#小学奥数# 导语解答较复杂的和差倍问题,需要我们从整体上把握住问题的本质,将题目进行合理的转化,从而将较复杂的问题转化为一般和倍、差倍、和差应用题来解决。以下是 整理的《小学四年级奥数:较复杂的和差倍问题》,希望帮助到您。
篇一
例题:甲的存款是乙的4倍,如果甲取出110元,乙存入110元,那么乙的存款是甲的3倍。甲、乙原来各有存款多少元?
分析与解答:由“乙存入110元,甲取出110元”,可知乙存入110元后相当于甲存款数的3倍,取出110×3=330元;而由甲的存款是乙的4倍,可知甲原有存款的3倍相当于乙原有存款的4×3=12倍,乙现在存入110元后相当于甲原有的12倍,取110×3=330元,所以,330+110=440元,相当于乙原有的12-1=11倍。所以,乙原有存款440÷11=40元,甲原有存款40×4=160元。
练习题:
1、甲的存款是乙的5倍,如果甲取出60元,乙存入60元,那么乙的存款是甲的2倍。甲、乙原来各有存款多少元?
2、刘叔叔的存款是李叔叔的6倍,如果刘叔叔取出1100元,李叔叔存入1100元,那么刘叔叔的存款是李叔叔的2倍。刘叔叔和李叔叔原来各有存款多少元?
3、有大、中、小三筐菠萝,小筐装的是中筐的一半,中筐比大筐少装16千克,大筐装的是小筐的4倍。大、中、小三筐各装菠萝多少千克?
篇二
例题:某工厂一、二、三车间共有工人280人,第一车间比第二车间多10人,第二车间比第三车间多15人。三个车间各有工人多少人?
分析与解答:这是多量的和差问题,解题的时候确定的标准不同,解法也就不同。如果以第二车间的人数为标准,第一车间减少10人,第三车间增加15人,那么280-10+15=285人是第二车间人数的3倍,由此可以求出第二车间有285÷3=95人,第一车间有95+10=105人,第三车间有95-15=80人。
练习题:
1、一个三层书架共放书168本,上层比中层多12本,下层比中层少6本。三层各放书多少本?
2、一个三层柜台共放皮鞋120双,第一层比第二层多放4双,第二层比第三层多7双,三层各多皮鞋多少双?
3、四个数的和是152,第一个数比第二个数多16,比第三个数多20,比第四个数少12。第一个数和第四个数是多少?
篇三
例题:两箱茶叶共重96千克,如果从甲箱取出12千克放入乙箱,那么乙箱的千克数是甲箱的3倍。两箱原来各有茶叶多少千克?
分析与解答:由“两箱茶叶共重96千克,如果从甲箱取出12千克放入乙箱,那么乙箱的千克数是甲箱的3倍”可求出现在甲箱中有茶叶96÷(1+3)=24千克。由此可求出甲箱原来有茶叶24+12=36千克,乙箱原来有茶叶96-36=60千克。
练习题:
1、书架的上、下两层共有书180本,如果从上层取下15本放入下层,那么下层的本数正好是上层的2倍。两层原来各有书多少本?
2、甲、乙两人共储蓄2000元,甲取出160元,乙又存入240元,这时甲储蓄的钱数比乙的2倍少20元。甲、乙两人原来各储蓄多少元?
3、某畜牧场共有绵羊和山羊3561只,后来卖了60只绵羊,又买来山羊100只,现在绵羊的只数比山羊的2倍多1只。原来绵羊和山羊各有多少只?
2.三个小组共有180人,一、二两个小组人数之和比第三小组多20人,第一小组比第二小组少2人,求第一小组的人数。
分析:要点:先把一,二小组看成一个整体!把第三小组看成一个整体,我们把这种方法叫“化三为二”即把三个问题转换成二个问题,先求出第一,二小组的人数,再求出第一小组的人数。这也是一个和差问题。
解:(180+20)÷2=100(人)——第一,二小组的人数
(100-2)÷2=49(人)——第一小组的人数
综合:[(180+20)÷2-2]÷2=49(人)——第一小组的人数
答:第一小组的人数是49人。
4.在一个减法算式里,被减数、减数与差的和等于120,而减数是差的3倍,那么差等于多少?
分析:这是一个和倍问题。减数是差的3倍,那么被减数就是差的4倍,所以被减数、减数与差的和就是差的8倍,应该等于120,所以差=120÷8=15。
解:120÷(1+3+1+2)=15 答:差等于15。
6.有50名学生参加联欢会,第一个到会的女同学同全部男生握过手,第二个到会的女生只差一个男生没握过手,第三个到会的女生只差2个男生没握过手,以此类推,最后一个到会的女生同7个男生握过手。问这些学生中有多少名男生?
分析:这是和差问题。我们可以这样想:如果这个班再多6个女生的话,最后一个女生就应该只与1个男生握手,这时,男生和女生一样多了,所以原来男生比女生多(7-1)6个人!男生人数就是:
解:(50+6)÷2=28(人)。 答:男生人数是2 8人。
注:还有一种解法,7+6+5+4+3+2+1=28(人)
我的分析方法还不能说得很清楚。请大家指正。
8.甲、乙、丙共有100本课外书。甲的本数除以乙的本数,丙的本数除以甲的本数,商都是5,余数也都是1。那么乙有多少本书?
分析:这是和倍问题。看懂题后可以这样理解,“甲、乙、丙3个数是100,甲是乙的5倍多1,丙是甲的5倍多1,求甲、乙、丙各是几?”。即:乙是1倍;甲是乙的5倍多1;丙是乙的(5×5)倍多(1×5+1)6。那么100减去(1+6)的差对应(1+5+5×5)倍,这样可求出乙是多少。
解:[100-1-(1×5+1)]÷(1+1×5+1×5×5)=91÷31=3(本) 答:乙有3本书。
10.有货物108件,分成四堆存放在仓库时,第一堆件数的2倍等于第二堆件数的一半,比第三堆的件数少2,比第四堆的件数多2.问每堆各存放多少件?
分析:如果我们把第一堆看成1倍,那么可以算出第二堆就是(2×2)4倍,第三堆是2倍多2件,第四堆是2倍少2件,那么一共就刚好是1+4+2+2=9倍(第三堆和第四堆刚好一个多2件一个少2件正好抵消),那么1倍就是108÷9=12件,第二堆就是12×4=48件,第三堆就是12×2+2=26件,第四堆就是12×2-2=22件。
解:(108+2-2)÷(1+2×2+2+2)=108÷9=12(件)——第一堆
12×2×2=48(件)——第二堆; 12×2+2=26(件)——第三堆; 12×2-2=22(件)——第四堆;
答:每堆各有12件、48件、26件、22件。
12.用中国象棋的车,马,炮分别表示不同的自然数。如果:车÷马=2,炮÷车=4,炮-马=56,那么“车+马+炮”等于多少?
分析:这是一个差倍问题。依题有,马是1倍,车是马的2倍,炮是车的4倍,所以炮与马的倍数差是(2×4-1)7倍,而炮与马的两数差是56,根据差倍问题的公式就可分别求出车、马、炮的值。
解:56÷(8-1)=8——马;
8×2=16——车
16×4=64——炮
8+16+64=88——车+马+炮 答:车、马、炮的和是88
14.甲、乙两位学生原计划每天自学的时间相同,若甲每天增加自学时间半小时,乙每天减少自学时间半小时,则乙自学6天的时间仅相等于甲自学一天的时间。问:甲、乙原计划每天自学多少分钟?
分析:差倍问题。原来时间相同,现甲多半小时,乙少半小时,现在的两数差是(30+30)60分钟,现在的差数差是(6-1)5倍,这样可求出现乙每天自学的时间,加上30分钟,可得原计划每天自学时间。
解:(30+30)÷(6-1)+30=12+30=42(分钟) 答:原计划每天自学42分钟。
差倍问题的解题思路就是:数量差除以倍数差(数量差除以分率差)
比如:小红体重比小明重24千克,小明体重是小红的2/5,小红和小明各有多少千克
小红体重:24除以(1-2/5)=40(千克)
小明体重:40-24=16(千克)
或者,小明:24除以(5-2)X2=16(千克),小明:16+24=40(千克)
等等,解这类题的方法有很多种,关键点就是利用-------数量差除以倍数差(数量差除以分率差)的思路来解答的
和倍问题:数量和除以倍数和(数量和除以分率和)思路差不多
和差问题
已知两个数量的和与差,求这两个数量各是多少,这类应用题叫和差问题。
其实,解和差问题,还有一段顺口溜:
和加上差,越加越大;除以2,便是大的;
和减去差,越减越小;除以2,便是小的。
和差问题的解题公式:
大数=(和+差)÷2
小数=(和-差)÷2
例1、甲乙两班共有学生98人,甲班比乙班多6人,求两班各有多少人?
解甲班人数=(98+6)÷2=52(人)
乙班人数=(98-6)÷2=46(人)
答:甲班有52人,乙班有46人。
例2、长方形的长和宽之和为18厘米,长比宽多2厘米,求长方形的面积。
解长=(18+2)÷2=10(厘米)
宽=(18-2)÷2=8(厘米)
长方形的面积=10×8=80(平方厘米)
答:长方形的面积为80平方厘米。
和倍问题
已知两个数的和及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做和倍问题。
总和÷(几倍+1)=较小的数
总和-较小的数=较大的数
较小的数×几倍=较大的数
为了帮助我们理解题意,弄清两种量彼此间的关系,常采用画线段图的方法来表示两种量间的这种关系,以便于找到解题的途径。
例1、果园里有杏树和桃树共248棵,桃树的棵数是杏树的3倍,求杏树、桃树各多少棵?
解(1)杏树有多少棵?248÷(3+1)=62(棵)
(2)桃树有多少棵?62×3=186(棵)
答:杏树有62棵,桃树有186棵。
例2、东西两个仓库共存粮480吨,东库存粮数是西库存粮数的14倍,求两库各存粮多少吨?
解(1)西库存粮数=480÷(14+1)=200(吨)
(2)东库存粮数=480-200=280(吨)
答:东库存粮280吨,西库存粮200吨。
例3、甲班和乙班共有图书160本甲班的图书本数是乙班的3倍,甲班和乙班各有图书多少本?
解:160÷(3+1)=40本乙
40×3=120本 甲
答:甲班120本,已班40本。
差倍问题
已知两个数的差及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做差倍问题。
两个数的差÷(几倍-1)=较小的数
较小的数×几倍=较大的数
差倍问题的解题思路,是要在题目中找到1倍量,再画图确定解题方
欢迎分享,转载请注明来源:品搜搜测评网