纳米丝是什么?

纳米丝是什么?,第1张

纳米是英文namometer的译音,是一个物理学上的度量单位,1纳米是1米的十亿分之一;相当于45个原子排列起来的长度。通俗一点说,相当于万分之一头发丝粗细。就象毫米、微米一样,纳米是一个尺度概念,并没有物理内涵。当物质到纳米尺度以后,大约是在1—100纳米这个范围空间,物质的性能就会发生突变,出现特殊性能。这种既具不同于原来组成的原子、分子,也不同于宏观的物质的特殊性能构成的材料,即为纳米材料。如果仅仅是尺度达到纳米,而没有特殊性能的材料,也不能叫纳米材料。过去,人们只注意原子、分子或者宇宙空间,常常忽略这个中间领域,而这个领域实际上大量存在于自然界,只是以前没有认识到这个尺度范围的性能。第一个真正认识到它的性能并引用纳米概念的是日本科学家,他们在20世纪70年代用蒸发法制备超微离子,并通过研究它的性能发现:一个导电、导热的铜、银导体做成纳米尺度以后,它就失去原来的性质,表现出既不导电、也不导热。磁性材料也是如此,象铁钴合金,把它做成大约20—30纳米大小,磁畴就变成单磁畴,它的磁性要比原来高1000倍。80年代中期,人们就正式把这类材料命名为纳米材料。

在充满生机的21世纪,信息、生物技术、能源、环境、先进制造技术和国防的高速发展必然对材料提出新的需求,元件的小型化、智能化、高集成、高密度存储和超快传输等对材料的尺寸要求越来越小;航空航天、新型军事装备及先进制造技术等对材料性能要求越来越高。新材料的创新,以及在此基础上诱发的新技术。新产品的创新是未来10年对社会发展、经济振兴、国力增强最有影响力的战略研究领域,纳米材料将是起重要作用的关键材料之一。纳米材料和纳米结构是当今新材料研究领域中最富有活力、对未来经济和社会发展有着十分重要影响的研究对象,也是纳米科技中最为活跃、最接近应用的重要组成部分。近年来,纳米材料和纳米结构取得了引人注目的成就。例如,存储密度达到每平方厘米400g的磁性纳米棒阵列的量子磁盘,成本低廉、发光频段可调的高效纳米阵列激光器,价格低廉高能量转化的纳米结构太阳能电池和热电转化元件,用作轨道炮道轨的耐烧蚀高强高韧纳米复合材料等的问世,充分显示了它在国民经济新型支柱产业和高技术领域应用的巨大潜力。正像美国科学家估计的“这种人们肉眼看不见的极微小的物质很可能给予各个领域带来一场革命”。纳米材料和纳米结构的应用将对如何调整国民经济支柱产业的布局、设计新产品、形成新的产业及改造传统产业注入高科技含量提供新的机遇。研究纳米材料和纳米结构的重要科学意义在于它开辟了人们认识自然的新层次,是知识创新的源泉。由于纳米结构单元的尺度(1~100urn)与物质中的许多特征长度,如电子的德布洛意波长、超导相干长度、隧穿势垒厚度、铁磁性临界尺寸相当,从而导致纳米材料和纳米结构的物理、化学特性既不同于微观的原子、分子,也不同于宏观物体,从而把人们探索自然、创造知识的能力延伸到介于宏观和微观物体之间的中间领域。在纳米领域发现新现象,认识新规律,提出新概念,建立新理论,为构筑纳米材料科学体系新框架奠定基础,也将极大丰富纳米物理和纳米化学等新领域的研究内涵。世纪之交高韧性纳米陶瓷、超强纳米金属等仍然是纳米材料领域重要的研究课题;纳米结构设计,异质、异相和不同性质的纳米基元(零维纳米微粒、一维纳米管、纳米棒和纳米丝)的组合。纳米尺度基元的表面修饰改性等形成了当今纳米材料研究新热点,人们可以有更多的自由度按自己的意愿合成具有特殊性能的新材料。利用新物性、新原理、新方法设计纳米结构原理性器件以及纳米复合传统材料改性正孕育着新的突破。 1研究形状和趋势纳米材料制备和应用研究中所产生的纳米技术很可能成为下一世纪前20年的主导技术,带动纳米产业的发展。世纪之交世界先进国家都从未来发展战略高度重新布局纳米材料研究,在千年交替的关键时刻,迎接新的挑战,抓紧纳米材料和柏米结构的立项,迅速组织科技人员围绕国家制定的目标进行研究是十分重要的。纳米材料诞生州多年来所取得的成就及对各个领域的影响和渗透一直引人注目。进入90年代,纳米材料研究的内涵不断扩大,领域逐渐拓宽。一个突出的特点是基础研究和应用研究的衔接十分紧密,实验室成果的转化速度之快出乎人们预料,基础研究和应用研究都取得了重要的进展。美国已成功地制备了晶粒为50urn的纳米cu材料,硬度比粗晶cu提高5倍;晶粒为7urn的pd,屈服应力比粗晶pd高5倍;具有高强度的金属间化合物的增塑问题一直引起人们的关注,晶粒的纳米化为解决这一问题带来了希望,根据纳米材料发展趋势以及它在对世纪高技术发展所占有的重要地位,世界发达国家的政府都在部署本来10~15年有关纳米科技研究规划。美国国家基金委员会(nsf)1998年把纳米功能材料的合成加工和应用作为重要基础研究项目向全国科技界招标;美国darpa(国家先进技术研究部)的几个计划里也把纳米科技作为重要研究对象;日本近年来制定了各种计划用于纳米科技的研究,例如 ogala计划、erato计划和量子功能器件的基本原理和器件利用的研究计划,1997年,纳米科技投资128亿美元;德国科研技术部帮助联邦政府制定了1995年到2010年15年发展纳米科技的计划;英国政府出巨资资助纳米科技的研究;1997年西欧投资12亿美元。据1999年7月8日《自然》最新报道,纳米材料应用潜力引起美国白宫的注意;美国总统克林顿亲自过问纳米材料和纳米技术的研究,决定加大投资,今后3年经费资助从25亿美元增加至5亿美元。这说明纳米材料和纳米结构的研究热潮在下一世纪相当长的一段时间内保持继续发展的势头。 2国际动态和发展战略 1999年7月8日《自然》(400卷)发布重要消息 题为“美国政府计划加大投资支持纳米技术的兴起”。在这篇文章里,报道了美国政府在3年内对纳米技术研究经费投入加倍,从25亿美元增加到5亿美元。克林顿总统明年2月将向国会提交支持纳米技术研究的议案请国会批准。为了加速美国纳米材料和技术的研究,白宫采取了临时紧急措施,把原197亿美元的资助强度提高到25亿美元。《美国商业周刊》8 月19日报道,美国政府决定把纳米技术研究列人21世纪前10年前11个关键领域之一,《美国商业周刊》在掌握21世纪可能取得重要突破的3个领域中就包括了纳米技术领域(其它两个为生命科学和生物技术,从外星球获得能源)。美国白宫之所以在20世纪即将结束的关键时刻突然对纳米材料和技术如此重视,其原因有两个方面:一是德科学技术部1996年对2010年纳米技术的市场做了预测,估计能达到14400亿美元,美国试图在这样一个诱人的市场中占有相当大的份额。美国基础研究的负责人威廉姆斯说:纳米技术本来的应用远远超过计算机工业。美国白宫战略规划办公室还认为纳米材料是纳米技术最为重要的组成部分。在《自然》的报道中还特别提到美国已在纳米结构组装体系和高比表面纳米颗粒制备与合成方面领导世界的潮流,在纳米功能涂层设计改性及纳米材料在生物技术中的应用与欧共体并列世界第一,纳米尺寸度的元器件和纳米固体也要与日本分庭抗礼。1999年7月,美国加尼福尼亚大学洛杉矾分校与惠普公司合作研制成功 100urn芯片,美国明尼苏达大学和普林斯顿大学于1998年制备成功量子磁盘,这种磁盘是由磁性纳米棒组成的纳米阵列体系,10bit/s尺寸的密度已达109bit/s,美国商家已组织有关人员迅速转化,预计2005年市场为400亿美元。1988年法国人首先发现了巨磁电阻效应,到1997年巨磁电阻为原理的纳米结构器件已在美国问世,在磁存储、磁记忆和计算机读写磁头将有重要的应用前景。最近美国柯达公司研究部成功地研究了一种即具有颜料又具有分子染料功能的新型纳米粉体,预计将给彩色印橡带来革命性的变革。纳米粉体材料在橡胶、颜料、陶瓷制品的改性等方面很可能给传统产业和产品注入新的高科技含量,在未来市场上占有重要的份额。纳米材料在医药方面的应用研究也使人瞩目,正是这些研究使美国白宫认识到纳米材料和技术将占有重要的战略地位。原因之二是纳米材料和技术领域是知识创新和技术创新的源泉,新的规律新原理的发现和新理论的建立给基础科学提供了新的机遇,美国计划在这个领域的基础研究独占“老大”的地位。 3国内研究进展我国纳米材料研究始于80年代末,“八五”期间,“纳米材料科学”列入国家攀登项目。国家自然科学基金委员会、中国科学院、国家教委分别组织了8项重大、重点项目,组织相关的科技人员分别在纳米材料各个分支领域开展工作,国家自然科学基金委员会还资助了20多项课题,国家“863”新材料主题也对纳米材料有关高科技创新的课题进行立项研究。1996年以后,纳米材料的应用研究出现了可喜的苗头,地方政府和部分企业家的介入,使我国纳米材料的研究进入了以基础研究带动应用研究的新局面。目前,我国有60多个研究小组,有600多人从事纳米材料的基础和应用研究,其中,承担国家重大基础研究项目的和纳米材料研究工作开展比较早的单位有:中国科学院上海硅酸盐研究所、南京大学。中国科学院固体物理研究所、金属研究所、物理研究所、中国科技大学、中国科学院化学研究所、清华大学,还有吉林大学、东北大学、西安交通大学、天津大学、青岛化工学院、华东师范大学,华东理工大学、浙江大学、中科院大连化学物理研究所、长春应用化学研究所、长春物理研究所、感光化学研究所等也相继开展了纳米材料的基础研究和应用研究。我国纳米材料基础研究在过去10年取得了令人瞩目的重要研究成果。已采用了多种物理、化学方法制备金属与合金(晶态、非晶态及纳米微晶)氧化物、氮化物、碳化物等化合物纳米粉体,建立了相应的设备,做到纳米微粒的尺寸可控,并制成了纳米薄膜和块材。在纳米材料的表征、团聚体的起因和消除、表面吸附和脱附、纳米复合微粒和粉体的制取等各个方面都有所创新,取得了重大的进展,成功地研制出致密度高、形状复杂、性能优越的纳米陶瓷;在世界上首次发现纳米氧化铝晶粒在拉伸疲劳中应力集中区出现超塑性形变;在颗粒膜的巨磁电阻效应、磁光效应和自旋波共振等方面做出了创新性的成果;在国际上首次发现纳米类钙钛矿化合物微粒的磁嫡变超过金属gd;设计和制备了纳米复合氧化物新体系,它们的中红外波段吸收率可达 92%,在红外保暖纤维得到了应用;发展了非晶完全晶化制备纳米合金的新方法;发现全致密纳米合金中的反常hall-petch效应。近年来,我国在功能纳米材料研究上取得了举世瞩目的重大成果,引起了国际上的关注。一是大面积定向碳管阵列合成:利用化学气相法高效制备纯净碳纳米管技术,用这种技术合成的纳米管,孔径基本一致,约20urn,长度约100pm,纳米管阵列面积达到 3mm 3mm。其定向排列程度高,碳纳米管之间间距为100pm。这种大面积定向纳米碳管阵列,在平板显示的场发射阴极等方面有着重要应用前景。这方面的文章发表在1996年的美国《科学》杂志上。二是超长纳米碳管制备:首次大批量地制备出长度为2~3mm的超长定向碳纳米管列阵。这种超长碳纳米管比现有碳纳米管的长度提高1~2个数量级。该项成果已发表于1998年8月出版的英国《自然》杂志上。英国《金融时报》以“碳纳米管进入长的阶段”为题介绍了有关长纳米管的工作。三是氮化嫁纳米棒制备:首次利用碳纳米管作模板成功地制备出直径为3~40urn、长度达微米量级的发蓝光氮化像一维纳米棒,并提出了碳纳米管限制反应的概念。该项成果被评为1998年度中国十大科技新闻之一。四是硅衬底上碳纳米管阵列研制成功,推进碳纳米管在场发射平面和纳米器件方面的应用。五是制备成功一维纳米丝和纳米电缆,该成果研究论文在瑞典召开的1998年第四届国际纳米会议宣读后,许多外国科学家给予高度评价。六是用苯热法制备纳米氮化像微晶;发现了非水溶剂热合成技术,首次在300℃左右制成粒度达30urn的氮化锌微晶。还用苯合成制备氮化铬(crn)、磷化钴(cop)和硫化锑(sbs)纳米微晶,论文发表在1997年的《科学》杂志上。七是用催化热解法制成纳米金刚石;在高压釜中用中温(70℃)催化热解法使四氯化碳和钠反应制备出金刚石纳米粉,论文发表在1998年的《科学》杂志上。美国《化学与工程新闻》杂志还发表题为“稻草变黄金---从四氯化碳(cc14)制成金刚石”一文,予以高度评价。我国纳米材料和纳米结构的研究已有10年的工作基础和工作积累,在“八五”研究工作的基础上初步形成了几个纳米材料研究基地,中科院上海硅酸盐研究所、南京大学、中科院固体物理所、中科院金属所、物理所、中国科技大学、清华大学和中科院化学所等已形成我国纳米材料和纳米结构基础研究的重要单位。无论从研究对象的前瞻性、基础性,还是成果的学术水平和适用性来分析,都为我国纳米材料研究在国际上争得一席之地,促进我国纳米材料研究的发展,培养高水平的纳米材料研究人才做出了贡献。在纳米材料基础研究和应用研究的衔接,加快成果转化也发挥了重要的作用。目前和今后一个时期内这些单位仍然是我国纳米材料和纳米结构研究的中坚力量。在过去10年,我国已建立了多种物理和化学方法制备纳米材料,研制了气体蒸发、磁控溅射、激光诱导cvd、等离子加热气相合成等10多台制备纳米材料的装置,发展了化学共沉淀、溶胶一凝胶、微乳液水热、非水溶剂合成和超临界液相合成制备包括金属、合金、氧化物、氮化物、碳化物、离子晶体和半导体等多种纳米材料的方法,研制了性能优良的多种纳米复合材料。近年来,根据国际纳米材料研究的发展趋势,建立和发展了制备纳米结构(如纳米有序阵列体系、介孔组装体系、mcm-41等)组装体系的多种方法,特别是自组装与分子自组装、模板合成、碳热还原、液滴外延生长、介孔内延生长等也积累了丰富的经验,已成功地制备出多种准一维纳米材料和纳米组装体系。这些方法为进一步研究纳米结构和准一纳米材料的物性,推进它们在纳米结构器件的应用奠定了良好的基础。纳米材料和纳米结构的评价手段基本齐全,达到了国际90年代末的先进水平。综上所述,“八五”期间我国在纳米材料研究上获得了一批创新性的成果,形成了一支高水平的科研队伍,基础研究在国际上占有一席之地,应用开发研究也出现了新局面,为我国纳米材料研究的继续发展奠定了基础。10年来,我国科技工作者在国内外学术刊物上共发表纳米材料和纳米结构的论文2400多篇,在国际上排名第五位,其中纳米碳管和纳米团簇在1998年度欧洲文献情报交流会上德国马普学会固体所一篇研究报告中报道中国科技工作者发表论文已超过德国,在国际排名第三位,在国际历次召开的有关纳米材料和纳米结构的国际会议上,我国纳米材料科技工作者共做邀请报告24次。到目前为止,纳米材料研究获得国家自然科学三等奖1项,国家发明奖2项;院部级自然科学一、二等奖3项,发明一等奖3项,科技进步特等奖1项;申请专利 79项,其中发明专利占50%,已正式授权的发明专利6项,已实现成果转化的发明专利6项。最近几年,我国纳米科技工作者在国际上发表了一些有影响的学术论文,引起了国际同行的关注和称赞。在《自然》和《科学》杂志上发表有关纳米材料和纳米结构制备方面的论文6篇,影响因子在6以上的学术论文(phys.rev.lett,j.ain.chem.soc .)近20篇,影响因子在3以上的31篇,被sci和ei收录的文章占整个发表论文的 59%。 1998年 6月在瑞典斯特哥尔摩召开的国际第四届纳米材料会议上,对中国纳米材料研究给予了很高评价,指出这几年来中国在纳米材料制备方面取得了激动人心的成果,在大会总结中选择了8个纳米材料研究式作取得了比较好的国家在闭幕式上进行介绍,中国是在美国、日本、德国、瑞典之后进行了大会发言。

4 纳米产业发展趋势

(1)信息产业中的纳米技术:信息产业不仅在国外,在我国也占有举足轻重的地位。2000年,中国的信息产业创造了gdp5800亿人民币。纳米技术在信息产业中应用主要表现在3个方面:①网络通讯、宽频带的网络通讯、纳米结构器件、芯片技术以及高清晰度数字显示技术。因为不管通讯、集成还是显示器件,都要原器件,美国已经着手研制,现在有了单电子器件、隧穿电子器件、自旋电子器件,这种器件已经在实验室研制成功,而且可能在2001年进入市场。 ②光电子器件、分子电子器件、巨磁电子器件,这方面我国还很落后,但是这些原器件转为商品进入市场也还要10年时间,所以,中国要超前15年到20年对这些方面进行研究。③网络通讯的关键纳米器件,如网络通讯中激光、过滤器、谐振器、微电容、微电极等方面,我国的研究水平不落后,在安徽省就有。④压敏电阻、非线性电阻等,可添加氧化锌纳米材料改性。

(2)环境产业中的纳米技术:纳米技术对空气中20纳米以及水中的200纳米污染物的降解是不可替代的技术。要净化环境,必须用纳米技术。我们现在已经制备成功了一种对甲醛、氮氧化物、一氧化碳能够降解的设备,可使空气中的大于10ppm的有害气体降低到01ppm,该设备已进入实用化生产阶段;利用多孔小球组合光催化纳米材料,已成功用于污水中有机物的降解,对苯酚等其它传统技术难以降解的有机污染物,有很好的降解效果。近年来,不少公司致力于把光催化等纳米技术移植到水处理产业,用于提高水的质量,已初见成效;采用稀土氧化铈和贵金属纳米组合技术对汽车尾气处理器件的改造效果也很明显;治理淡水湖内藻类引起的污染,最近已在实验室初步研究成功。

(3)能源环保中的纳米技术:合理利用传统能源和开发新能源是我国当前和今后的一项重要任务。在合理利用传统能源方面,现在主要是净化剂、助燃剂,它们能使煤充分燃烧,燃烧当中自循环,使硫减少排放,不再需要辅助装置。另外,利用纳米改进汽油、柴油的添加剂已经有了,实际上它是一种液态小分子可燃烧的团簇物质,有助燃、净化作用。在开发新能源方面国外进展较快,就是把非可燃气体变成可燃气体。现在国际上主要研发能量转化材料,我国也在做,它包括将太阳能转化成电能、热能转化为电能、化学能转化为电能等。

(4)纳米生物医药:这是我国进入wto以后一个最有潜力的领域。目前,国际医药行业面临新的决策,那就是用纳米尺度发展制药业。纳米生物医药就是从动植物中提取必要的物质,然后在纳米尺度组合,最大限度发挥药效,这恰恰是我国中医的想法。在提取精华后,用一种很少的骨架,比如人体可吸收的糖、淀粉,使其高效缓释和靶向药物。对传统药物的改进,采用纳米技术可以提高一个档次。

(5)纳米新材料:虽然纳米新材料不是最终产品,但是很重要。据美国测算,到21世纪30年代,汽车上40%钢铁和金属材料要被轻质高强材料所代替,这样可以节省汽油40%,减少co2,排放40%,就这一项,每年就可给美国创造社会效益1000亿美元。此外,还有各种功能材料,玻璃透明度好但份量重,用纳米改进它,使它变轻,使这种材料不仅有力学性能,而且还具有其他功能,还有光的变色、贮光,反射各种紫外线、红外线,光的吸收、贮藏等功能。

(6)纳米技术对传统产业改造:对于中国来说,当前是纳米技术切入传统产业、将纳米技术和各个领域技术相结合的最好机遇。首先是家电、轻工、电子行业。合肥美菱集团从1996开始研制纳米冰箱,可折叠的pvc磁性冰箱门封不发霉,用的是抗菌涂料,里面的果盘都采用纳米材料,发展轻工、电子和家用电器可以带动涂料、材料、电子原器件等行业发展;其次是纺织。人造纤维是化纤和纺织行业发展的趋势,中国纺织要在进入wto后能占据有利地位,现在就必须全方位应用纳米技术、纳米材料。去年关于保温被、保温衣的电视宣传,提到应用了纳米技术,特殊功能的有防静电的、阻燃的等等,把纳米的导电材料组装到里面,可以在11万伏的高压下,把人体屏蔽,在这一方面,纺织行业应用纳米技术形势看好;第三是电力工业。利用纳米技术改造20万伏和11万伏的变压输电瓷瓶,可以全方位提高11万伏的瓷瓶耐电冲击的性能,而且釉不结霜,其它综合性能都很好;第四是建材工业中的油漆和涂料,包括各种陶瓷的釉料、油墨,纳米技术的介入,可以使产品性能升级。

1999年8月20日《美国商业周刊》在展望21世纪可能有突破性进展的领域时,对生命科学和生物技术、纳米科学和纳米技术及从外星球上索取能源进行了预测和评价,并指出这是人类跨入21世纪面临的新的挑战和机遇。诺贝尔奖获得者罗雷尔也曾说过:70年代重视微米的国家如今都成为发达国家,现在重视纳米技术的国家很可能成为下一世纪先进的国家。挑战严峻,机遇难得,我们必须加倍重视纳米科技的研究,注意纳米技术与其它领域的交叉,加速知识创新和技术创新,为21世纪中国经济的腾飞奠定雄厚的基础。

对于纳米科技,科学的态度是积极参与,脚踏实地地推动这一前沿科技的健康发展,既不需要商业炒作,也不需要科学炒作。

百分之75的麻棉与百分之二十五的纳米丝混合物做的衣服可能会有以下优点:首先,采用麻棉材质,能够使服装具有良好的透气性和吸湿性,让人更加舒适干爽;其次,加入纳米丝材料,能够提高服装的柔软性和舒适度,让人更加身心愉悦。此外,纳米丝还有一定的防紫外线和抗菌功能,让人更加安心和健康。不过,也需要根据实际材质比例制衣,增加温度和弹性等因素,如果不当则可能影响舒适度和耐用性。综上,百分之75的麻棉与百分之二十五的纳米丝材质制成的衣物,可以带来舒适度和保护,但也需要注意制衣过程中的比例和处理过程。

·涤纶简介

涤纶(Polyester, Poly, Teleron, PET)是合成纤维中的一个重要品种,是我国聚对苯二甲酸乙二醇酯(聚酯纤维)的商品名称,英文名: polyethylene terephthalate,简称PET,为高聚合物,由对苯二甲酸乙二醇酯发生脱水缩合反应而来。国外商品名为Dacron(美国)(按照音译为的确良),Terylene(英国),Totoron(日本)

对苯二甲酸乙二醇酯是由对苯二甲酸和乙二醇发生酯化反应所得。它是以精对苯二甲酸(PTA)或对苯二甲酸二甲酯(DMT)和乙二醇(EG)为原料经酯化或酯交换和缩聚反应而制得的成纤高聚物——聚对苯二甲酸乙二醇酯(PET),经纺丝和后处理制成的纤维。

涤纶产品的产量在世界化学纤维中占50%。

·涤纶分类

涤纶的大类品种有短纤维、拉伸丝、变形丝、装饰用长丝、工业用长丝以及各种差别化纤维。

(1)长丝:化学纤维加工中不切断的纤维。长丝又分为单丝和复丝。

单丝(Nano Yarn):只有一根丝,透明、均匀、薄。

复丝(Filament Yarn):几根单丝并合成丝条。

(2)短纤维(Span Yarn):化学纤维在纺丝后加工中可以切断成各种长度规格的纤维。

(3)异形纤维:改变喷丝头形状而制得的不同截面或空心的纤维。

①、改变纤维弹性,抱合性与覆盖能力,增加表面积,对光线的反射性增强。

②、特殊光泽。如五叶形、三角形。

③、质轻、保暖、吸湿性好。如中空。

(4)复合纤维:将两种或两种以上的聚合体,以熔体或溶液的方式分别输入同一喷丝头,从同一纺丝孔中喷出而形成的纤维。又称为双组分或多组分纤维。复合纤维一般都具有三度空间的立体卷曲,体积高度蓬松,弹性好,抱合好,覆盖能力好。

(5)变形丝:经过变形加工的化纤纱或化纤丝。

①、高弹涤纶丝:利用合纤的热塑性加工,50~300%的伸长率。

②、低弹涤纶丝:伸长率控制在35%以下。

③、腈纶膨体纱;利用腈纶的热弹性。热拉伸——高收缩,收缩可达45~53%,与低收缩纤维混合纺纱,经蒸汽处理。

而涤纶长丝有细分为:

1 初生丝:未拉伸丝(常规纺丝)(UDY)、半预取向丝(中速纺丝)(MOY)、预取向丝(高速纺丝)(POY)、高取向丝(超高速纺丝)(HOY)

2 拉伸丝:拉伸丝(低速拉伸丝)(DY)、全拉伸丝(纺丝拉伸一步法)(FDY)、全取丝(纺丝一步法)(FOY)

3变形丝:常规变形丝(DY)、拉伸变形丝(DTY)、空气变形丝(ATY)。

涤纶低弹丝是涤纶化纤的一种变形丝类型,它是以聚酯切片(PET)为原料,采用高速纺制涤纶预取向丝(POY),再经牵伸假捻加工而成。具有流程短、效率高、质量好等特点

网络丝:网络丝是指丝条在网络喷嘴中,经喷射气流作用,单丝互相缠结而呈周期性网络点的长丝。

网络加工多用于POY、FDY和DTY的加工,网络技术与DTY技术结合制造的低弹网络丝,提高了长丝的紧密度,省去了纺织加工的若干工序,并能改善丝束通过喷水织机的能力。

·几种涤纶产品的介绍

抗静电涤纶产品:纳米复合抗静电涤纶树脂是采用纳米锑掺杂二氧化锡(ATO)/涤纶原位聚合技术。由于纳米粒子在涤纶聚酯基体中分散性能优异,纳米团聚体的尺寸在80~120nm,对纺丝基本无影响。得到的抗静电复合涤纶纤维在ATO的添加量仅为1%时,比电阻达到108Ω·cm,比传统涤纶纤维(1013Ω·cm)下降了5个数量级,经20次标准洗涤电阻不变,纳米复合涤纶熔融纺丝得到的纤维的拉伸性能和热收缩性能均大于未加入纳米粒子的涤纶纤维。这就是防静电纱线制成的面料比在后整理过程中加入防静电助剂的面料有更好的性能,当然在订单的起订量上,防静电纱线比在面料后整理加入防静电助剂要高出很多,这就是防静电纱线没有被大批量采用的原因之一。

摇粒绒(Polar Fleece):摇粒绒是针织面料的一种,在九十年代初先在中国台湾生产它是小元宝针织结构, 在大圆机编织而成, 织成后坯布先经染色, 再经拉毛、梳毛、剪毛、摇粒等多种复杂后整理工艺加工处理, 面料正面拉毛, 摇粒蓬松密集而又不易掉毛、起球, 反面拉毛疏稀匀称, 绒毛短少, 组织纹理清晰、蓬松弹性特好。它的成份一般是全涤的,手感柔软。

·涤纶的主要产品类别

涤纶织物一直都在向着仿毛、仿丝、仿麻、仿鹿皮等合成纤维天然化的方向发展。

1.涤纶仿丝:由圆形、异形截面的涤纶长丝或短纤维纱线织成的具有真丝外观风格的涤纶面料,具有价格低廉、抗皱免烫、飘逸悬垂、滑爽等优点,美中不足的是这类织物吸湿透气性差,穿着不太凉爽。

2.涤纶仿毛由涤纶长丝如涤纶加弹丝、涤纶网络丝或各种异形截面涤纶丝为原料,或用中长型涤纶短纤维与中长型粘胶或中长型腈纶混纺成纱后织成的具有呢绒风格的织物,分别称为精纺仿毛织物和中长仿毛织物,其价格低于同类毛织物产品。常见品种有:涤弹哔叽、涤弹华达呢、涤弹条花呢、涤纶网络丝纺毛织物、涤粘中长花呢、涤腈隐条呢等。

3.涤纶仿麻采用涤纶或涤/粘强捻纱织成平纹或凸条组织织物,具有麻织物的干爽手感和外观风格。如薄型的仿麻摩力克,不仅外观粗犷、手感干爽,且穿着舒适、凉爽。

4.涤纶仿鹿皮织物以细旦或超细旦涤纶纤维为原料,经特殊整理加工在织物基布上形成细密短绒毛的涤纶绒面织物,称为仿鹿皮织物,一般以非织造布、机织布、针织布为基布。具有质地柔软、绒毛细密丰满有弹性、手感丰润、坚牢耐用的风格特征。

·涤纶产品的物理和化学性能

涤纶具有极优良的定形性能,在使用中经多次洗涤,仍能经久不变。

强度高,由于吸湿性较低,它的湿态强度与干态强度基本相同。耐冲击强度比锦纶高4倍,比粘胶纤维高20倍。

耐热性和热稳定性在合成纤维织物中是最好的。

耐磨性好。耐磨性仅次于耐磨性最好的锦纶,比其他天然纤维和合成纤维都好。

耐光性好。耐光性仅次于腈纶。

耐腐蚀。可耐漂白剂、氧化剂、烃类、酮类、石油产品及无机酸。耐稀碱,不怕霉。

热碱可使其分解,为了达到良好的手感而采用的碱减量工艺就是利用涤纶不耐热碱的特性而设计的。

色牢度好,不易褪色。

吸水性:涤纶的吸水回潮率低,绝缘性能好,但由于吸水性低,摩擦产生的静电大,染色性能较差。

由于纤维表面光滑,纤维之间的抱合力差,经常摩擦之处易起毛、结球。

纳米面料

纳米布料是将纳米原料融入面料纤维中的一种特殊的物理和化学处理技术,在普通面料上形成一层保护层

特点:

提升面料的防污、防油、防水、抑菌、透气、环保、固色等功能

洗涤的注意事项:

不能用力搓洗

优点:

1、重量比棉、粘胶纤维要轻;

2、结实耐磨,是合成纤维中最耐磨、最结实的一种;

3、耐酸碱腐蚀,不霉不蛀。

4、富有弹性,定型、保型程度仅次于涤纶;

缺点:

1、耐光、耐热性较差,久晒会发黄而老化;

2、吸湿能力低,舒适性较差,但比腈纶,涤纶好;

3、锦纶易产生静;

4、收缩性较大;

5、服装穿久易起毛,起球;

看过《三体Ⅰ》的科幻迷肯定对“古筝行动”印象深刻吧,不,应该是惊心动魄的感觉。三体地球叛军的“审判日”号巨轮通过大史和汪淼设置的死亡之琴——被纳米丝像切豆腐一样切割成四十多片薄片,由于上部的薄片速度最快,与下面的逐级错开,使得这艘巨轮像一叠被向前推开的扑克牌,又像一个绊倒的服务生手中向前倾倒的一摞盘子切割面像镜面般光滑。这里的死亡之琴就是由一种号称飞刃的丝状材料构成,利用了当时的分子建筑技术,粗细大约相当于头发丝的十分之一。这种细极坚韧的丝状物像刀刃一样,具有极强的切割力。

首先,如果这个极快的速度指的是无限趋近于光速的速度,那么,即便细丝的直径小于原子之间的空隙(数量级为10^-10米,即01纳米),但它的动能将会十分巨大。当细丝与人的身体相接触时,其巨大无比的动能将会摧毁整个人。

           但如果让纳米级细丝的速度足够快而又不接近光速,那么,这根细小的丝能否把人体切断呢?在《三体》的“古筝行动”中,强度极高的纳米“飞刃”能够把巨型游轮切断,游轮上的人和物品也无一幸免。但从理论上来讲,纳米级细丝切断人体,甚至是巨型游轮应该是不可能的。

如果被纳米级细丝能够切开人的身体,并留下一个纳米级的断口,那么,身体并不会从断口那里一分为二,原因就是分子间作用力或者范德华力会起作用。之所以人的身体能够保持完整,不会被重力拉断,是因为分子间作用力强大到足以克服掉重力。

欢迎分享,转载请注明来源:品搜搜测评网

原文地址:https://pinsoso.cn/meirong/3486632.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2024-02-29
下一篇2024-02-29

随机推荐

  • 精华哪个牌子好用?

    精华现在几乎每个人都离不开,因为效果好有效含量高,对肌肤的改善比较明显,所以大家现在都开始用精华了,以前精华比较贵,价格都在几百元,现在因为竞争激烈,价格便宜了不少,所以就出现了很多物美价廉的精华,价格不太贵效果却非常好,我们就给大家列举一

    2024-04-15
    48600
  • 妮维雅润肤霜能涂脸吗

    通过了解就会发现,妮维雅是可以涂脸的,由于质地比较厚重,为此可以混合精华一起使用,而且能够更好的被面部所吸收,才能够更好的达到美白的效果。妮维雅润肤霜能涂脸吗的问题之所以被人们所重视,主要是更好的让肌肤保持水分,让肌肤的状态变得更加轻盈透亮

    2024-04-15
    48200
  • 好用的身体防晒霜推荐 这些防晒tips你一定要知道

    防晒霜不仅可以防止晒黑还可以防止晒老,光老化是很常见的,紫外线对肌肤有很多伤害,平时出门一定要涂抹防晒霜,除了面部防晒,身体防晒也很重要。好用的身体防晒霜推荐1、妮维雅防晒 140g 质地很水润,非常好抹开,便宜又大瓶,拿来抹身上的

    2024-04-15
    35900
  • 精华露和精华液的区别(精华露和精华液的区别及使用)

    在护肤步骤中少不了要用到精华,平时我们在护肤中常听到精华露和精华液,这两者是一样的东西吗?下面来说一下精华露和精华液的区别及使用方法,希望对大家能有所帮助。 长久以来精华类的护肤品作用是十分明显的,很多人都非常喜欢这种产品。一般 而言精华类

    2024-04-15
    35900
  • 妮维雅是欧莱雅旗下的吗 妮维雅是什么档次

    妮维雅是欧莱雅旗下的一款护肤品牌,它属于中档护肤品。妮维雅以其独特的产品设计和高质量的成分在市场上受到广大消费者的喜爱。让我们来讨论妮维雅是否属于欧莱雅旗下。是的,妮维雅是欧莱雅旗下的一个品牌。欧莱雅是全球知名的化妆品公司,拥有多个知名品牌

    2024-04-15
    34300
  • 妮维雅洗面奶祛痘吗?

    妮维雅控油祛痘的洗面奶好么 效果很好。 妮维雅长效控油洁面乳的质地水润,流动性较强。泡沫丰富细腻,能够有效清洁肌肤,保持肌肤油脂平衡,但要多用水冲洗才能彻底洗干净。使用后,肌肤有滋润感,但长效控油效果不明显。需要注意的是,这款洁面乳不够

    2024-04-15
    41500
  • 防晒喷雾前10强有哪些?防晒喷雾哪个牌子好用?

    防晒喷雾是近年来比较受欢迎的一种防晒产品,非常适合人们在外出的时候使用。防晒喷雾不仅具有防晒的功效,而且能使皮肤降温,减少皮肤的灼热感,补充皮肤所需的水分,起到保湿效果等,是一款比较价值比较高的产品。那防晒喷雾哪种品牌比较好呢?1、水宝宝超

    2024-04-15
    27800

发表评论

登录后才能评论
保存