主成分分析是设法将原来众多具有一定相关性(比如P个指标),重新组合成一组新的互相无关的综合指标来代替原来的指标。
主成分分析,是考察多个变量间相关性一种多元统计方法,研究如何通过少数几个主成分来揭示多个变量间的内部结构,即从原始变量中导出少数几个主成分,使它们尽可能多地保留原始变量的信息,且彼此间互不相关通常数学上的处理就是将原来P个指标作线性组合,作为新的综合指标。
最经典的做法就是用F1(选取的第一个线性组合,即第一个综合指标)的方差来表达,即Var(F1)越大,表示F1包含的信息越多。因此在所有的线性组合中选取的F1应该是方差最大的,故称F1为第一主成分。如果第一主成分不足以代表原来P个指标的信息,再考虑选取F2即选第二个线性组合,为了有效地反映原来信息,F1已有的信息就不需要再出现在F2中,用数学语言表达就是要求Cov(F1, F2)=0,则称F2为第二主成分,依此类推可以构造出第三、第四,……,第P个主成分。 Fp = a1iZX1 + a2iZX2 + …… + apiZXp
其中a1i, a2i, ……,api(i=1,……,m)为X的协方差阵Σ的特征值所对应的特征向量,ZX1, ZX2, ……, ZXp是原始变量经过标准化处理的值,因为在实际应用中,往往存在指标的量纲不同,所以在计算之前须先消除量纲的影响,而将原始数据标准化,本文所采用的数据就存在量纲影响[注:本文指的数据标准化是指Z标准化。
A = (aij)p×m = (a1,a2,…am,), Rai = λiai,
R为相关系数矩阵,λi、ai是相应的特征值和单位特征向量, λ1 ≥ λ2 ≥ …≥ λp ≥ 0 。
进行主成分分析主要步骤如下:
1 指标数据标准化(SPSS软件自动执行);
2 指标之间的相关性判定;
3 确定主成分个数m;
4 主成分Fi表达式;
5 主成分Fi命名;
是。
在因子分析中,主成分方法是提取公共因子的方法之一。
一般而言,因子旋转的目的是为了进一步说明因子的经济学、管理学或者社会学等方面的意义,即对因子进行命名。如果你的研究不特别在意主成分的经济学或管理学等方面的含义,就不必使用因子分析,用主成分分析就可以了。主成成分分析不需要进行因子旋转。
一、性质不同
1、主成分分析法性质:通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量。
2、因子分析法性质:研究从变量群中提取共性因子的统计技术。
二、应用不同
1、主成分分析法应用:比如人口统计学、数量地理学、分子动力学模拟、数学建模、数理分析等学科中均有应用,是一种常用的多变量分析方法。
2、因子分析法应用:
(1)消费者习惯和态度研究(U&A)
(2) 品牌形象和特性研究
(3)服务质量调查
(4) 个性测试
(5)形象调查
(6) 市场划分识别
(7)顾客、产品和行为分类
扩展资料:
主成分分析的原理是设法将原来变量重新组合成一组新的相互无关的几个综合变量,同时,根据实际需要,尽量少取几个求和变量,以反映原始变量的信息。
这种统计方法被称为主成分分析或主成分分析,这也是一种处理降维的数学方法。主成分分析(PCA)是试图用一组新的不相关的综合指标来代替原来的指标。
因子分析为社会研究的一种有力工具,但不能确定一项研究中有几个因子。当研究中选择的变量发生变化时,因素的数量也会发生变化。此外,对每个因素的实际含义的解释也不是绝对的。
-主成分分析
-因子分析
联系:因子分析法和主成分分析法都是统计分析方法,都要对变量标准化,并找出相关矩阵。区别:在主成分分析中,最终确定的新变量是原始变量的线性组合,因子分析是要利用少数几个公共因子去解释较多个要观测变量中存在的复杂关系。
1因子分析法通过正交变换,将一组可能具有相关性的变量转换为一组线性不相关的变量,称为主成分。它主要用于市场研究领域。在市场研究中,研究人员关注一些研究指标的整合或组合。这些概念通常通过分数来衡量。人口学、数量地理学、分子动力学模拟、数学建模、数学分析等学科。因子分析和主成分分析都是统计分析方法,都需要对变量进行标准化,找出相关矩阵。
2因子分析可以在许多变量中发现隐藏的代表性因素。主成分分析的原理是尝试将原始变量重新组合成一组新的独立综合变量。因子分析在主成分分析的基础上增加了一个旋转函数。这种轮换的目的是更容易地命名和解释因素的含义。如果研究的重点是指标与分析项目之间的对应关系,或者想要对得到的指标进行命名,建议使用因子分析。
3主成分分析法是根据实际需要,尽量选取尽可能少的求和变量,以反映原始变量的信息。这种统计方法称为主成分分析或主成分分析,这也是一种处理降维的数学方法。主成分分析试图用一套新的不相关的综合指标取代原有指标。因子分析是社会研究的有力工具,但它不能确定一项研究中有多少因素。当研究中选择的变量发生变化时,因素的数量也会发生变化。
:霍特林将这种方法推广到随机向量的情况。信息的大小通常由方差或方差的平方和来衡量。因子分析最早由英国心理学家CE斯皮尔曼提出。他发现学生在不同科目的成绩之间有一定的相关性。一门学科成绩好的学生往往在其他学科成绩更好,因此他推测是否有一些潜在的共同因素或一些一般的智力条件影响学生的学业成绩。
因子分析---选项中有一项是特征根植大于1 或者说是指定主成分个数,默认是提取的特征根植为1, 你改成 下面的指定主成分个数那一项就可以了 你想指定几项都可以 不过要小于所有变量个数
Fp = a1iZX1 + a2iZX2 + …… + apiZXp
其中a1i, a2i, ……,api(i=1,……,m)为X的协方差阵Σ的特征值所对应的特征向量,ZX1, ZX2, ……, ZXp是原始变量经过标准化处理的值,因为在实际应用中,往往存在指标的量纲不同,所以在计算之前须先消除量纲的影响,而将原始数据标准化,本文所采用的数据就存在量纲影响[注:本文指的数据标准化是指Z标准化。
A = (aij)p×m = (a1,a2,…am,),
Rai = λiai,
R为相关系数矩阵,λi、ai是相应的特征值和单位特征向量, λ1 ≥ λ2 ≥ …≥ λp ≥ 0 。
进行主成分分析主要步骤如下:
1 指标数据标准化(SPSS软件自动执行);
2 指标之间的相关性判定;
3 确定主成分个数m;
4 主成分Fi表达式;
5 主成分Fi命名;
主成分分析法的计算步骤
1、确认选择这个选项吗?见下图。理论上选择这个选项,不可能没有结果的。
2、调换位置后,变量名是否变化了?
3、String类型的数据只能分类变量,否则是不能用来说做数据分析的。分类变量,将字段改成字符串类型的就可以了。分析时,spss会自动对分类变量进行数字编码的。
欢迎分享,转载请注明来源:品搜搜测评网