综合得分:主要利用成分得分和方差解释率这两项指标,计算得到综合得分,用于综合竞争力对比(综合得分值越高意味着竞争力越强)。
使用在线spssau分析,可直接保存综合得分,不用计算。
排名按照综合得分的大小进行比较,数值越大排名越高。
就一个省份 没有分成各个市,那就是只有20多个指标的一条数据了,这个是么有办法做主成分分析,做主成分分析的个案数据至少是指标数量的3-5倍,也就是你有20多个指标,则数据量至少需要有60多条。
你可以用很多年份的一个省数据,但是这样数量还是有可能达不到要求
所以建议你采用各个市 然后分年份的数据,这样在做主成分就会准确一些
你想要的是确定权重的方法。可以推荐你去知网上下载一些综合评价方面的书籍。
1、郭亚军提出的g1法可以确定指标权重,而且排除了ahp方法中还需要确定一致性的劣势
2、群决策理论亦可以应用到确定指标权重中去。即有群的ahp分析法。
3、还有组合评价,即多种方法确定权重的集结结果。
推荐你cnki上以关键字搜索 综合评价;权重确定等关键词进行检索
权重计算的确定方法在综合评价中重中之重,不同的方法对应的计算原理并不相同。在实际分析过程中,应结合数据特征及专业知识选择适合的权重计算。
第一类为AHP层次法和优序图法;此类方法利用数字的相对大小信息进行权重计算;此类方法为主观赋值法,通常需要由专家打分或通过问卷调研的方式,得到各指标重要性的打分情况,得分越高,指标权重越大。
此类方法适合于多种领域。比如想构建一个员工绩效评价体系,指标包括工作态度、学习能力、工作能力、团队协作。通过专家打分计算权重,得到每个指标的权重,并代入员工数据,即可得到每个员工的综合得分情况。
第二类为熵值法(熵权法);此类方法利用数据熵值信息即信息量大小进行权重计算。此类方法适用于数据之间有波动,同时会将数据波动作为一种信息的方法。
比如收集各地区的某年份的经济指标数据,包括产品销售率(X1)、资金利润率(X2)、成本费用利润率(X3)、劳动生产率(X4)、流动资金周转次数(X5),用熵值法计算出各指标权重,再对各地区经济效益进行比较。
第三类为CRITIC、独立性权重和信息量权重;此类方法主要是利用数据的波动性或者数据之间的相关关系情况进行权重计算。
比如研究利用某省医院2011年共计5个科室的数据指标(共计6个指标数据)进行CRITIC权重计算,最终可得到出院人数、入出院诊断符合率、治疗有效率、平均床位使用率、病床周转次数、出院者平均住院日这6个指标的权重。如果希望针对各个科室进行计算综合得分,那么可以直接将权重与自身的数据进行相乘累加即可,分值越高代表该科室评价越高。
第四类为因子分析和主成分法;此类方法利用了数据的信息浓缩原理,利用方差解释率进行权重计算。
比如对30个地区的经济发展情况的8项指标作主成分分析,主成分分析法可以将8个指标浓缩为几个综合指标(主成分),用这些指标(主成分)反映原来指标的信息,同时利用方差解释率得出各个主成分的权重。
1、首先对于二级指标使用熵值法进行求取权重。
2、其次一级指标由主成分分析得到的相应维度利用方差解释率进行计算权重,最后汇总总结。
3、最后是主成分分析权重为负处理的方法,安全便捷。
客观赋权法主要有变异系数法、熵值法和多元统计分析法,其原始数据来自评估矩阵的数据。它的基本原理是利用指标的观测值进行赋权,权重的确定完全由统计数据得出。这类方法切断了权重系数的主观性来源,使系数具有绝对的客观性,但却容易出现 “重要指标的权重系数小而不重要指标的权重指标系数大”的不合理现象。
(一)变异系数法
变异系数法的基本思想是:在通过指标体系进行评估时,指标体系中各指标所包含的信息量不同,即各指标对被评估对象的区分能力不同。一般来讲,如果一个指标能够明确区分其他指标,则该指标与其他指标的差异大,说明该指标包含的信息量大,应该赋予该指标较大的权重;反之,则应赋予较小的权重。在统计学中,指标的变异信息量常用方差衡量,但由于指标量纲和数量级的差异,各指标的方差不具有可比性。因此,选用各指标的变异系数作为衡量指标变异信息量大小的指标。将各指标的变异系数做归一化处理,就可得到各指标的权重。具体过程如下:
设指标体系由m个指标组成,有n个参评样本,计算出各指标的均值和方差:
地质资料社会化服务评估研究
则各指标的变异系数为:
地质资料社会化服务评估研究
对Vi做归一化处理,即可得出各指标的权重wi
地质资料社会化服务评估研究
(二)熵值法
熵是信息论中测量不确定性的量,信息量越大,不确定性就越小,熵也就越小。反之,信息量越小,不确定性就越大,熵也就越大。熵值法就是用指标熵值来确定权重大小的方法。一般的,将评估对象集记为{Ai}(i=1,2,…,m),用于评估的指标集记为{Xj}(j=1,2,…,n),用xij表示第i个方案第j个指标的原始值。熵值法的计算过程为:
(1)将xij做正向化处理,并计算第j个指标第i个方案所占的比重pij
地质资料社会化服务评估研究
(2)计算第j个指标的熵值ej
地质资料社会化服务评估研究
(3)计算第j个指标的差异系数gj
地质资料社会化服务评估研究
(4)计算第j个指标的权重wj
地质资料社会化服务评估研究
熵值法是突出局部差异的权重计算方法,是根据同一指标观测值之间的差异程度来反映其重要程度的。这种方法,有时可能造成重要指标的权重系数小而不重要指标的权重系数大的不合理现象。
(三)多元统计分析法
多元统计分析法是处理多变量数据的有力工具,在构建评估指标体系的权重时,主要使用到主成分分析法和因子分析法。
1主成分分析法(Principal component analysis)
用主成分分析法进行多指标综合评价的基本原理是通过适当的数学变换使新的指标成为原有指标的线性组合,并用较少的指标(主成分)代替原有指标,主成分之间相互独立。可以证明:指标的协方差矩阵的第k个特征值等于第k个主成分的方差(k=1,2,…,n);其对应的特征向量是第k个主成分的相应系数;并且主成分按照方差大小顺序排列。因此,第一主成分代表原有指标的信息最多,第二主成分次之,根据此原理,利用主成分能构造综合指数。
主成分分析确定权重的步骤如下:
(1)原始指标数据标准化;
(2)计算指标间的相关系数矩阵R;
(3)计算R的特征根和特征向量;
(4)根据主成分的方差贡献率 确定主成分个数p;
(5)将p个主成分综合为综合指数。
2因子分析法(Factor analysis)
用因子分析法确定权重的原理是:从所研究的全部原始变量中,将有关信息集中起来,通过讨论相关矩阵的内部依赖关系,将多指标综合成少数因子(综合指标),再现指标与因子之间的相关关系,并进一步分析这些相关关系的内部原因。因子分析法确定权重的步骤是:
(1)原始指标数据标准化;
(2)计算指标间的相互关系矩阵R;
(3)计算R的特征根和特征向量;
(4)根据方差贡献率 (α一般取85%)确定特征根的个数和和相应的特征向量Ui(i=1,2,…,m),利用m个特征值和特征向量建立初始因子载荷矩阵 ;
(5)建立因子模型:
地质资料社会化服务评估研究
式中f1,f2,…,fm为公共因子;ξ为特殊因子。
(6)对初始因子载荷矩阵进行旋转变换,使载荷矩阵结构简单,关系明确。如果初始因子间不相关,采用方差进行极大正交旋转;如果因子间有相关关系,则进行斜交旋转。通过旋转得到比较理想的因子在乎矩阵Al=(ai,j)n×m;
(7)将因子表示为变量的线性组合,由最小二乘法估计求出因子得分系数矩阵:
地质资料社会化服务评估研究
(8)确定权重。指标xj的权重是 其中 为方差贡献率,将βi归一化为xj的权重。
欢迎分享,转载请注明来源:品搜搜测评网