含量不同而已。
欢迎分享,转载请注明来源:品搜搜测评网