碳14详细资料大全

碳14详细资料大全,第1张

碳14 是碳元素的一种具放射性的同位素,它是透过宇宙射线撞击空气中的氮原子所产生。碳-14原子核由6个质子和8个中子组成。其半衰期约为5,730±40年,衰变方式为β衰变,碳14原子转变为氮-14原子。

1940年,美国科学家马丁·卡门(Martin Kamen)与同事山姆·鲁宾(Sam Ruben)在美国劳伦斯伯克利国家实验室发现碳14,而后时任芝加哥大学教授、加州大学伯克利分校化学博士威拉得·利比(Willard Libby)套用碳14发明了碳—14年代测定法并获得1960年诺贝尔化学奖。由于在有机材料中含有碳-14,因此根据它可以确定考古学、地质学和水文地质学样本的大致年代,其最大测算不超过6万年(而且没有参照的情况下误差较大)。

碳14是 自然界中碳元素有三种同位素,即稳定同位素12C、13C和放射性同位素14C。 14C的半衰期为5730年,14C的套用主要有两个方面:一是在考古学中测定生物死亡年代,即放射性测定年代法 的一种,其他常用的还有钾-氩法测定,钾-氩法测定,热释光测定等;二是以14C标记化合物为示踪剂,探索化学和生命科学中的微观运动。在地球上有99%的碳以碳-12的形式存在,有大约1%的碳以碳-13的形式存在,只有兆分之一(00000000001%)是碳-14,存在于大气中,由大气中氮与宇宙射线作用生成,其丰度基本保持不变,是生物圈中碳-14的来源。

基本介绍 中文名 :碳14 外文名 :Carbon-14 性质 :放射性同位素 提出 :马丁·卡门与塞缪尔·鲁宾  半衰期 :5730年 射线能量 :156467keV(100%) 天然丰度 :12×10^(-12),12ppt 生产方式 :14 N(n,p)14 C 发展简史,成分结构,套用领域,碳-14呼气试验,标记化合物,利用碳-14测定年代,利用碳14原理测量生物基含量, 发展简史 由于其半衰期达5,730年,且碳是有机物的元素之一,我们可以根据死亡生物体的体内残余碳-14成分来推断它的存在年龄。生物在生存的时候,由于需要呼吸,其体内的碳14含量大致不变,生物死去后会停止呼吸,此时体内的碳-14开始减少。由于碳元素在自然界的各个同位素的比例一直都很稳定,人们可透过测量一件古物的碳14含量,来估计它的大概年龄。这种方法称之为放射性碳定年法。 这个方法估计的大气碳-14含量通过植物年轮(最多可推算到大约10000年前)或者洞穴堆积物(例如钟乳石,最多可推算到大约45000年前)来推算。根据这个推算(更确切的说)对比年轮和洞穴堆积物就可以建立起碳-14的年代变化模型,从而获得其它样本的年龄。 不过,碳-14测年法最大测算时间不超过6万年,而且所测得的年代有颇大的误差。而且它的假定,即大气中的碳-14浓度不会随时间而改变,也与事实有落差。此外,碳-14测定法亦有可能受到诸如火山爆发等自然因素影响,因为在火山喷发时将地下大量气体和物质带到大气中,从而影响碳-14在某区域大气中的含量。所以,若没有其他年代测定方法(如:利用树木的年轮)来检订,单单依赖碳-14的测年数据并不完全可靠。随着现代工业的高速发展和大量化石燃料的套用,古代深藏地下的碳-14被排放到大气中并进入生物循环,放射性碳定年法的结果因此也十分容易受到干扰。 利用宇宙射线产生的放射性同位素碳—14来测定含碳物质的年龄,就叫碳—14测年。由美国科学家马丁·卡门与同事塞缪尔·鲁宾于1940年发现。已故著名考古学家夏鼐先生对碳—14测定考古年代的作用给了极高的评价:“由于碳—14测定年代法的采用,使不同地区的各种新石器文化有了时间关系的框架,使中国的新石器考古学因为有了确切的年代序列而进入了一个新时期。 那么,碳—14测年法是如何测定古代遗存的年龄呢?原来,宇宙射线在大气中能够产生放射性碳—14,并能与氧结合成二氧化碳形后进入所有活组织,先为植物吸收,后为动物纳入。只要植物或动物生存著,它们就会持续不断地吸收碳—14,在机体内保持一定的水平。而当有机体死亡后,即会停止呼吸碳—14,其组织内的碳—14便以5730年的半衰期开始衰变并逐渐消失。对于任何含碳物质,只要测定剩下的放射性碳—14的含量,就可推断其年代。 成分结构 碳—14测年法分为常规碳—14测年法和加速器质谱碳—14测年法两种。当时,Libby发明的就是常规碳—14测年法,1950年以来,这种方法的技术与套用在全球有了显著进展,但它的局限性也很明显,即必须使用大量的样品和较长的测量时间。于是,加速器质谱碳—14测年技术发展起来了。 加速器质谱碳—14测年法具有明显的独特优点。一是样品用量少,只需1~5毫克样品就可以了,如一小片织物、骨屑、古陶瓷器表面或气孔中的微量碳粉都可测量;而常规碳—14测年法则需1~5克样品,相差3个数量级。二是灵敏度高,其测量同位素比值的灵敏度可达10-15至10-16;而常规碳—14测年法则与之相差5~7个数量级。三是测量时间短,测量现代碳若要达到1%的精度,只需10~20分钟;而常规碳—14测年法却需12~20小时。 正是由于加速器质谱碳—14测年法具有上述优点,自其问世以来,一直为考古学家、古人类学家和地质学家所重视,并得到了广泛的套用。可以说,对测定50000年以内的文物样品,加速器质谱碳—14测年法是测定精度最高的一种。 二、碳-14标记化合物的套用。 碳-14标记化合物是指用放射性14C取代化合物中它的稳定同位素碳-12,并以碳-14作为标记的放射性标记化合物。它与未标记的相应化合物具有相同的化学与生物学性质,不同的只是它们带有放射性,可以利用放射性探测技术来追踪。 自20世纪40年代,就开始了碳-14标记化合物的研制、生产和套用。由于碳是构成有机物三大重要元素之一,碳-14半衰期长,β期线能量较低,空气中最大射程 22cm,属于低毒核素,所以碳-14标记化合物产品套用范围广。至80年代,国际上以商品形式出售的碳-14标记化合物,包括了胺基酸、多肽、蛋白质、糖类、核酸类、类脂类、类固醇类及医学研究用的神经药物、受体、维生素和其他药物等,品种已达近千种,约占所有放射性标记化合物的一半。 套用领域 碳-14呼气试验 幽门螺杆菌(Hp)可引起多种胃病,包括胃炎、胃溃疡、十二指肠溃疡、非溃疡性消化不良、胃癌等。因此,根除幽门螺杆菌已经成为现代消化道疾病治疗的重要措施。 幽门螺杆菌可产生高活性的尿素酶。当病人服用碳14标记的尿素后,如患者的胃记忆体在Hp感染,胃中的尿素酶可将尿素分解为氨和碳14标记的CO2,碳14标记的CO2通过血液经呼气排出,定时收集呼出的气体,通过分析呼气中碳14标记的CO2的含量即可判断患者是否存在幽门螺杆菌感染。 相比于传统的胃镜检查,该法简单、高效、准确率高,减轻了病人的身体和精神负担。 标记化合物 碳-14标记化合物广泛套用于化学、生物学、医学领域中,采用放射性标记化合物进行示踪,具有方法简单、易于追踪、准确性和灵敏性高等特点。 利用碳-14测定年代 宇宙射线中的中子与大气中的大量存在的稳定核素氮-14发生N(n,p)C反应能够产生碳-14,而碳-14又会发生半衰期T=5730年的β衰变变成氮-14,由此构建一个核素平衡。碳-14与氧气反应生成的二氧化碳被生物圈接收,活体生物体内的碳-14与碳-12浓度比例是一定经测定,碳-14的同位素丰度为12×10^(-12)的,只有当生物死亡后,碳循环中断,碳-14逐渐衰变至没有。在化石标本中采样测量碳-14的丰度,与12×10^(-12)比较,即可计算出生物生活的年代。多数和铀钍测年对同一批样品交叉使用 比如:一个化石样品含有碳-14的丰度是43×10^(-13),则可计算出该化石活体生活的年代距今t=ln(No/N)T/ln2=ln[12×10^(-12)÷43×10^(-13)]×5730÷ln2≈84839861年(N‘=Ne^(-λt))。 利用碳14原理测量生物基含量 放射性碳测年法适用于在工业产品中生物基含量测量,因为产品中包含了一些近代的生物质材料和石化衍生材料的组合。为此开发的标准称为ASTM D6866。 近代的生物质材料(生物基成分)含有碳14,石化衍生材料(来自石油)没有。因此所有的碳14产品来自生物基成分。对于一个包含生物质成分和石化衍生成分的产品,ASTM D6866分析将用碳14含量来计算产品中有多少是来自植物成分,有多少来自石油衍生成分。 例子: 通过ASTM D6866,100%来源石油衍生成分的聚乙烯制作的产品只有0% 的生物基含量,而一个由100%来源于植物的聚乙烯制作的产品将有一个100%的生物基含量结果。 通过ISO / IEC 17025:2005认证的BETA实验室还为全世界的产品制造商、分销商和研究人员提供生物基产品、生物燃料、垃圾衍生燃料和燃烧排放气体(CO2气体)的生物基/可再生碳含量测试。 BETA实验室利用碳-14原理进行天然产品来源测试,如香精、香料、精油、化妆品和补充剂,来识别产品中的化石衍生来源成分。

碳材料有哪些

碳材料有很多种,主要有碳纤维、MCMB、天然石墨、玻璃碳、碳碳复合材料、硬碳、多孔活性炭、高取向石墨、炭黑、金刚石、碳纳米管、富勒烯以及现在很热的石墨烯等材料

请问:新型碳材料都包括哪些?

新型碳材料包括巴基葱、实心碳球及空心碳球、碳泡沫、石墨尖锥以及碳树等

碳材料与炭材料有什么区别

碳是指元素。碳材料通常指含有碳元素并为主体的材料。

炭是指由碳元素构成的无恒定组成及性质的含碳物质。

炭材料通常是特指的。特指炭和石墨材料。碳材料则是广义的含碳的材料。

以上。

宏观碳材料和纳米碳材料有哪些, 他们之间的区别是什么?

宏观:石墨 金刚石

纳米:石墨烯(研究最热的) 碳六十(C60)等等

区别:你可以把石墨看做为一层层碳分子层,分子层之间也存在着相互作用力,而石墨烯的话 就是从中抽取出一个或者几个分子层,这样 由于低配位的影响,分子间的作用力发生改变(具体说来是:键长收缩,键强增强)这样就会导致纳米级的石墨烯具有一些列尺寸效应,比如杨氏模量变大,熔点降低,拉曼光谱平移 等等

什么是碳/碳复合材料,有哪些特性?

碳/碳复合材料具有低密度(<20g/cm3)、高比强、高比模量、高导热性、低膨胀系数,以及抗热冲击性能好、尺寸稳定性高等优点,是目前在1650℃以上应用的唯一备选材料,最高理论温度更高达2600℃,因此被认为是最有发展前途的高温材料。

尽管碳/碳复合材料有诸多优良的高温性能, 但它在温度高于400℃的有氧环境中发生氧化反应,导致材料的性能急剧下降。因此,碳/碳复合材料在高温有氧环境下的应用必须有氧化防护措施。碳/碳复合材料的氧化防护主要通过以下两种途径,即在较低的温度下可以采取基体改性和表面活性点的钝化对碳/碳复合材料进行保护;随着温度的升高,则必须采用涂层的方法来隔绝碳/碳复合材料

与氧的直接接触,以达到氧化防护的目的。目前使用最多的是涂层的方法,随着技术的不断进步,对碳/碳复合材料超高温性能的依赖越来越多,而在超高温条件下唯一可行的氧化防护方案只能是涂层防护。

碳材料有什么特点?请列举3种不同结构的碳材料

金刚石,石墨,足球烯。

碳纳米材料与纳米碳材料有什么区别

纳米碳材料是指分散相尺度至少有一维小于100nm的碳耿料。分散相既可以由碳原子组成,也可以由异种原子(非碳原子)组成,甚至可以是纳米孔。纳米碳材料主要包括三种类型:碳纳米管,碳纳米纤维,纳米碳球。

碳纳米材料是比较笼统的说法,可以碳纳米管、碳纳米纤维等,所以说这两者说法既有区别又有联系。

含碳耐火材料有哪些应用

飞秒检测发现含碳耐火材料可分为碳质制品、石墨粘土制品和碳化硅制品三类。

碳质制品是以碳为主要成分,用焦炭、石墨或热处理无烟煤为原料,以含碳的有机材料为结合剂制得的制品。这类制品有以焦炭或无烟煤为主要成分的碳砖和经石墨化的人造石墨质和半石墨质碳砖。碳质制品具有良好的耐热性、抗侵蚀性、高温强度和高温导热性,目前主要用于高炉。

石墨粘土制品是以天然石墨为原料,以粘土作结合剂制得的耐火材料。它具有良好的导热性,耐高温,不与金属熔体作用,热膨胀小。这类制品有石墨粘土坩埚、蒸馏罐、铸钢用塞头砖、水口砖及盛钢桶衬砖等。其中生产最多应用最广的是炼钢和熔炼有色金属的石墨粘土坩埚。

碳化硅质制品是以碳化硅(SiC)为原料生产的高级耐火材料。其耐磨性和耐蚀性好,高温强度大,导热率高,热膨胀系数小,抗热震性好,近年来其应用领域不断扩大。碳化硅质制品按结合剂不同可分以下三种:

氧化物结合%26mdash;%26mdash;以粘土、二氧化硅为结合剂的;

氮化物结合%26mdash;%26mdash;以氮化硅(Si3N4)或含氧氮化硅(Si2ON2)为结合剂的;

自结合的%26mdash;%26mdash;利用碳化硅的再结晶作用。

碳化硅质制品目前钢铁冶炼中可用于盛钢桶内衬、水口、塞头、高炉炉底和炉腹、出铁槽、转炉和电炉出钢口、加热炉无水冷滑轨等方面。在有色金属(锌、铜、铝)冶炼中,大量用于蒸馏器、精馏塔托盘、电解槽侧墙、熔融金属管道、吸送泵和熔炼金属坩埚等。

碳纤维复合材料有哪些重点应用领域

复合材料的用量已成为衡量军用装备先进性的重要标志。

复合材料的兴起丰富了现代材料家族。尤其是具备高强度、高模量、低比重碳纤维增强复合材料的出现,使其成为各类军民装备重要的候选材料之一。

美国国防部在2025年国防材料发展预测中提到,只有复合材料能够将强度、模量和耐高温的指标在现有基础上同时提高25%以上。

正是如此,复合材料正成为航空以及国防装备的关键材料。

一、航空航天领域

纤维增强复合材料在飞机上的应用最早可以追溯到30年前,美国海军F-14和空军F-15战斗机尾翼部分采用硼纤维环氧树脂材料。在这之后,人们发现了碳纤维复合材料的优异性能,开始逐渐应用在军队及运输机上。

碳纤维复合材料首次被应用在飞机上,主要是一些二级结构,包括整流罩、控制仪表盘和小的机舱门。但随着工艺技术的进步,碳纤维复合材料也逐渐被用于机翼、机身等其它部分。

航天工业之所以选择使用碳纤维复合材料,不仅是因为这种材料能够减轻机身重量,同时其具备耐腐蚀、抗疲劳等优良特性。但是与传统金属材料相比,碳纤维复合材料由于成本过高仍然未被广泛应用。

二、汽车工业

碳纤维复合材料的材料性能及发展趋势顺应了汽车工业轻量化的发展需求,特别是随着新能源汽车的发展,碳纤维复合材料在汽车上将得到越来越广泛的应用。

鉴于碳纤维复合材料具备的优异性能,目前已经逐渐开始被应用到国外汽车内外饰、底盘以及电器元件当中。

未来,碳纤维复合材料以及热塑性复合材料等在汽车工业上的应用将替代传统的金属零部件。

三、海洋船舶

上世纪40年代,美国海军首次将碳纤维复合材料用于船舶建造。得益于它在海水环境中表现出的优异性能,在海洋船舶中的应用非常广泛。

复合材料优异舒适性的设计理念和无缝船体的优势进一步推动了各种复合材料船舶的开发。

近年来,碳纤维复合材料在船只上的使用不断增加,主要包括船壳、地板、甲板、舱壁,以及管道系统、油箱等上层建筑。

碳纤维复合材料的应用不仅降低了制造和维修成本,改善外观,还可以减轻吨位,提高安全性。

四、风力发电

在风力发电领域,复合材料是制造风力发电叶片及其它重要结构部件的主要材料,叶片90%以上重量由复合材料组成,能够满足开发大型化、轻量化、高性能、低成本的发电叶片的要求。

随着大丝束碳纤维的广泛应用,碳纤维价格的不断降低,碳纤维在大型叶片中的应用已成为一种趋势。

未来风力发电叶片制造中,碳纤维代替部分玻璃纤维应用于叶片、且用量逐步增加是高性能碳纤维复合材料发展的必然结果。

体育用品

目前,碳纤维增强复合材料在体育器材领域已形成了较大的市场。

随着体育运动对运动器材越来越苛刻的要求,将碳纤维增强复合材料运用到体育用品中来是21世纪体育器材的一大趋势。

自行车

20世纪80年代中期,意大利、法国、英国和美国相继开发成功了用碳纤维管和铝合金接头粘接成车架的碳纤维自行车。

其车架重量较铬钼钢车架轻,强度、刚度却比铬钼钢车架高,因此一经研制成功,便被用作专门的比赛用车。

曾获得男子自行车公路赛冠军的德国著名车手乌尔里希的“坐骑”就是用碳纤维增强复合材料作的支架,质量仅75 kg。

目前一般使用树脂传递模塑工艺(RTM)来批量生产自行车。

高尔夫球杆

1972年美国Shakespear公司用长丝缠绕法制成高尔夫球杆,同年,美国的G.Brewer采用CFRP(碳纤维增强复合材料)制成球杆,此后,为了适应球的飞行距离和方向稳定性要求,在重量、尺寸和负荷等方面加以改善。

现在

碳在地壳中的质量分数为0027%,在自然界中分布很广。以化合物形式存在的碳有煤、石油、天然气、动植物体、石灰石、白云石、二氧化碳等。

截止1998年底,在全球最大的化学文摘——美国化学文摘上登记的化合物总数为188百万种,其中绝大多数是碳的化合物。

众所周知,生命的基本单元氨基酸、核苷酸是以碳元素做骨架变化而来的。先是一节碳链一节碳链地接长,演变成为蛋白质和核酸;然后演化出原始的单细胞,又演化出虫、鱼、鸟、兽、猴子、猩猩、直至人类。这三四十亿年的生命交响乐,它的主旋律是碳的化学演变。可以说,没有碳,就没有生命。碳,是生命世界的栋梁之材。

纯净的、单质状态的碳有三种,它们是金刚石、石墨、C60。它们是碳的三种同素异形体。 金刚石晶莹美丽,光彩夺目,是自然界最硬的矿石。在所有物质中,它的硬度最大。测定物质硬度的刻画法规定,以金刚石的硬度为10来度量其它物质的硬度。例如Cr的硬度为9、Fe为45、Pb为15、钠为04等。在所有单质中,它的熔点最高,达3823K。

金刚石晶体属立方晶系,是典型的原子晶体,每个碳原子都以sp3杂化轨道与另外四个碳原子形成共价键,构成正四面体。这是金刚石的面心立方晶胞的结构。

由于金刚石晶体中C─C键很强,所有价电子都参与了共价键的形成,晶体中没有自由电子,所以金刚石不仅硬度大,熔点高,而且不导电。

室温下,金刚石对所有的化学试剂都显惰性,但在空气中加热到1100K左右时能燃烧成CO2。

金刚石俗称钻石,除用作装饰品外,主要用于制造钻探用的钻头和磨削工具,是重要的现代工业原料,价格十分昂贵。 石墨乌黑柔软,是世界上最软的矿石。石墨的密度比金刚石小,熔点比金刚石仅低50K,为3773K。

在石墨晶体中,碳原子以sp2杂化轨道和邻近的三个碳原子形成共价单键,构成六角平面的网状结构,这些网状结构又连成片层结构。层中每个碳原子均剩余一个未参加sp2杂化的p轨道,其中有一个未成对的p电子,同一层中这种碳原子中的m电子形成一个m中心m电子的大∏键(键)。这些离域电子可以在整个儿碳原子平面层中活动,所以石墨具有层向的良好导电导热性质。

石墨的层与层之间是以分子间力结合起来的,因此石墨容易沿着与层平行的方向滑动、裂开。石墨质软具有润滑性。

由于石墨层中有自由的电子存在,石墨的化学性质比金刚石稍显活泼。

由于石墨能导电,有具有化学惰性,耐高温,易于成型和机械加工,所以石墨被大量用来制作电极、高温热电偶、坩埚、电刷、润滑剂和铅笔芯。 20世纪80年代中期,人们发现了碳元素的第三种同素异形体──C60。我们从以下三个方面介绍C60

1996年10月7日,瑞典皇家科学院决定把1996年诺贝尔化学奖授予Robert FCurl,Jr(美国)、Harold WKroto(英国)和Richard ESmalley(美国),以表彰他们发现C60。

1995年9月初,在美国得克萨斯州Rice大学的Smalley实验室里,Kroto等为了模拟N型红巨星附近大气中的碳原子簇的形成过程,进行了石墨的激光气化实验。他们从所得的质谱图中发现存在一系列由偶数个碳原子所形成的分子,其中有一个比其它峰强度大20~25倍的峰,此峰的质量数对应于由60个碳原子所形成的分子。

C60分子是以什么样的结构而能稳定呢?层状的石墨和四面体结构的金刚石是碳的两种稳定存在形式,当60个碳原子以它们中的任何一种形式排列时,都会存在许多悬键,就会非常活泼,就不会显示出如此稳定的质谱信号。这就说明C60分子具有与石墨和金刚石完全不同的结构。由于受到建筑学家Buckminster Fuller用五边形和六边形构成的拱形圆顶建筑的启发,Kroto等认为C60是由60个碳原子组成的球形32面体,即由12个五边形和20个六边形组成,只有这样C60分子才不存在悬键。

在C60分子中,每个碳原子以sp2杂化轨道与相邻的三个碳原子相连,剩余的未参加杂化的一个p轨道在C60球壳的外围和内腔形成球面大∏键,从而具有芳香性。为了纪念Fuller,他们提出用Buckminsterfullerene来命名C60,后来又将包括C60在内的所有含偶数个碳所形成的分子通称为Fuller,中译名为富勒烯

碳六十的制备

用纯石墨作电极,在氦气氛中放电,电弧中产生的烟炱沉积在水冷反应器的内壁上,这种烟炱中存在着C60、C70等碳原子簇的混合物。

用萃取法从烟炱中分离提纯富勒烯,将烟炱放入索氏(Soxhlet)提取器中,用甲苯或苯提取,提取液中的主要成分是C60和C70,以及少量C84和C78。再用液相色谱分离法对提取液进行分离,就能得到纯净的C60溶液。C60溶液是紫红色的,蒸发掉溶剂就能得到深红色的C60微晶。

碳六十的用途

从C60被发现的短短的十多年以来,富勒烯已经广泛地影响到物理学、化学、材料学、电子学、生物学、医药学各个领域,极大地丰富和提高了科学理论,同时也显示出有巨大的潜在应用前景。

据报道,对C60分子进行掺杂,使C60分子在其笼内或笼外俘获其它原子或集团,形成类C60的衍生物。例如C60F60,就是对C60分子充分氟化,给C60球面加上氟原子,把C60球壳中的所有电子“锁住”,使它们不与其它分子结合,因此C60F60表现出不容易粘在其它物质上,其润滑性比C60要好,可做超级耐高温的润滑剂,被视为“分子滚珠”。再如,把K、Cs、Tl等金属原子掺进C60分子的笼内,就能使其具有超导性能。用这种材料制成的电机,只要很少电量就能使转子不停地转动。再有C60H60这些相对分子质量很大地碳氢化合物热值极高,可做火箭的燃料。等等。

一碗白米饭的碳水含量

一碗白米饭的碳水含量,米饭是我们中国人饭桌上必不可少的一种主食,但是现在很多减肥的人是不吃米饭的,因为他们觉得米饭的碳水含量很高,那么一碗白米饭的碳水含量是多少呢?

一碗白米饭的碳水含量1

100g米饭的碳水化合物含量是263g,一碗米饭的重量大概为150g,碳水化合物的含量是40g。但是米饭的热量也比较高,每100克米饭之中含有170大卡的热量,摄入过多容易引发肥胖,所以建议不要吃太多。

米饭中的碳水化合物含量达到70%,摄入体内之后这些碳水化合物容易转变成糖分,容易升高血糖,所以糖尿病的患者不建议吃太多的米饭。

除了碳水化合物以外,米饭之中还含有少量的蛋白质、脂肪和钠离子、铜离子等矿物质。摄入体内可以增强人体的免疫力,平衡体内的离子水平。

3种粗杂粮代替米饭:

1、各种豆类食物

常见的红豆、黄豆、黑豆、绿豆等豆类食物,含有丰富的碳水外,还含有大量的蛋白跟维生素,饱腹感比米饭强多了。煮饭的时候,可以抓一把豆类食物一起蒸熟,做到粗细粮食搭配,营养更均衡,促进身体肠胃的蠕动,抑制血糖上升速度,提高减肥速度。

2、各种薯类食物

平时常见的红薯、土豆、淮山等食物,都属于薯类食物,不属于蔬菜,这些薯类食物可以替代米饭,充当主食。

如果你把薯类食物当成蔬菜,吃了米饭的同时还吃土豆跟淮山,就容易导致碳水摄入量超标,血糖上升引发肥胖。而单纯用薯类食物替代主食,饱腹感会很强,可以降低对其他食物的欲望,控制热量摄入,同时抑制脂肪的生成,帮助减肥。

3、糙米、小米、薏米、燕麦等粗粮

这些粗粮加工次数比较少,含有多种矿物质跟维生素,饱腹感强于米饭,有助于控制血糖,降低体重。这些粗粮跟米饭的比例为1:1,粗细结合营养最好,可以做成粗粮粥,补充身体所需多种营养,有助于减肥。

一碗白米饭的碳水含量2

一碗白米饭的热量是可以达到232大卡的,对于我们减肥是没有影响的,我们不需要刻意的不吃米饭,可以少吃,保证身体每天所需的最低热量。

米饭的热量主要来源于淀粉的水解,如果吃太多米饭,那么是很容易会引起肥胖的,然而,大家想要减肥可以通过运动的方法以及控制自己的饮食问题。

一碗米饭约232大卡热量。

由于各家用的大米品种不尽相同,米粒涨发情况不同,偏爱吃米饭的软硬不同,所以加的水多少不同,因此用蒸好的米饭称重来计算热量是不太准,或不太有普遍意义的,用生米计算才相对准确。

很多营养食谱里介绍一碗白米饭的热量是300千卡,《中国食物成分表》(2009版)中100克(二两)蒸米饭的平均热量是116千卡。

米饭1碗(瓷碗)大约200克。食物包装上标500kj,但这是能量,要换算成卡路里,所以要除以4184,即500/4184=1195大卡,这就是它的卡路里。

1千卡=1大卡=1卡,=4184焦耳

千卡=卡=大卡

1千卡=1000卡

千焦是能量单位,卡是热量单位,所以要换算:

1千卡/1大卡/1卡=4184千焦(kJ)

比如,食物包装上标500kj(这是能量,要换算成卡路里,所以要除以4184,=1195大卡,这就是它的卡路里)

食物包装上标的是能量单位,(如果后面是kj),那就都要除以4184,

如果后面是kcal,那就不需要除以4184了,因为这已经是卡路里的单位

米饭1碗(瓷碗)(200克)232大卡(一般家里的碗,盛的米饭200克约232大卡)

米饭1盒(快餐饭盒)(300克,满满一盒,与餐盒高度齐平,压的紧紧的348卡)

米饭的营养素含量(每100克):热量(大卡)11600碳水化合物(克)2590

脂肪(克)030蛋白质(克)260

100克米饭约满满3汤勺(吃混沌的白陶瓷汤勺),下面有图(盘子重量已去)

所以,家里的碗一碗饭约232大卡(最多),中午和晚上各1碗饭才400多大卡,再加吃的菜,中午和晚上总共1000大卡多点,加上早上早点的热量,白天再吃点水果,达到1500大卡左右是正常,也是肯定的(减肥这样吃也不会胖,只要你多运动了!)

人正常吃饭每天需要的热量女性1700大卡左右男性最少2000大卡左右

一碗白米饭的碳水含量3

米饭中的碳水化合物含量高达70%。米饭中除了含有碳水化合物以外,还含有人体必需的淀粉、蛋白质、脂肪、维生素B1、烟酸、维生素C及钙、铁等营养成分,可以提供人体所需的营养、热量。

米饭碳水化合物含量

碳水化合物是由碳、氢、氧组成的,因为它含有2:1的氢氧比,与水一样,所以被称为碳水化合物。

一般来说,食物中的碳水化合物被分为了两类,一种是人们可以吸收和使用有效的碳水化合物,如单糖、双糖、多糖,还有一种是无效的碳水化合物,如纤维素。

碳水化合物是生命细胞结构的主要成分及主要供能物质,并且具有调节细胞活动的重要功能,是我们身体所需热量的主要来源之一。

因为米饭的种类不同,碳水化合物比例也不同,一般,100克大米大约是79克的碳水化合物,这样来说,普通陶瓷碗米饭大约是79克。

一碗米饭没有有200克,一碗米100g等于二两;200克有两小碗米饭。“斤”“公斤”之类的单位在物理上来讲明显属于重量单位,而决不是质量单位,请搞清质量和重量的区别。

扩展资料

一般说来,对碳水化合物没有特定的饮食要求。应该从碳水化合物中获得合理比例的热量摄入。另外,每天应至少摄入50~100克可消化的碳水化合物以预防碳水化合物缺乏症。

重量单位,有着悠久的历史,在古代,各国就有自己的计量单位,中国古代的重量单位,钧:三十斤是一钧;十圭重一铢,二十四铢重一两,十六两重一斤。我国有特定的计量单位斤,国际的计量单位千克、吨,美国英国的磅等等。斤:国际标准单位中没有“斤”,这是我国的一个单位。

糖和碳水化合物的区别是:来源不同碳水化合物。主要来源于人们日常所食用的谷物类、蔬菜、水果等,糖主要来源于蜂蜜、多含淀粉食物等,碳水化合物是动物生命细胞结构的主要成分以及主要供能物质,具有调节细胞活动的重要功能,糖是直接供应人体能量的物质,主要为人体提供热能。

碳水化合物和糖的换算

1克碳水化合物是等于1克糖,但又不等于。这个原因其实很简单糖基本上是100%含量,而我们进场说的碳水化合物并不是纯碳水含量就拿馒头来说碳水的含量大概在65%左右,这样算下来绝对是不相等的。

有许多方法计算碳水化合物,食品包装上的食物营养标签会标明碳水化合物的克数,碳水化合物计算和食物组成成分书,这些资源可在互联网上发现。有些菜谱会提供营养信息。许多连锁餐厅,包括快餐店,提供表明食物营养成分的小册子。

碳60  碳60是灰黑色的固体除金刚石、石墨外,近年来,科学家们又发现了一些以新的单质形态存在的碳,其中比较重要的是1985年发现的C60C60是一种由60个碳原子构成的分子,形似足球目前,人们对C60的研究已经取得了很大的进展,将C60应用于超导体、材料科学等领域的探索正在不断地深入我国在这方面的研究也取得了重大的成果,如北京大学和中国科学院物理所合作,已成功地研制出了金属掺杂C60的超导体可以说,C60的发现,对于碳化学甚至整个化学领域的研究具有非常重要的意义

碳六十的发现和结构特点

1996年10月7日,瑞典皇家科学院决定把1996年诺贝尔化学奖授予Robert FCurl,Jr(美国)、Harold WKroto(英国)和Richard ESmalley(美国),以表彰他们发现C60

1995年9月初,在美国得克萨斯州Rice大学的Smalley实验室里,Kroto等为了模拟N型红巨星附近大气中的碳原子簇的形成过程,进行了石墨的激光气化实验他们从所得的质谱图中发现存在一系列由偶数个碳原子所形成的分子,其中有一个比其它峰强度大20~25倍的峰,此峰的质量数对应于由60个碳原子所形成的分子

C60分子是以什么样的结构而能稳定呢层状的石墨和四面体结构的金刚石是碳的两种稳定存在形式,当60个碳原子以它们中的任何一种形式排列时,都会存在许多悬键,就会非常活泼,就不会显示出如此稳定的质谱信号这就说明C60分子具有与石墨和金刚石完全不同的结构由于受到建筑学家Buckminster Fuller用五边形和六边形构成的拱形圆顶建筑的启发,Kroto等认为C60是由60个碳原子组成的球形32面体,即由12个五边形和20个六边形组成,只有这样C60分子才不存在双键

碳六十的制备

用纯石墨作电极,在氦气氛中放电,电弧中产生的烟炱沉积在水冷反应器的内壁上,这种烟炱中存在着C60、C70等碳原子簇的混合物

用萃取法从烟炱中分离提纯富勒烯,将烟炱放入索氏(Soxhlet)提取器中,用甲苯或苯提取,提取液中的主要成分是C60和C70,以及少量C84和C78再用液相色谱分离法对提取液进行分离,就能得到纯净的C60溶液C60溶液是紫红色的,蒸发掉溶剂就能得到深红色的C60微晶

碳六十的用途

从C60被发现的短短的十多年以来,富勒烯已经广泛地影响到物理学、化学、材料学、电子学、生物学、医药学各个领域,极大地丰富和提高了科学理论,同时也显示出有巨大的潜在应用前景

据报道,对C60分子进行掺杂,使C60分子在其笼内或笼外俘获其它原子或集团,形成类C60的衍生物例如C60F60,就是对C60分子充分氟化,给C60球面加上氟原子,把C60球壳中的所有电子“锁住”,使它们不与其它分子结合,因此C60F60表现出不容易粘在其它物质上,其润滑性比C60要好,可做超级耐高温的润滑剂,被视为“分子滚珠”再如,把K、Cs、Tl等金属原子掺进C60分子的笼内,就能使其具有超导性能用这种材料制成的电机,只要很少电量就能使转子不停地转动再有C60H60这些相对分子质量很大地碳氢化合物热值极高,可做火箭的燃料等等

·C60分子C60分子是一种由60个碳原子构成的分子,它形似足球,是一种很稳定的分子,主要应用于材料科学,超导体等方面金刚石、石墨、C60分子的结构示意图世人瞩目的足球烯-C60C60分子是一种由60个碳原子结合形成的稳定分子,它具有60个顶点和32个面,其中12个为正五边形,20个为正六边形,它形似足球,因此又被称为足球烯足球烯是美国休斯顿赖斯大学的克罗脱(Kroto,HW)和史沫莱(Smalley,RE)等人于1985年提出的,他们用大功率激光束轰击石墨使其气化,用1MPa压强的氦气产生超声波,使被激光束气化的碳原子通过一个小喷嘴进入真空膨胀,并迅速冷却形成新的碳原子,从而得到了C60C60的组成及结构已经被质谱,X射线分析等实验证明此外,还有C70等许多类似C60分子也已被相继发现1991年,科学家们发现,C60中掺以少量某些金属后具有超导性,且这种材料的制作工艺比制作传统的超导材料——陶瓷要简单,质地又十分坚硬,所以人们预言C60在超导材料领域具有广阔的应用前景碳60分子俗称布基球,由60个碳原子构成,它们组成一个笼状结构这一分子于1985年被发现后因它具有特殊性质,一直是化学家们的热门研究对象

碳是一种非金属元素,位于元素周期表的第二周期IVA族。它的化学符号是C,它的原子序数是6,电子构型为[He]2s22p2。碳是一种很常见的元素,它以多种形式广泛存在于大气和地壳之中。碳单质很早就被人认识和利用,碳的一系列化合物——有机物更是生命的根本。

原子体积:(立方厘米/摩尔)

458

元素在太阳中的含量:(ppm)

3000

元素在海水中的含量:(ppm)

太平洋表面 23

地壳中含量:(ppm)

480

拉丁语为Carbonium,意为“煤,木炭”。汉字“碳”字由木炭的“炭”字加表固体非金属元素的石字旁构成,从 炭字音。

性状

碳单质通常是无臭无味的固体。单质碳的物理和化学性质取决于它的晶体结构,外观、密度、熔点等各自不同。 碳的单质已知以多种同素异形体的形式存在:

石墨

莫氏硬度:石墨1-2 金刚石 10

金刚石

氧化态:

Main C-4, C+2, C+4

Other

化学键能: (kJ /mol)

C-H 411

C-C 348

C=C 614

C≡C 839

C=N 615

C≡N 891

C=O 745

C≡O 1074

热导率: W/(m·K)

(graphite) 119-165

晶胞参数:

a = 2464 pm

b = 2464 pm

c = 6711 pm

α = 90°

β = 90°

γ = 120°

电离能 (kJ/ mol)

M - M+ 10862

M+ - M2+ 2352

M2+ - M3+ 4620

M3+ - M4+ 6222

M4+ - M5+ 37827

M5+ - M6+ 47270

富勒烯(Fullerenes,也被称为巴基球)

无定形碳(Amorphous,不是真的异形体,内部结构是石墨)

碳纳米管(Carbon nanotube)

六方金刚石(Lonsdaleite,与金刚石有相同的键型,但原子以六边形排列,也被称为六角金刚石)

赵石墨(Chaoite,石墨与陨石碰撞时产生,具有六边形图案的原子排列)

汞黝矿结构(Schwarzite,由于有七边形的出现,六边形层被扭曲到“负曲率”鞍形中的假想结构)

纤维碳(Filamentous carbon,小片堆成长链而形成的纤维)

碳气凝胶(Carbon aerogels,密度极小的多孔结构,类似于熟知的硅气凝胶)

碳纳米泡沫(Carbon nanofoam,蛛网状,有分形结构,密度是碳气凝胶的百分之一,有铁磁性)

最常见的两种单质是高硬度的金刚石和柔软滑腻的石墨,它们晶体结构和键型都不同。金刚石每个碳都是四面体4配位,类似脂肪族化合物;石墨每个碳都是三角形3配位,可以看作无限个苯环稠合起来。

常温下单质碳的化学性质比较稳定,不溶于水、稀酸、稀碱和有机溶剂。

同位素

目前已知的同位素共有十二种,有碳8至碳19,其中碳12和碳13属稳定型,其余的均带放射性,当中碳14的半衰期长达五千多年,其他的均全不足半小时。

在地球的自然界里,碳12在所有碳的含量占9893%,碳13则有107%。C的原子量取碳12、13两种同位素丰度加权的平均值,一般计算时取1201。

碳12是国际单位制中定义摩尔的尺度,以12克碳12中含有的原子数为1摩尔。碳14由于具有较长的半衰期,被广泛用来测定古物的年代。

成键

碳原子一般是四价的,这就需要4个单电子,但是其基态只有2个单电子,所以成键时总是要进行杂化。最常见的杂化方式是sp3杂化,4个价电子被充分利用,平均分布在4个轨道里,属于等性杂化。这种结构完全对称,成键以后是稳定的σ键,而且没有孤电子对的排斥,非常稳定。金刚石中所有碳原子都是这种以此种杂化方式成键。烷烃的碳原子也属于此类。

根据需要,碳原子也可以进行sp2或sp杂化。这两种方式出现在成重键的情况下,未经杂化的p轨道垂直于杂化轨道,与邻原子的p轨道成π键。烯烃中与双键相连的碳原子为sp 2杂化。

由于sp2杂化可以使原子共面,当出现多个双键时,垂直于分子平面的所有p轨道就有可能互相重叠形成共轭体系。苯是最典型的共轭体系,它已经失去了双键的一些性质。石墨中所有的碳原子都处于一个大的共轭体系中,每一个片层有一个。

化合物

碳的化合物中,只有以下化合物属于无机物:

碳的氧化物、硫化物:一氧化碳(CO)、二氧化碳(CO2)、二硫化碳(CS2)、碳酸盐、碳酸氢盐、氰一系列拟卤素及其拟卤化物、拟卤酸盐:氰(CN)2、氧氰,硫氰。

其它含碳化合物都是有机化合物。由于碳原子形成的键都比较稳定,有机化合物中碳的个数、排列以及取代基的种类、位置都具有高度的随意性,因此造成了有机物数量极其繁多这一现象,目前人类发现的化合物中有机物占绝大多数。有机物的性质与无机物大不相同,它们一般可燃、不易溶于水,反应机理复杂,现已形成一门独立的分科 有机化学。

分布

碳存在于自然界中(如以金刚石和石墨形式),是煤、石油、沥青、石灰石和其它碳酸盐以及一切有机化合物的最主要的成分,在地壳中的含量约0027%。碳是占生物体干重比例最多的一种元素。碳还以二氧化碳的形式在地球上循环于大气层与平流层。

在大多数的天体及其大气层中都存在有碳。

发现

金刚石和石墨史前人类就已经知道。 富勒烯则于1985年被发现,此后又发现了一系列排列方式不同的碳单质。

同位素碳14由美国科学家马丁·卡门和塞缪尔·鲁宾于1940年发现。

单质的精炼

金刚石

金刚石即钻石可以找到集中的块状矿藏,开采出来时一般都有杂质。用另外的钻石粉末将杂质削去,并打磨成形,即得成品。一般在切削、打磨过程中要损耗掉一半的质量。

石墨

用途

在工业上和医药上,碳和它的化合物用途极为广泛。

测量古物中碳14的含量,可以得知其年代,这叫做碳14断代法。

石墨可以直接用作炭笔,也可以与粘土按一定比例混合做成不同硬度的铅芯。金刚石除了装饰之外,还可使切削用具更锋利。无定形碳由于具有极大的表面积,被用来吸收毒气、废气。富勒烯和碳纳米管则对纳米技术极为有用。

碳是生铁、熟铁和钢的成分之一,在生铁中的质量分数为2%~43%,在钢中的质量分数为003%~2%。

碳能在化学上自我结合而形成大量化合物,在生物上和商业上是重要的分子。生物体内大多数分子都含有碳元素。碳化合物一般从化石燃料中获得,然后再分离并进一步合成出各种生产生活所需的产品,如乙烯、塑料等。

理化特性

总体特性

元素名称:碳

元素符号:C

元素类型:非金属

元素原子量:12.01

质子数:6

中子数:7

原子序数:6

所属周期:2

所属族数:IVA

电子层分布:2-4

密度、硬度 密度为3513 g/cm3(金刚石)、2260 g/cm3(石墨)(20 ℃)、

05 (石墨)

100 (钻石)

颜色和外表 黑色(石墨)

无色(钻石)

地壳含量 无数据

原子属性

原子量 120107 原子量单位

原子半径(计算值) 70(67)pm

共价半径 77 pm

范德华半径 170 pm

电子构型 [氦]2s22p2

电子在每能级的排布 2,4

氧化价(氧化物) 4,3,2(弱酸性)

晶体结构 六方(石墨)

立方(钻石)

物理属性

物质状态 固态(反磁性)

熔点 熔点约为3 550 ℃(金刚石)

沸点 沸点约为4 827 ℃(升华)

摩尔体积 529×10-6m3/mol

汽化热 3558 kJ/mol(升华)

熔化热 无数据(升华)

蒸气压 0 帕

声速 18350 m/s

其他性质

电负性 255(鲍林标度)

比热 710 J/(kg·K)

电导率 0061×10-6/(米欧姆)

热导率 129 W/(m·K)

第一电离能 10865 kJ/mol

第二电离能 23526 kJ/mol

第三电离能 46205 kJ/mol

第四电离能 62227 kJ/mol

第五电离能 37831 kJ/mol

第六电离能 472770 kJ/mol

最稳定的同位素

同位素 丰度 半衰期 衰变模式 衰变能量

MeV 衰变产物

12C 989 % 稳定

13C 11 % 稳定

14C 微量 5730年 β衰变 0156 14N

在没有特别注明的情况下使用的是

国际标准基准单位单位和标准气温和气压

碳,原子序数6,原子量12011。元素名来源拉丁文,原意是“炭”。碳是自然界中分布很广的元素之一,在地壳中的含量约027%。碳的存在形式是多种多样的,有晶态单质碳如金刚石、石墨;有无定形碳如煤;有复杂的有机化合物如动植物等;碳酸盐如大理石等。

单质碳的物理和化学性质取决于它的晶体结构。高硬度的金刚石和柔软滑腻的石墨晶体结构不同,各有各的外观、密度、熔点等。

常温下单质碳的化学性质比较稳定,不溶于水、稀酸、稀碱和有机溶剂;不同高温下与氧反应,生成二氧化碳或一氧化碳;在卤素中只有氟能与单质碳直接反应;在加热下,单质碳较易被酸氧化;在高温下,碳还能与许多金属反应,生成金属碳化物。

碳的英文名称来自于拉丁语“carbo”(木炭)一词。由于碳元素在自然界天然存在,它是人类最早认识的化学元素之一。它与铁、硫、铜、银、锡、锑、金、汞、铅等都是古代人早就认识到的化学元素。碳元素是自然界中分布最为广泛的基础元素之一。自然界中以游离状态存在的碳有金刚石、石墨和煤。碳元素的发现与确认,经历了漫长艰苦的历程,是科学技术发展史上的一项重要成就。北京周口店地区遗址就有单质碳的存在,时间可以上溯到大约50万年以前。从新石器时代人类开始制造陶器起,炭黑就被用来作为黑色颜料制造黑陶。战国时代(公元前403一前221年)我国就已用木炭炼铁。随着冶金业的发展,人们在寻找比木炭更廉价的燃料时,找到了煤。据《汉书·地理志》记载:“豫章郡(现今江西省南昌市附近)出石,可燃为薪。”汉代文献《盐铁论》日:“故盐冶之大业,皆依山川,近铁炭。”中国考古工作者在山东平陵县汉初冶铁遗址中发现了煤块,说明中国汉朝初期,即公元前200年就已用煤炼铁了。碳的汉字来自于“炭”。因我国古时称煤为“炭”,遂造为“碳”。到19世纪初,科学家们发现,碳元素是组成生物体最基本的元素。

 请选择搜索范围 企业目录 产品目录 二手设备 求购信息 备品备件 行业资讯 行业论文 技术专利 行业标准 行业书籍 企业招聘 人才资源 友情链接 企业管理 行业论坛   会员注册 | 二级域名申请 | 我能做什么 | 网站说明书 | 协议书下载 | 广告预定 | 企业邮局 | 标准库 | 关于我们  

免费法律咨询   

首页  企业目录  产品目录  求购信息  二手设备  备品备件  行业资讯  行业论文  行业标准  技术专利  企业管理  行业书库  人才招聘  专家介绍  技术交流  友情链接  我的交易区  

 

技术交流首页 | 登录 | 用户注册 | 今日新帖 | 搜索 | 我的收藏夹 | 插件: 万年历 | 杭州公交线路查询  

您当前的位置: 中国气体分离设备商务网 → 技术交流 --> 工业气体在国民经济中的应用专题系列讲座 --> 帖子:“碳元素的介绍” 

收藏此帖 

帖子主题:碳元素的介绍 

楼主:shaoys [2006-3-18 下午 02:49:53]        

 

 碳元素的介绍  

  

     碳,CARBON,源自carbo,也就是木炭,这种物质发现得很早,上图显示出它的三种自然形式:钻石、炭和石黑。碳的无数化合物是我们日常生活中不可缺少的物质,产品从尼龙和汽油、香水和塑料,一直到鞋油、滴滴涕和炸药等,范围广泛种类繁多。

 

碳的发现简史

碳可以说是人类接触到的最早的元素之一,也是人类利用得最早的元素之一。自从人类在地球上出现以后,就和碳有了接触,由于闪电使木材燃烧后残留下来木炭,动物被烧死以后,便会剩下骨碳,人类在学会了怎样引火以后,碳就成为人类永久的“伙伴”了,所以碳是古代就已经知道的元素。发现碳的精确日期是不可能查清楚的,但从拉瓦锡(Lavoisier A L 1743—1794法国)1789年编制的《元素表》中可以看出,碳是作为元素出现的。碳在古代的燃素理论的发展过程中起了重要的作用,根据这种理论,碳不是一种元素而是一种纯粹的燃素,由于研究煤和其它化学物质的燃烧,拉瓦锡首先指出碳是一种元素。

碳在自然界中存在有三种同素异形体——金刚石、石墨、C60。金刚石和石墨早已被人们所知,拉瓦锡做了燃烧金刚石和石墨的实验后,确定这两种物质燃烧都产生了CO2,因而得出结论,即金刚石和石墨中含有相同的“基础”,称为碳。正是拉瓦锡首先把碳列入元素周期表中。C60是1985年由美国休斯顿赖斯大学的化学家哈里可劳特等人发现的,它是由60个碳原子组成的一种球状的稳定的碳分子,是金刚石和石墨之后的碳的第三种同素异形体。

碳元素的拉丁文名称Carbonium来自Carbon一词,就是“煤”的意思,它首次出现在1787年由拉瓦锡等人编著的《化学命名法》一书中。碳的英文名称是Corbon。

碳单质

 碳在地壳中的质量分数为0027%,在自然界中分布很广。以化合物形式存在的碳有煤、石油、天然气、动植物体、石灰石、白云石、二氧化碳等。

截止1998年底,在全球最大的化学文摘——美国化学文摘上登记的化合物总数为188百万种,其中绝大多数是碳的化合物。

众所周知,生命的基本单元氨基酸、核苷酸是以碳元素做骨架变化而来的。先是一节碳链一节碳链地接长,演变成为蛋白质和核酸;然后演化出原始的单细胞,又演化出虫、鱼、鸟、兽、猴子、猩猩、直至人类。这三四十亿年的生命交响乐,它的主旋律是碳的化学演变。可以说,没有碳,就没有生命。碳,是生命世界的栋梁之材。

纯净的、单质状态的碳有三种,它们是金刚石、石墨、C60。它们是碳的三种同素异形体。

金刚石

石墨

碳六十

 

金刚石

 

金刚石晶莹美丽,光彩夺目,是自然界最硬的矿石。在所有物质中,它的硬度最大。测定物质硬度的刻画法规定,以金刚石的硬度为10来度量其它物质的硬度。例如Cr的硬度为9、Fe为45、Pb为15、钠为04等。在所有单质中,它的熔点最高,达3823K。

金刚石晶体属立方晶系,是典型的原子晶体,每个碳原子都以sp3杂化轨道与另外四个碳原子形成共价键,构成正四面体。这是金刚石的面心立方晶胞的结构。

由于金刚石晶体中C—C键很强,所有价电子都参与了共价键的形成,晶体中没有自由电子,所以金刚石不仅硬度大,熔点高,而且不导电。

室温下,金刚石对所有的化学试剂都显惰性,但在空气中加热到1100K左右时能燃烧成CO2。

金刚石俗称钻石,除用作装饰品外,主要用于制造钻探用的钻头和磨削工具,是重要的现代工业原料,价格十分昂贵。

 

石墨

 

石墨乌黑柔软,是世界上最软的矿石。石墨的密度比金刚石小,熔点比金刚石仅低50K,为3773K。

在石墨晶体中,碳原子以sp2杂化轨道和邻近的三个碳原子形成共价单键,构成六角平面的网状结构,这些网状结构又连成片层结构。层中每个碳原子均剩余一个未参加sp2杂化的p轨道,其中有一个未成对的p电子,同一层中这种碳原子中的m电子形成一个m中心m电子的大∏键(键)。这些离域电子可以在整个儿碳原子平面层中活动,所以石墨具有层向的良好导电导热性质。

石墨的层与层之间是以分子间力结合起来的,因此石墨容易沿着与层平行的方向滑动、裂开。石墨质软具有润滑性。

由于石墨层中有自由的电子存在,石墨的化学性质比金刚石稍显活泼。

由于石墨能导电,有具有化学惰性,耐高温,易于成型和机械加工,所以石墨被大量用来制作电极、高温热电偶、坩埚、电刷、润滑剂和铅笔芯。

 

碳六十

 

20世纪80年代中期,人们发现了碳元素的第三种同素异形体——C60。我们从以下三个方面介绍C60

碳六十的发现和结构特点

碳六十的制备

碳六十的用途

 

碳六十的发现和结构特点

 

1996年10月7日,瑞典皇家科学院决定把1996年诺贝尔化学奖授予Robert FCurl,Jr(美国)、Harold WKroto(英国)和Richard ESmalley(美国),以表彰他们发现C60。

1995年9月初,在美国得克萨斯州Rice大学的Smalley实验室里,Kroto等为了模拟N型红巨星附近大气中的碳原子簇的形成过程,进行了石墨的激光气化实验。他们从所得的质谱图中发现存在一系列由偶数个碳原子所形成的分子,其中有一个比其它峰强度大20~25倍的峰,此峰的质量数对应于由60个碳原子所形成的分子。

C60分子是以什么样的结构而能稳定呢?层状的石墨和四面体结构的金刚石是碳的两种稳定存在形式,当60个碳原子以它们中的任何一种形式排列时,都会存在许多悬键,就会非常活泼,就不会显示出如此稳定的质谱信号。这就说明C60分子具有与石墨和金刚石完全不同的结构。由于受到建筑学家Buckminster Fuller用五边形和六边形构成的拱形圆顶建筑的启发,Kroto等认为C60是由60个碳原子组成的球形32面体,即由12个五边形和20个六边形组成,只有这样C60分子才不存在悬键。

在C60分子中,每个碳原子以sp2杂化轨道与相邻的三个碳原子相连,剩余的未参加杂化的一个p轨道在C60球壳的外围和内腔形成球面大∏键,从而具有芳香性。为了纪念Fuller,他们提出用Buckminsterfullerene来命名C60,后来又将包括C60在内的所有含偶数个碳所形成的分子通称为Fuller,中译名为富勒烯。

 

碳六十的制备

用纯石墨作电极,在氦气氛中放电,电弧中产生的烟炱沉积在水冷反应器的内壁上,这种烟炱中存在着C60、C70等碳原子簇的混合物。

用萃取法从烟炱中分离提纯富勒烯,将烟炱放入索氏(Soxhlet)提取器中,用甲苯或苯提取,提取液中的主要成分是C60和C70,以及少量C84和C78。再用液相色谱分离法对提取液进行分离,就能得到纯净的C60溶液。C60溶液是紫红色的,蒸发掉溶剂就能得到深红色的C60微晶。

 

碳六十的用途

从C60被发现的短短的十多年以来,富勒烯已经广泛地影响到物理学、化学、材料学、电子学、生物学、医药学各个领域,极大地丰富和提高了科学理论,同时也显示出有巨大的潜在应用前景。

据报道,对C60分子进行掺杂,使C60分子在其笼内或笼外俘获其它原子或集团,形成类C60的衍生物。例如C60F60,就是对C60分子充分氟化,给C60球面加上氟原子,把C60球壳中的所有电子“锁住”,使它们不与其它分子结合,因此C60F60表现出不容易粘在其它物质上,其润滑性比C60要好,可做超级耐高温的润滑剂,被视为“分子滚珠”。再如,把K、Cs、Tl等金属原子掺进C60分子的笼内,就能使其具有超导性能。用这种材料制成的电机,只要很少电量就能使转子不停地转动。再有C60H60这些相对分子质量很大地碳氢化合物热值极高,可做火箭的燃料。等等。

碳的成键特征

 

碳在元素周期表中属第ⅣA族头一名元素,位于非金属性最强的卤素元素和金属性最强的碱金属之间。它的价电子层结构为2s22p2,在化学反应中它既不容易失去电子,也不容易得到电子,难以形成离子键,而是形成特有的共价键,它的最高共价数显然为4。

碳原子sp3杂化

碳原子sp2杂化

碳原子sp杂化-1

碳原子sp杂化-2

 

碳原子sp3杂化

 

碳原子的sp3杂化可以生成4个δ键,形成正四面体构型。例如金刚石、甲烷CH4、四氯化碳CCl4、乙烷C2H6等。

在甲烷分子中,C原子4个sp3杂化轨道与4个H原子生成4个δ共价键,分子构型为正四面体结构。

 

碳原子sp2杂化

 

碳原子的sp2杂化生成3个δ键,1个∏键,平面三角形构型。例如石墨、COCl2、C2H4、C6H6等。

在COCl2分子中,C原子以3个sp2杂化轨道分别与2个Cl原子和1个O原子各生成1个δ共价键外,它的未参加杂化的那个p轨道中的未成对的p电子O原子中的对称性相同的1个p轨道上的p电子生成了一个∏共价键,所以在C和O原子之间是共价双键,分子构型为平面三角形。

 

碳原子sp杂化-1

 

生成2个δ键、2个∏键,直线形构型。例如CO2、HCN、C2H2等。

在CO2分子中,C原子以2个sp杂化轨道分别与2个O原子生成2个δ共价键,它的2个未参加杂化的p轨道上的2个p电子分别与2个O原子的对称性相同的2个P轨道上的3个p电子形成2个三中心四电子的大∏键,所以CO2是2个双键。

在HCN分子中,C原子分别与H和N原子各生成1个δ共价键外,还与N原子生成了2个正常的∏共价键,所以在HCN分子中是一个单键,1个叁键。

 

碳原子sp杂化-2

 

生成1个δ键,1个∏键,1个配位∏键和1对孤对电子对,直线型构型。例如在CO分子中,C原子与O原子除了生成一个δ共价键和1个正常的∏共价键外,C原子的未参加杂化的1个空的p轨道可以接受来自O原子的一对孤电子对而形成一个配位∏键,所以CO分子中C与O之间是叁键,还有1对孤电子对。

碳原子不仅仅可以形成单键、双键和叁键,碳原子之间还可以形成长长的直链、环形链、支链等等。纵横交错,变幻无穷,再配合上氢、氧、硫、磷、和金属原子,就构成了种类繁多的碳化合物。

二氧化碳

 

CO2是无色、无臭的气体,在大气中约占003%,海洋中约占0014%,它还存在于火山喷射气和某些泉水中。地面上的CO2气主要来自煤、石油、天然气及其它含碳化合物的燃烧,碳酸钙矿石的分解,动物的呼吸以及发酵过程。当太阳光通过大气层的时候,CO2吸收波长13~17nm的红外线,如同给地球罩上一层硕大无比的塑料薄膜,留住温暖的红外线,不让它散失掉,使地球成为昼夜温差不太悬殊的温室。CO2的温室效应为生命提供了舒适的生活环境。它还为生命提供了基本的材料,它是绿色植物进行光和作用的原料。绿色植物每年通过光和作用,将大气里CO2含的15 000亿吨碳,变成纤维素、淀粉和蛋白质,并且放出O2气,供给动物和人类食用。

绿色植物一直维持着大气中O2和CO2的平衡,但近年来随着全世界工业的高速发展和由此带来的海洋污染,使大气中CO2越来越多,据估计每年约增加百万分之二到四。这被认为是对世界气温普遍升高有影响的一个重要因素。

关于CO2,我们从它的结构、性质和制备三个方面来介绍:

二氧化碳的结构

二氧化碳的性质

二氧化碳的制备

 

二氧化碳的结构

 

在CO2分子中,碳原子采用sp杂化轨道与氧原子成键。

 

C原子的两个sp杂化轨道分别与一个O原子生成两个δ键。C原子上两个未参加杂化的p轨道与sp杂化轨道成直角,并且从侧面同氧原子的p轨道分别肩并肩地发生重叠,生成两个∏三中心四电子的离域键。因此,缩短了碳—氧原子间地距离,使CO2中碳氧键具有一定程度的叁键特征。决定分子形状的是sp杂化轨道,CO2为直线型分子。

 

二氧化碳的性质

 

CO2分子没有极性,因此分子间作用力小,溶沸点低,键能大,原子间作用力强,分子具有很高的热稳定性。例如在2273K时CO2只有18%的分解:

CO2临界温度高,加压时易液化,液态CO2的汽化热很高,217K时为251kJ·mol-1。当液态CO2自由蒸发汽化时,一部分CO2被冷凝成雪花状的固体,这固体俗称“干冰”。它是分子晶体。在常压下,干冰不经熔化,于1945K时直接升华气化,因此常用来做制冷剂。

CO2是酸性氧化物,它能与碱反应。工业上,纯碱Na2CO3、小苏打NaHCO3、碳酸氢氨NH4HCO3、铅白颜料Pb(OH)22PbCO3、啤酒、饮料、干冰等生产中都要食用大量的CO2。

一般讲,CO2不助燃,空气中含CO2量达到25%时,火焰就会熄灭。所以CO2是目前大量使用的灭火剂。但着火的镁条在CO2气中能继续燃烧,说明CO2不助燃也是相对的:

CO2不活泼,但在高温下能与碳或活泼的金属镁、铅等反应:

CO2虽然无毒,但若在空气中的含量过高,也会使人因为缺氧而发生窒息的危险。人进入地窖时应手持燃着的蜡烛,若烛灭,表示窖内CO2浓度过高,暂不宜进入。

 

二氧化碳的制备

 

在工业上可利用煅烧石灰石生产石灰以及通过酿造工业而得到大量的CO2副产物。

在实验室中则常用碳酸盐和盐酸作用来制备CO2:

一氧化碳

 

CO也是一种无色、无臭的气体,我们介绍它的结构、性质和制备方法。

CO的结构

CO的性质

CO的制备

 

CO的结构

 

按照杂化轨道理论,在CO分子中,碳原子采取sp杂化与氧原子成键。

 

C原子的2个p电子可与O原子的2个成单的p电子形成一个δ键和一个∏键,O原子上的成对的p电子还可以与C原子上的一个空的2p轨道形成一个配位键。(配位键定义:由一个原子提供电子对为两个原子所共用而形成的共价键,称为配位键)。用←表示配键,箭头指向接受电子对的原子,此处即成键的一对电子是O原子单独提供的,C原子提供空轨道接受电子。其结构式可表示为:

 

按照分子轨道理论,从CO分子的分子轨道能级图可以看出,C原子核外有4个价电子,其电子结构式为2s22p2;O原子核外有6个价电子,其电子结构式为2s22p4,由于C和O原子的相应的原子轨道能量相近,互相重叠形成CO分子的分子轨道。CO分子的价键结构式可以表示为:

 

 

[1]式中的箭头表示由氧单方面提供一对电子为两个原子共用而形成的共价键,亦称为配位键。

[2]式中的表示∏配位键,两个圆点偏于一边,则表示这电子在原子状态时是在氧原子的轨道上,而在形成CO分子后,也还是比较靠近氧原子核的。

这种包含有配位键的三重键结构能够圆满地解释键能大、键长短、偶极矩几乎等于零的事实。如果没有配位键的话,CO应该是极性很强的分子,因为O原子的电负性要比C原子大得多,但是配位键的存在,使O原子略带正电荷,C原子略带负电荷,两种因素相互抵消,所以CO的偶极矩几乎等于零。

CO分子和N2分子中各有10个价电子,它们是等电子体,亦称为等电子分子。等电子分子轨道电子排布和成键情况及性质非常相似。

在CO分子中,因C原子略带负电荷,这个C原子比较容易向其它有空轨道的原子提供电子对形成配位键并生成许多羰基化合物。这也是CO分子的键能虽然比N2分子的大,而它却比较活泼的一个原因。

 

CO的性质

 

(1)、CO是一种很好的还原剂

在高温下,CO可以从许多金属氧化物中夺取氧,使金属还原。冶金工业中用焦碳作还原剂,实际上起重要作用的是CO:

在常温下,CO还能使一些化合物中的金属离子还原。例如:CO能使二氯化钯溶液、银氨溶液变黑,反应十分灵敏,可用于检测微量CO的存在:

CO是一种重要的配体它能与许多过渡金属加合生成金属羰基化合物。例如Fe(CO)5、Ni(CO)4和Cr(CO)6等。我们以Ni(CO)4为例来说明羰基化合物的成键特征。

在金属羰基化合物中,CO以C和金属相连。从CO的分子轨道能级图我们已经知道,CO一方面有非键电子对(孤电子对)可以给予金属原子的空轨道,形成δ配位键。另一方面,CO还有空的反键∏道可以接受金属原子的d电子对,与金属原子的d轨道重叠生成∏键。这种∏键是由金属原子单方面提供电子对到配位体(CO)的空轨道上,所以称为反馈键或配位∏键。反馈键正好可以减少由于生成δ配键引起的金属原子上过多的负电荷的积累。

在羰基化合物中,金属呈低氧化态,具有较多的价电子,有利于形成反馈键。如在Ni(CO)4中,Ni原子为零价,价电子为3d84s2,Ni原子采用sp3杂化轨道接受4个CO提供的非键电子对形成δ配位键。另外Ni原子上的d电子对反馈到CO的空的反键∏轨道上去,生成反馈键。由于δ配位键和反馈键两种成键作用是同时进行的,使金属与CO生成的羰基化合物具有很高的稳定性。

羰基化合物一般是剧毒的。CO对动物和人类的高度毒性亦产生于它的加合作用,它能与血液中的血红素(一种Fe的配合物)结合生成羰基化合物,使血液失去输送氧的作用,导致组织低氧症,如果血液中50%的血红素与CO结合,即可引起心肌坏死。空气中只要有1/800体积比的CO就能使人在半小时内死亡。(1aroman 、CO相当活泼它很容易同O、S、H以及卤素F2、Cl2、Br2相化合。

①CO能在空气中燃烧,生成CO2,并放出大量的热:

②CO与H2反应,可生成甲醇和某些有机化合物:

③CO与S反应,生成硫化碳酰:

④CO与卤素F2、Cl2、Br2反应,可以生成卤化碳酰,卤化碳酰很容易被水分解,并与氨作用生成尿素:

氯化碳酰又名“光气”,是极毒的。但它是以较大的量而生产的,用于制造甲苯二异氰酸酯,这是生产聚氨酯塑料的一种中间体。

 

CO的制备

 

实验室制备CO气体的方法:

(1)、甲酸滴加到热的浓硫酸中脱水:

(2)、将草酸晶体与浓硫酸共热:

使反应中产生的混合气体通过固体NaOH,吸收掉CO2而得到纯的CO气体。

工业上制备CO气体的方法:

工业上CO的主要来源为水煤气、发生炉煤气和煤气。

水煤气CO和H2的一种等分子混合物,是由空气和水蒸气交替地通入赤热的碳层时得到的:

发生炉煤气是CO和N2(CO占二分之一体积)的混合物,是由有限量的空气通过赤热的碳层时反应得到的:

煤气是CO、H2、CH4和CO2的一种混合物。水煤气、发生炉煤气和煤气都是重要的工业气体燃料。

 

碳酸和碳酸盐

 

CO2能溶于水生成碳酸H2CO3,碳酸是一种弱酸,仅存在于水溶液中,pH约等于4。

H2CO3为二元酸,必能生成两类盐:碳酸盐和碳酸氢盐。

 

C原子在这两种离子中均采取sp2杂化轨道与外来的4个电子生成四个键,离子为平面三角形。了解这两类盐在水中的溶解性、水解性和热稳定性很重要。

溶解性

水解性

热稳定性

 

溶解性

 

碳酸盐:铵和碱金属(Li除外)的碳酸盐易溶于水。其它金属的碳酸盐难溶于水。例如(NH4)2CO3、Na2CO3、K2CO3等易溶于水,CaCO3、MgCO3等难溶于水。

碳酸氢盐:对于难溶的碳酸盐来说,其相应的碳酸氢盐却有较大的溶解度。例如难溶的碳酸钙矿石在CO2和水的长期侵蚀下,可以部分地转变为Ca(HCO3)2而溶解:

对于易溶的碳酸盐来说,其相应的碳酸氢盐却有相对较低的溶解度。例如向浓的碳酸氨溶液通入CO2至饱和,便可沉淀出NH4HCO3,这是工业上生产碳铵肥料的基础。

溶解度的反常是由于HCO3-离子通过氢键形成双聚或多聚链状有关:

 

 

水解性

 

碱金属和铵的碳酸盐和碳酸氢盐在水溶液中均因水解而分别显强碱性和弱减性:

在金属盐类(碱金属和铵盐除外)溶液中加入 CO32-离子时,产物可能是碳酸盐、碱式碳酸盐或氢氧化物,究竟是哪种产物呢?一般来说:

(1)氢氧化物碱性较强的离子,即不水解的金属离子,可沉淀为碳酸盐。例如:

(2)氢氧化物碱性较弱的离子,如Cu2+、Zn2+、Pb2+、Mg2+等,其氢氧化物和碳酸盐的溶解度相差不多,则可沉淀为碱式碳酸盐。例如:

(3)强水解性的金属离子,特别是两性的,其氢氧化物的溶度积小的离子,如Al3+、Cr3+、Fe3+等,将沉淀为氢氧化物。例如:

因此碳酸钠、碳酸铵常用作金属离子的沉淀剂。

 

热稳定性

 

热不稳定性是碳酸盐的一个重要性质,一般来说,有下列热稳定性顺序:

碱金属的碳酸盐>碱土金属碳酸盐>副族元素和过渡元素的碳酸盐

在碱金属和碱土金属各族中,阳离子半径大的碳酸盐>阳离子半径小的碳酸盐。

碳酸盐受热分解的难易程度还与阳离子的极化作用有关。

欢迎分享,转载请注明来源:品搜搜测评网

原文地址:https://pinsoso.cn/meirong/2049572.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-11-06
下一篇2023-11-06

随机推荐

  • 化妆品公司有哪几家

    国际知名化妆品品牌前十名有:兰蔻、雅诗兰黛、迪奥、资生堂、倩碧、海蓝之谜、SK2、香奈儿、赫莲娜、伊丽莎白雅顿。一、兰蔻兰蔻1935年诞生于法国,是由Armand Petitjean(阿曼达·珀蒂让)创办的品牌。作为全球知名的高端化妆品品牌

    2024-04-15
    44100
  • 敏静臻颜肌底修护套盒功效

    敏静臻颜肌底修护套盒功效是补水,保湿,提亮肤色。敏静臻颜肌底修护套盒的产品规格是肌底修护冻干粉,肌底修护原液,肌底水养原液。产品成分是光果甘草、茶、母菊等提取物。产品功效是改善粗糙肌,深层渗透肌底,所有肌肤均可使用。敏静臻颜肌底修护套盒还能

    2024-04-15
    36900
  • 福州最好吃的牛排店

     几乎所有福州的西餐厅都会有牛排这一出品,到底哪家的牛排最美味,最能让人垂涎呢相信各位食客会有许多不同的声音,为了满足无数酷爱牛排的吃货之需,我特地为大家精心挑选了福州城中10家出品美味牛排的餐厅,快来看看吧。  福

    2024-04-15
    34100
  • 妮维雅润肤霜能涂脸吗

    通过了解就会发现,妮维雅是可以涂脸的,由于质地比较厚重,为此可以混合精华一起使用,而且能够更好的被面部所吸收,才能够更好的达到美白的效果。妮维雅润肤霜能涂脸吗的问题之所以被人们所重视,主要是更好的让肌肤保持水分,让肌肤的状态变得更加轻盈透亮

    2024-04-15
    35800
  • 呼吸罗马套盒和欧惠极致套盒哪个更好

    欧惠极致好。1、欧惠极致好用,是欧蕙家最高档次的一个系列,也是做的最出色,销量最多的套盒,而呼吸罗马套盒的销量少,因此是欧惠极致好。2、欧惠是LG的顶级产品,呼吸是LG的一线,比欧惠低一档,伊思的话也就是二线。因此事欧惠极致好。      

    2024-04-15
    28100
  • 用妮维雅爽肤水粉水的好还是蓝水的好

      这两种化妆水适合不同类型的肌肤,并没有好与不好的区别。  粉水比较柔和,适合干性肌肤,油性肌肤使用会比较油腻。蓝水较为清爽,适合油性及混合型肌肤,干性肌肤使用蓝水则滋润度不够。  干型肌肤选择化妆水的要点:干型肌肤一般角质层较薄,不宜选

    2024-04-15
    38200
  • 精华液和精华露有什么区别?

    精华液和精华露的区别在于质地、功效、适用人群等方面。1、质地:精华液的质地比较轻薄,适合油性和混合性皮肤;而精华露的质地比较厚重,适合干性皮肤。2、功效:精华液主要是为了滋润肌肤、改善肤色等;而精华露则是为了修复肌肤、提亮肤色、紧致肌肤等。

    2024-04-15
    35800

发表评论

登录后才能评论
保存