《混凝土结构设计规范》GB50010—2002中第942 轴心受拉及小偏心受拉杆件(如桁架和拱的拉杆)的纵向受力钢筋不得采用绑扎搭接接头。当受拉钢筋的直径d>28mm及受压钢筋的直径d﹥32mm时,不宜采用绑扎搭接接头。
现《混凝土结构设计规范》GB50010—2010中第842 轴心受拉及小偏心受拉杆件的纵向受力钢筋不得采用绑扎搭接;其他构件中的钢筋采用绑扎搭接时,受拉钢筋直径不宜大于25mm,受压钢筋直径不宜大于28mm。
钢筋机械连接变形应符合以下规定
钢筋机械连接接头试件实测抗拉强度应不小于被连接钢筋抗拉强度标准值,且具有高延性及反复拉压性能。接头的变形性能应符合下表的规定。
接头的变形性能如下图:
u0一接头试件加载至06 fyk并卸载后在规定标距内的残余变形;
u20一接头经高应力反复拉压20次后的残余变形;
u4一接头经大变形反复拉压4次后的残余变形;
ug一接头经大变形反复拉压8次后的残余变形;
Asgt—接头试件的最大力总伸长率;
d一钢筋公称直径。
扩展资料
国内常见的滚压直螺纹连接接头有三种类型:直接滚压螺纹、挤(碾)压肋滚压螺纹、剥肋滚压螺纹。这三种形式连接接头获得的螺纹精度及尺寸不同,接头质量也存在一定差异。
(1) 直接滚压直螺纹连接接头:
其优点是:螺纹加工简单,设备投入少,不足之处在于螺纹精度差,存在虚假螺纹现象。由于钢筋粗细不均,公差大,加工的螺纹直径大小不一致,给现场施工造成困难,使套筒与丝头配合松紧不一致,有个别接头出现拉脱现象。由于钢筋直径变化及横纵肋的影响,使滚丝轮寿命降低,增加接头的附加成本,现场施工易损件更换频繁。
(2) 挤(碾)压肋滚压直螺纹连接接头:
这种连接接头是用专用挤压设备先将钢筋的横肋和纵肋进行预压平处理,然后再滚压螺纹,目的是减轻钢筋肋对成型螺纹精度的影响。
其特点是:成型螺纹精度相对直接滚压有一定提高,但仍不能从根本上解决钢筋直径大小不一致对成型螺纹精度的影响,而且螺纹加工需要两道工序,两套设备完成。
(3) 剥肋滚压直螺纹连接接头:
其工艺是先将钢筋端部的横肋和纵肋进行剥切处理后,使钢筋滚丝前的柱体直径达到同一尺寸,然后再进行螺纹滚压成型。
剥肋滚压直螺纹连接技术是由中国建筑科学研究院建筑机械化研究分院研制开发的钢筋等强度直螺纹连接接头的一种新型式,为国内外首创。
通过对现有HRB335、HRB400钢筋进行的型式试验、疲劳试验、耐低温试验以及大量的工程应用,证明接头性能不仅达到了《钢筋机械连接通用技术规程》JGJ107-2010中Ⅰ级接头性能要求,实现了等强度连接,而且接头还具有优良的抗疲劳性能和抗低温性能。
接头通过200万次疲劳强度试验,接头处无破坏,在-40ºC低温下试验,接头仍能达到与母材等强连接。剥肋滚压直螺纹连接技术不仅适用于直径为16~40mm(近期又扩展到直径12~50mm)HRB335、HRB400级钢筋在任意方向和位置的同、异径连接。
而且还可应用于要求充分发挥钢筋强度和对接头延性要求高的混凝土结构以及对疲劳性能要求高的混凝土结构中,如机场、桥梁、隧道、电视塔、核电站、水电站等。
剥肋滚压直螺纹连接接头与其它滚压直螺纹连接接头相比具有如下特点:
①螺纹牙型好,精度高,牙齿表面光滑;
②螺纹直径大小一致性好,容易装配,连接质量稳定可靠;
③滚丝轮寿命长,接头附加成本低。滚丝轮可加工5000~8000个丝头,比直接滚压
寿命提高了3~5倍;
④接头通过200万次疲劳强度试验,接头处无破坏;
⑤在-40ºC低温下试验,其接头仍能达到与母材等强,抗低温性能好。
-钢筋机械连接
螺纹是机械工程中常见的几何特征之一,使用广泛。螺纹的工艺较多,如基于塑性变形的滚丝与搓丝,基于切削的车削、铣削、攻螺纹与套螺纹、螺纹磨削、螺纹研磨等。不同种类的不锈钢由于机械性能和化学成分的不同,其数控切削的难度也不相同,经总结各类不锈钢很难切削的主要原因有以下几个方面:
一、不锈钢螺纹切削的特点
(1)热强度高、韧性大
奥氏体类不锈钢与马氏体类不锈钢其硬度和抗拉强度不高,但延伸率、断面收缩率和冲击值却比较高,这样在数控高速切削过程中就不容易被切断,切削变形时所消耗的功相当大。不锈钢在高温下的强度降低较少,在相同切削温度的作用下,不锈钢切削比普通碳素钢难切削,其热强度高是一个极其重要的因素。
(2)工艺硬化趋势强
在数控高速车削的过程中,由于刀尖对工件材料挤压的结果使切削区的金属产生变形,晶内发生滑移、晶格畸变致密,机械性能也随着发生变化,切削硬度也随之增加。数控切削后硬化层深度可以从几十微米到几百微米不等,因此前一次走刀所产生的硬化现象又妨碍了下一次走刀时的切削,并且硬化层的高硬度导致刀具特别容易磨损。
(3)切屑的粘附性强、导热差
在数控切削过程中,切削碎屑很容易牢固地粘附或熔着在刀尖和刀刃上形成积屑瘤,造成工件表面的表面粗糙度恶化,同时增加切削过程中的振动,加速刀具磨损。而且大量的切削热无法及时传导出来,甚至切削产生的热量也无法传导到切屑的整体上,使切削刃在高温下失去切削性能。
二、螺纹粗糙度差的原因及对策
数控切削后螺纹表面粗糙度太差,鱼鳞斑状波纹及啃刀现象是不锈钢螺纹车削中最常遇到的现象,产生这些现象的原因有:
(1)螺纹车刀两侧刃后角太小,两侧刃与后面的螺纹表面相摩擦使表面恶化,必须考虑螺纹旋转角对两侧刃实际后角的影响。当前角太大时,刀刃强度削弱且容易磨损、崩裂、扎刀,更容易引起振动而使螺纹表面产生波纹。因此应根据不锈钢的不同材质选择适当的前角。
(2)车削不锈钢螺纹时,必须随时保持刀刃的锋利及时更换刀头。螺纹车刀固定不牢、刀头伸出过长、刀杆刚性不够,或者是机床精度差、主轴松动、刀架部分松动等因素都会引起振动,使螺纹表面产生波纹。因此在操作时必须注意操作机床、刀具及工件,使系统有足够的刚性。
(3)车削螺纹时应避免采用直进法,由于左右两侧的切屑接触长度长容易产生振动,使刀尖承受的负荷加大,引起振动和增加排屑时的阻力把表面划伤。因此对于不锈钢螺纹最好选用交叉式车削螺纹的方法,尤其对于大螺距螺纹、粘性材料的切削,是解决振动问题的最有效措施。由于左右交叉使用切削刃,故磨损均匀,还能延长刀具的使用寿命。
(4)数控切削螺纹的过程中切削用量的匹配程度直接影响效率。切削量过小将会使刀具加剧磨损,过大则将使刀具产生崩碎,因此进刀数和每刀进给量会对车削螺纹产生决定性的影响。
三、切削螺纹尺寸不稳定的原因及对策
螺纹切削完成后,用螺纹环规测量外螺纹“通端”进不去或者出现前后松紧不一致以及“止端”部分通过等现象。产生这些弊病的原因:
(1)螺纹牙形不对。即使螺纹中径已经达到规定尺寸,螺纹环规、塞规仍可能拧不动。
(2)螺纹倒牙。用螺纹量规测量时,往往会出现受方向性限制的现象,也就是从一端拧过较紧,而从另一端拧过较松,甚至出现“通端”通不过而“止端”反而通过的现象。
(3)内螺纹底径车的太小,或外螺纹底径过大,也会使得螺纹规拧不进去,这是由于车刀磨损变钝,切削过程中有挤压现象,使螺纹的外径或内径挤压出毛刺的结果。
(4)车削直径较小的内螺纹时,因车刀刀杆受尺寸的限制刚性较差,车削过程中容易产生“让刀”,以至四部尺寸较大造成局部超差。
(5)车削细长螺杆时,由于工件的刚性较差,车削过程中产生变形,造成螺纹上的尺寸误差。
(6)车削薄壁工件的内、外螺纹时,工件因受力和切削温度的影响,产生局部变形,也会产生螺纹的局部超差。
四、切削油在数控螺纹切削中的作用
合理地使用切削油能改善切削条件达到事半功倍的效果,在数控切削不锈钢螺纹时应注意:
(1)由于不锈钢的韧性大、切削不易被分离,故要求切削油要有较高的冷却性能,以带走大量的热量。
(2)由于粘性大、熔着性大,在切削螺纹过程中容易产生积屑瘤,故应使切削油具有较高的润滑性能。
(3)要求切削油有较好的渗透性,可在切削中渗入到金属区的微细隙线中,使切屑容易断离。
(4)切削油应含有硫化极压抗磨添加剂成分,可以有效的保护刀具,提高工艺精度。
(5)专用的切削油与菜籽油、机械油、再生油相比,具有良好的稳定性,不会对设备、人体、环境产生危害。
(6)切削油在粘度、闪点、倾点、导热性能等方面均通过严格的测试,以满足各种切削工艺需求。
钢丝绳在起重机上使用的非常普遍,一般由许多高强度钢丝编绕而成。它首先由单根钢丝绕在一起形成股,然后将其中一些股绕成绳芯,再由其它股组成的外股围绕绳芯绕成钢丝绳。有些进口钢丝绳内部还包含一个塑料插芯,通常以塑料涂层的形式经过特殊处理覆盖在绳芯上,重要的钢丝绳则在绳内部充填适当的润滑剂以减少摩擦。
国产钢丝绳按绳芯材料一般分有机物(麻芯和棉芯)、石棉芯或金属芯三种,绳内部通常无填充物或润滑剂。
钢丝绳按钢丝绕成股和股绕成绳的相互方向又可分为顺绕绳和交绕绳,并按其股绳捻向分为左、右同向捻和左、右交互捻;进口钢丝绳一般以交绕绳为标准绳,规定钢丝绳的旋向与相对于钢丝绳的纵轴为基准的外股螺旋线的旋向一致,分为左旋和右旋。相应的,也规定了股的旋向,即以股的纵轴为基准,组成股的外丝的螺旋线的方向为每股的旋向。普通钢丝绳在单根使用时,都有向钢丝绳绕向相反方向旋转的现象,在滑轮组中使用时会因钢丝绳旋转而造成起吊钢丝绳旋扭,俗称打绞。相对于普通钢丝绳,目前不旋转钢丝绳已开始大量应用。所谓不旋转钢丝绳是基于这样一个原理,即绳与股的扭转力矩方向相反而大小相等:进口不旋转钢丝绳则有所不同,其原理是使绳芯的旋向与绳本身的旋向相反,当受力时,绳芯产生的扭矩与外股产生的扭矩大小相等,方向相反。
钢丝绳的股还可通过滚压或模具挤压等后处理方法成为紧密股,处理后股的直径将减小,而表面光洁度很高。因此,采用紧密股的钢丝绳可以使用较粗的钢丝,相同直径下,采用紧密股的钢丝绳充填系数较高,破断拉力大为提高。当在卷筒上进行多层缠绕时,普通股的钢丝绳其外股在层与层之间挤压较严重,钢丝绳表面磨损较快。而紧密股的钢丝绳则有较高的抗磨损能力和抗挤压能力。
钢丝绳的选择正确与否,直接影响绳的使用寿命并使绳产生结构变形、断裂和意外的失效等。因此推荐选用原则如下:
1)当进行一次无导向重物提升时或在较大高度下进行多次无导向重物提升时,选用不旋转钢丝绳:
2)当进行一次有导向重物提升或在较小高度下进行多次有导向重物提升(如行车)或左旋和右旋绳成对使用时,可选用普通钢丝绳。
钢丝绳旋向的确定应遵循:
右旋绳槽的卷筒推荐使用左旋钢丝绳:反之,左旋绳槽的卷筒应使用右旋钢丝绳。
对于单层缠绕的不旋转钢丝绳,必须严格遵守上述原则,否则易引起钢丝绳结构的永久变形;对于多层缠绕的情况,绳的旋向由卷筒绳槽的方向决定,以便为下一层打好基础。
多层绕卷筒的钢丝绳相互间摩擦力及受到的挤压力都较大,易产生乱绳现象,因此应选用直径略小于绳槽节距和绳槽直径的钢丝绳,以增加钢丝绳与卷筒间的接触面积,减少相邻钢丝绳间的摩擦力,从而提高钢丝绳的寿命。实践证明,钢丝绳的直径比绳槽节距小1%,有助于排绳紧密,有效消除爬绳、乱绳现象。
在相同直径下,钢丝绳外股数目越多直径则越细,单根钢丝就越细,这种钢丝绳的挠性好,能很好的克服钢丝绳多次进出卷筒时受到的反向弯折力,穿绳也容易。而较粗的外股,其钢丝也较粗,则能更好的抵抗磨损、机械损伤、腐蚀和挤压力。因此,只有将两种优点很好的结合起来,才是真正高性能的优质钢丝绳。
此外,钢丝绳在选用过程中还要注意其最小直径和最小破断拉力应符合ISO4308标准的规定。
起重机钢丝绳检验报废标准GB05972-2006、钢丝绳国家标准GB8918-2006
硬质合金。滚丝轮是滚丝机中的重要组成部分,用于滚压螺纹。滚丝轮的材质通常采用高速钢、硬质合金等金属材料,这些材料具有高硬度、高强度、高耐磨性等特点,能够在高速摩擦和较大压力下保持形状和尺寸的稳定性。
欢迎分享,转载请注明来源:品搜搜测评网