保存因子分析就好,如果用spssau分析前先勾选“因子得分”选项,即可在分析后得到因子得分项。
spss直接把几个因子都已经算出来了,就是duFAC1-1列就是因子F1,同理可以得知F2,F3不用算的,如果问F1怎么来的,就说是F1=0701X1-0549X2+0736X3+0216X4+0112X5-0318X6。
如果进行主成分分析之后又要进行回归分析,应该是用提取出来的主因子作为自变量进行计算的,回归是只能有一个自变量,一个因变量才算回归的,如果不是的话,建议你使用多项式属分析。
把因变量的值还有自变量的值放到EXCEL里,按列排列。然后全部圈起来,找图表选项,绘制散点图,之后对其中的点点击右键,进行数据拟合就可以得出式子。
扩展资料:
标准逐步回归法做两件事情。即增加和删除每个步骤所需的预测。
向前选择法从模型中最显著的预测开始,然后为每一步添加变量。
向后剔除法与模型的所有预测同时开始,然后在每一步消除最小显著性的变量。
这种建模技术的目的是使用最少的预测变量数来最大化预测能力。这也是处理高维数据集的方法之一。
-回归分析
(1)首先将数据标准化,这是考虑到不同数据间的量纲不一致,因而必须要无量纲化。
(2)对标准化后的数据进行因子分析(主成分方法),使用方差最大化旋转。
(3)写出主因子得分和每个主因子的方程贡献率。 Fj =β1jX1 +β2jX2 +β3jX3 + ……+ βnjXn ; Fj 为主成分(j=1、2、……、m),X1、X2 、X3 、……、Xn 为各个指标,β1j、β2j、β3j、……、βnj为各指标在主成分Fj 中的系数得分,用ej表示Fj的方程贡献率。
(4)求出指标权重。 ωi=[(m∑j)βijej]/[(n∑i)(m∑j)βijej],ωi就是指标Xi的权重。
扩展资料
产品特点
1、操作简便
界面非常友好,除了数据录入及部分命令程序等少数输入工作需要键盘键入外,大多数操作可通过鼠标拖曳、点击“菜单”、“按钮”和“对话框”来完成。
2、编程方便
具有第四代语言的特点,告诉系统要做什么,无需告诉怎样做。只要了解统计分析的原理,无需通晓统计方法的各种算法,即可得到需要的统计分析结果。
对于常见的统计方法,SPSS的命令语句、子命令及选择项的选择绝大部分由“对话框”的操作完成。因此,用户无需花大量时间记忆大量的命令、过程、选择项。
3、功能强大
具有完整的数据输入、编辑、统计分析、报表、图形制作等功能。自带11种类型136个函数。SPSS提供了从简单的统计描述到复杂的多因素统计分析方法,比如数据的探索性分析、统计描述、列联表分析、二维相关、秩相关、偏相关、方差分析、非参数检验、多元回归、生存分析、协方差分析、判别分析、因子分析、聚类分析、非线性回归、Logistic回归等。
-spss
KMO检验用于检查变量间的偏相关性 一般认为该值大于09时效果最佳 07以上尚可,06时效果较差
Bartlett's球形检验用于检验相关阵是否是单位阵 P<001说明指标间并非独立,取值是有关系的。可以进行因子分析
根据上图 可以看出一共提取了3个主成分 可是能解释的方差为69958%
软件默认的是提取特征根大于1的主成分 如果加上第四个主成分的话可以解释的变异度为8626%
所以结合专业知识 可以考虑是不是增加一个主成分。
扩展资料:
软件模块实际上就是将以前单独发行的SPSS AnswerTree软件整合进了SPSS平台。笔者几年前在自己的网站上介绍SPSS 11的新功能时,曾经很尖锐地指出SPSS的产品线过于分散,应当把各种功能较单一的小软件,如AnswerTree、Sample Power等整合到SPSS等几个平台上去。
看来SPSS公司也意识到了这一点,而AnswerTree就是在此背景下第一个被彻底整合的产品。
Classification Tree模块基于数据挖掘中发展起来的树结构模型对分类变量或连续变量进行预测,可以方便、快速的对样本进行细分,而不需要用户有太多的统计专业知识。在市场细分和数据挖掘中有较广泛的应用。
已知该模块提供了CHAID、Exhaustive CHAID和C&RT三种算法,在AnswerTree中提供的QUEST算法尚不能肯定是否会被纳入。
为了方便新老用户的使用,Tree模块在操作方式上不再使用AnswerTree中的向导方式,而是SPSS近两年开始采用的交互式选项卡对话框。但是,整个选项卡界面的内容实际上是和原先的向导基本一致的,另外,模型的结果输出仍然是AnswerTree中标准的树形图,这使得AnswerTree的老用户基本上不需要专门的学习就能够懂得如何使用该模块。
由于树结构模型的方法体系和传统的统计方法完全不同,贸然引入可能会引起读者统计方法体系的混乱。为此,本次编写的高级教程并未介绍该模块,而将在高级教程的下一个版本,以及关于市场细分问题的教材中对其加以详细介绍。
参考资料:
看spss主成分分析结果图方法。
1、分析数据依次单击spss的分析降维因子分析。
2、降维分析接着,将评价员工能力的五个指标变量添加到变量选项框。
3、变量设置接着,进行分析方法的设置。点击描述分析,在弹出的描述分析设置上,勾选相关性矩阵中的系数。
首先、在spss中准备好要处理的数据,然后在菜单栏上执行:analyse--dimension reduction--factor analyse。打开因素分析对话框
接着、看到下图就是因素分析的对话框,将要分析的变量都放入variables窗口中
点击descriptives按钮,进入次级对话框,这个对话框可以输出我们想要看到的描述统计量
因为做主成分分析需要我们看一下各个变量之间的相关,对变量间的关系有一个了解,所以需要输出相关,勾选coefficience,点击continue,返回主对话框
回到主对话框,点击ok,开始输出数据处理结果
你看到的这第一个表格就是相关矩阵,现实的是各个变量之间的相关系数,通过相关系数,你可以看到各个变量之间的相关,进而了解各个变量之间的关系
第二个表格显示的主成分分析的过程,我们看到eigenvalues下面的total栏,他的意思就是特征根,他的意义是主成分影响力度的指标,一般以1为标准,如果特征根小于1,说明这个主因素的影响力度还不如一个基本的变量。所以我们只提取特征根大于1的主成分。如图所示,前三个主成分就是大于1的,所以我们只能说有三个主成分。另外,我们看到第一个主成分方差占所有主成分方差的469%,第二个占275%,第三个占150%。这三个累计达到了895%。
结果分析
(1)KMO与巴特利特球形检验
由表可以知,巴特利特球形检验的统计量值为3960473,相应的概率P值为0。在显著性水平下,应拒绝原假设,认为相关系数矩阵与单位矩阵存在显著差异。同时KMO值为0844,根据Kaiser给出的度量KMO的标椎可知问卷题项适合做因子分析。
(2)公因子方差
提取值表示每个变量被公因子表达的多少,一般认为,大于07就说明变量被公因子很好地表达。由表可以看出,绝大多数变量的提取值大于085,变量能被公因子很好地表达。
(3)解释总方差
提取方法:主成分分析法
(4)旋转成分矩阵
提取方法:主成分分析法
(5)计算因子得分:因子分析是基于研究各题项之间的内部依赖关系,将一些信息重叠、相关性高的变量指标归结为几个不相关的综合因子的多重统计方法。通过SPSS230得出的成分得分系数矩阵,见表,可得到、、、、公因子的得分表达式为:
其中、、、、公因子分别代表基础技能,创新能力,资源运用,合作精神,创新思维。
欢迎分享,转载请注明来源:品搜搜测评网