1、首先打开SPSSAU,右上角上传数据,点击或者拖拽原始数据文件上传。
2、选择进阶方法->主成分,选择需要分析的题目,拖拽到右侧。点击“开始主成分分析”。
3、可以自行设置好要输出的主成分个数,而不是让软件自动识别。
4、同时可以点选保存“成分得分”或“综合得分”,分析结束后用于后续分析使用。
5、完成以上操作后,即可得到分析结果,结果如下图所示,就完成了。
主成分分析就是将多项指标转化为少数几项综合指标,用综合指标来解释多变量的方差- 协方差结构。综合指标即为主成分。所得出的少数几个主成分,要尽可能多地保留原始变量的信息,且彼此不相关。
因子分析是研究如何以最少的信息丢失,将众多原始变量浓缩成少数几个因子变量,以及如何使因子变量具有较强的可解释性的一种多元统计分析方法。
聚类分析是依据实验数据本身所具有的定性或定量的特征来对大量的数据进行分组归类以了解数据集的内在结构,并且对每一个数据集进行描述的过程。其主要依据是聚到同一个数据集中的样本应该彼此相似,而属于不同组的样本应该足够不相似。
三种分析方法既有区别也有联系,本文力图将三者的异同进行比较,并举例说明三者在实际应用中的联系,以期为更好地利用这些高级统计方法为研究所用有所裨益。
二、基本思想的异同
(一) 共同点
主成分分析法和因子分析法都是用少数的几个变量(因子) 来综合反映原始变量(因子) 的主要信息,变量虽然较原始变量少,但所包含的信息量却占原始信息的85 %以上,所以即使用少数的几个新变量,可信度也很高,也可以有效地解释问题。并且新的变量彼此间互不相关,消除了多重共线性。这两种分析法得出的新变量,并不是原始变量筛选后剩余的变量。在主成分分析中,最终确定的新变量是原始变量的线性组合,如原始变量为x1 ,x2 , ,x3 ,经过坐标变换,将原有的p个相关变量xi 作线性变换,每个主成分都是由原有p 个变量线性组合得到。在诸多主成分Zi 中,Z1 在方差中占的比重最大,说明它综合原有变量的能力最强,越往后主成分在方差中的比重也小,综合原信息的能力越弱。因子分析是要利用少数几个公共因子去解释较多个要观测变量中存在的复杂关系,它不是对原始变量的重新组合,而是对原始变量进行分解,分解为公共因子与特殊因子两部分。公共因子是由所有变量共同具有的少数几个因子;特殊因子是每个原始变量独自具有的因子。对新产生的主成分变量及因子变量计算其得分,就可以将主成分得分或因子得分代替原始变量进行进一步的分析,因为主成分变量及因子变量比原始变量少了许多,所以起到了降维的作用,为我们处理数据降低了难度。
聚类分析的基本思想是: 采用多变量的统计值,定量地确定相互之间的亲疏关系,考虑对象多因素的联系和主导作用,按它们亲疏差异程度,归入不同的分类中一元,使分类更具客观实际并能反映事物的内在必然联系。也就是说,聚类分析是把研究对象视作多维空间中的许多点,并合理地分成若干类,因此它是一种根据变量域之间的相似性而逐步归群成类的方法,它能客观地反映这些变量或区域之间的内在组合关系[3 ]。聚类分析是通过一个大的对称矩阵来探索相关关系的一种数学分析方法,是多元统计分析方法,分析的结果为群集。对向量聚类后,我们对数据的处理难度也自然降低,所以从某种意义上说,聚类分析也起到了降维的作用。
(二) 不同之处
主成分分析是研究如何通过少数几个主成分来解释多变量的方差一协方差结构的分析方法,也就是求出少数几个主成分(变量) ,使它们尽可能多地保留原始变量的信息,且彼此不相关。它是一种数学变换方法,即把给定的一组变量通过线性变换,转换为一组不相关的变量(两两相关系数为0 ,或样本向量彼此相互垂直的随机变量) ,在这种变换中,保持变量的总方差(方差之和) 不变,同时具有最大方差,称为第一主成分;具有次大方差,称为第二主成分。依次类推。若共有p 个变量,实际应用中一般不是找p 个主成分,而是找出m (m < p) 个主成分就够了,只要这m 个主成分能反映原来所有变量的绝大部分的方差。主成分分析可以作为因子分析的一种方法出现。
因子分析是寻找潜在的起支配作用的因子模型的方法。因子分析是根据相关性大小把变量分组,使得同组内的变量之间相关性较高,但不同的组的变量相关性较低,每组变量代表一个基本结构,这个基本结构称为公共因子。对于所研究的问题就可试图用最少个数的不可测的所谓公共因子的线性函数与特殊因子之和来描述原来观测的每一分量。通过因子分析得来的新变量是对每个原始变量进行内部剖析。因子分析不是对原始变量的重新组合,而是对原始变量进行分解,分解为公共因子和特殊因子两部分。具体地说,就是要找出某个问题中可直接测量的具有一定相关性的诸指标,如何受少数几个在专业中有意义、又不可直接测量到、且相对独立的因子支配的规律,从而可用各指标的测定来间接确定各因子的状态。因子分析只能解释部分变异,主成分分析能解释所有变异。
聚类分析算法是给定m 维空间R 中的n 个向量,把每个向量归属到k 个聚类中的某一个,使得每一个向量与其聚类中心的距离最小。聚类可以理解为: 类内的相关性尽量大,类间相关性尽量小。聚类问题作为一种无指导的学习问题,目的在于通过把原来的对象集合分成相似的组或簇,来获得某种内在的数
问题一:统计分析中的因子分析(factors),如何确定因子的个数 方差累计贡献率,碎石图,特征根,很多的
问题二:主成分分析和因子分析有什么区别? 因子分析与主成分分析的异同点:
都对原始数据进行标准化处理; 都消除了原始指标的相关性对综合评价所造成的信息重复的影响; 构造综合评价时所涉及的权数具有客观性; 在信息损失不大的前提下,减少了评价工作量
公共因子比主成分更容易被解释; 因子分析的评价结果没有主成分分析准确; 因子分析比主成分分析的计算工作量大
主成分分析仅仅是变量变换,而因子分析需要构造因子模型。
主成分分析:原始变量的线性组合表示新的综合变量,即主成分;
因子分析:潜在的假想变量和随机影响变量的线性组合表示原始变量。
问题三:因子分析法的分析步骤 因子分析的核心问题有两个:一是如何构造因子变量;二是如何对因子变量进行命名解释。因此,因子分析的基本步骤和解决思路就是围绕这两个核心问题展开的。(i)因子分析常常有以下四个基本步骤:⑴确认待分析的原变量是否适合作因子分析。⑵构造因子变量。⑶利用旋转方法使因子变量更具有可解释性。⑷计算因子变量得分。(ii)因子分析的计算过程:⑴将原始数据标准化,以消除变量间在数量级和量纲上的不同。⑵求标准化数据的相关矩阵;⑶求相关矩阵的特征值和特征向量;⑷计算方差贡献率与累积方差贡献率;⑸确定因子:设F1,F2,…, Fp为p个因子,其中前m个因子包含的数据信息总量(即其累积贡献率)不低于80%时,可取前m个因子来反映原评价指标;⑹因子旋转:若所得的m个因子无法确定或其实际意义不是很明显,这时需将因子进行旋转以获得较为明显的实际含义。⑺用原指标的线性组合来求各因子得分:采用回归估计法,Bartlett估计法或Thomson估计法计算因子得分。⑻综合得分以各因子的方差贡献率为权,由各因子的线性组合得到综合评价指标函数。F = (w1F1+w2F2+…+wmFm)/(w1+w2+…+wm )此处wi为旋转前或旋转后因子的方差贡献率。⑼得分排序:利用综合得分可以得到得分名次。在采用多元统计分析技术进行数据处理、建立宏观或微观系统模型时,需要研究以下几个方面的问题:・ 简化系统结构,探讨系统内核。可采用主成分分析、因子分析、对应分析等方法,在众多因素中找出各个变量最佳的子 ,从子 所包含的信息描述多变量的系统结果及各个因子对系统的影响。“从树木看森林”,抓住主要矛盾,把握主要矛盾的主要方面,舍弃次要因素,以简化系统的结构,认识系统的内核。・ 构造预测模型,进行预报控制。在自然和社会科学领域的科研与生产中,探索多变量系统运动的客观规律及其与外部环境的关系,进行预测预报,以实现对系统的最优控制,是应用多元统计分析技术的主要目的。在多元分析中,用于预报控制的模型有两大类。一类是预测预报模型,通常采用多元线性回归或逐步回归分析、判别分析、双重筛选逐步回归分析等建模技术。另一类是描述性模型,通常采用聚类分析的建模技术。・ 进行数值分类,构造分类模式。在多变量系统的分析中,往往需要将系统性质相似的事物或现象归为一类。以便找出它们之间的联系和内在规律性。过去许多研究多是按单因素进行定性处理,以致处理结果反映不出系统的总的特征。进行数值分类,构造分类模式一般采用聚类分析和判别分析技术。如何选择适当的方法来解决实际问题,需要对问题进行综合考虑。对一个问题可以综合运用多种统计方法进行分析。例如一个预报模型的建立,可先根据有关生物学、生态学原理,确定理论模型和试验设计;根据试验结果,收集试验资料;对资料进行初步提炼;然后应用统计分析方法(如相关分析、逐步回归分析、主成分分析等)研究各个变量之间的相关性,选择最佳的变量子 ;在此基础上构造预报模型,最后对模型进行诊断和优化处理,并应用于生产实际。
问题四:因子分析到底有什么用处? 问题:大家觉得因子分析到底有什幺用处呢?把原来很多个影响因素归纳成几个影响因子,如果不继续做回归或者聚类的话,光做因子分析有价值吗?答复:因子分析是将多个实测变量转换为少数几个综合指标(或称潜变量),它反映一种降维的思想。通过降维将相关性高的变量聚在一起,从而减少需要分析的变量的数量,而减少问题分析的复杂性。在你对问题系统结构不了解时候,因子分析可以根据数据内在逻辑性,把它归并成几个公因子,每个公因子分别代表空间的一个维度,如果经过正交或斜 交旋转的话,各个维度之间可以认为是不相关的,这些公因子能够相对完整地刻画对象的体系维度,最起码累计方差贡献率大于85%的话,就基本能够保证重要信 息不丢失了。一句话,你如果对研究对象到底应该分为几个维度不清楚的话,用因子分析可以通过数据内在逻辑告诉你。但如果你对研究对象体系比较清楚的话,那你直接确定维度,通过AHP计算出权重,就能够把系统表述清楚了。但这里面有巨大问题,单纯通过数据内 在逻辑来判断维度,常常是错误的,而主观判断其实更加科学,并非象统计学宣称的,数据说话才有发言权。真正有发言权的,是你对问题的经验认识程度。人们为 了避免被人嘲笑主观判断的失误,而越来越选择了统计分析,实际上,他们并不清楚,单纯用统计分析来做判断,才是最愚蠢的。只有主客观结合起来,才是相对科 学的,两者矛盾的时候,应该深入研究矛盾的根源,搞不清楚的话,我认为指标体系评价法要远比统计分析准确的多。而变量之所以能分布在不同的因子内,则是由 于其方差波动性大小和变量之间的相关性决定的,波动性越大,越排在前面的公因子中,各个公因子之间的变量是不相关的,而每个公因子之间的变量是相关的。因 子分析认为那些数据波动大的变量对对象影响作用更大,它们排在公因子的前列,这样单纯从数据逻辑来判断的准则你认为对吗?我想,如果管理和社会科学都这幺 认为的话,那错误将大大增加了。上面想法是我这两年做课题的体会,没有在任何一本书上看过相关说法,也许说的不对,这是我个人看法。如果让我选择的话,我 宁愿用指标体系评价法,体系几个维度事先就清楚,最多先用因子分析算算,看看数据波动性如何,到底能确定几个维度,只起辅助作用。研究者就是专家,指标体 系的维度由主观来做判断,这主要来自经验判断,而不是由数据判断,我认为其实更科学。当然,如果你对问题一无所知,那指标体系评价法用AHP来做的话,错 误很可能更多。我以前就强烈批判过AHP。说到底,没有一种评价方法是好的,说明问题就好。问题:那能对LISREL进行类似于因子分析的探索性因素分析了解吗?能给点评价么?3x答复:下面是探索性分析的原理:传统上所谈的因素分析)factor ysis)指的是探索性因素分析)exploratory factor ysis),它的目的是在承认有测量误差的情形下,尝试用少数的因素)factors)以解释许多变项间的相关关系。随着统计理论及电脑计算上的进展,目前因素分析的方法可分成探索性因素分析)exploratory factor ysis,EFA)及验证性因素分析)confirmatory factor ysis,CFA),这两类分析之间的差别在于研究者对研究变项间因素结构的了解程度不同。如果研究者对资料内所含的因素性质,结构及个数不是很 清楚,则可使用探索性因素分析试图找出能解释资料变项间相关关系的少数几个重要因素。若研究者从过去文献中的理论及自己的研究经验,而对资料间因素之数 目,结构有一定程度的了解及假设,则可使用验证性因素分析来验证该假设是否能解>>
问题五:因子分析法是什么? 因子分析
1输入数据。
2点Analyze 下拉菜单,选Data Reduction 下的Factor 。
3打开Factor Analysis后,将数据变量逐个选中进入Variables 对话框中。
4单击主对话框中的Descriptive按扭,打开Factor Analysis: Descriptives子对话框,在Statistics栏中选择Univariate Descriptives项要求输出个变量的均值与标准差,在Correlation Matrix 栏内选择Coefficients项,要求计算相关系数矩阵,单击Continue按钮返回Factor Analysis主对话框。
5单击主对话框中的Extraction 按钮,打开如下图所示的Factor Analysis: Extraction 子对话框。在Method列表中选择默认因子抽取方法――Principal ponents,在Analyze 栏中选择默认的Correlation Matrix 项要求从相关系数矩阵出发求解主成分,在Exact 栏中选择Number of Factors;6, 要求显示所有主成分的得分和所能解释的方差。单击Continue按钮返回Factor Analysis主对话框。
6单击主对话框中的OK 按钮,输出结果。
统计专业研究生工作室原创,请勿复杂粘贴
问题六:怎么判断样本能不能因子分析? 基本指标层面的因子分析检验
在对数据进行因子分析前首先要对其进行检验,来判断是否适合做因子分析,检验所采用的方法为巴特利特球度检验(BartlettTestofSphericity)和KMO(Kaiser-Meyer-Olkin)检验。
巴特利特球度检(BartlettTestofSphericity)是假设相关系数矩阵是一个单位阵,如果统计量值比较大,且其相对应的相伴概率值小于用户指定的显著性水平,拒绝原假设,认为适合作因子分析。反之,接受原假设,不适合作因子分析。
问题七:因子分析法和数据包络分析法 有何区别? 100分 因子分析是指研究从变量群中提取共性因子的统计技术。最早由英国心理学家CE斯皮尔曼提出。他发现学生的各科成绩之间存在着一定的相关性,一科成绩好的学生,往往其他各科成绩也比较好,从而推想是否存在某些潜在的共性因子,或称某些一般智力条件影响着学生的学习成绩。因子分析可在许多变量中找出隐藏的具有代表性的因子。将相同本质的变量归入一个因子,可减少变量的数目,还可检验变量间关系的假设。
数据包络分析方法(DataEnvelopmentAnalysis,DEA)是运筹学、管理科学与数理经济学交叉研究的一个新领域。它是根据多项投入指标和多项产出指标,利用线性规划的方法,对具有可比性的同类型单位进行相对有效性评价的一种数量分析方法。DEA方法及其模型自1978年由美国著名运筹学家ACharnes和WWCooper提出以来,已广泛应用于不同行业及部门,并且在处理多指标投入和多指标产出方面,体现了其得天独厚的优势。
问题八:因子分析法的优缺点 ・ 简化系统结构,探讨系统内核。可采用主成分分析、因子分析、对应分析等方法,在众多因素中找出各个变量最佳的子 ,从子 所包含的信息描述多变量的系统结果及各个因子对系统的影响。“从树木看森林”,抓住主要矛盾,把握主要矛盾的主要方面,舍弃次要因素,以简化系统的结构,认供系统的内核。 ・ 构造预测模型,进行预报控制。在自然和社会科学领域的科研与生产中,探索多变量系统运动的客观规律及其与外部环境的关系,进行预测预报,以实现对系统的最优控制,是应用多元统计分析技术的主要目的。在多元分析中,用于预报控制的模型有两大类。一类是预测预报模型,通常采用多元线性回归或逐步回归分析、判别分析、双重筛选逐步回归分析等建模技术。另一类是描述性模型,通常采用聚类分析的建模技术。 ・ 进行数值分类,构造分类模式。在多变量系统的分析中,往往需要将系统性质相似的事物或现象归为一类。以便找出它们之间的联系和内在规律性。过去许多研究多是按单因素进行定性处理,以致处理结果反映不出系统的总的特征。进行数值分类,构造分类模式一般采用聚类分析和判别分析技术。 如何选择适当的方法来解决实际问题,需要对问题进行综合考虑。对一个问题可以综合运用多种统计方法进行分析。例如一个预报模型的建立,可先根据有关生物学、生态学原理,确定理论模型和试验设计;根据试验结果,收集试验资料;对资料进行初步提炼;然后应用统计分析方法(如相关分析、逐步回归分析、主成分分析等)研究各个变量之间的相关性,选择最佳的变量子 ;在此基础上构造预报模型,最后对模型进行诊断和优化处理,并应用于生产实际。
问题九:因子分析法如何确定主成分及各个指标的权重? 5分 在SPSS中,主成分分析是通过设置因子分析中的抽取方法实现的,如果设置的抽取方法是主成分,那么计算的就是主成分得分,另外,因子分析和主成分分析尽管原理不同,但是两者综合得分的计算方法是一致的。
确定数据的权重也是进行数据分析的重要前提。可以利用SPSS的因子分析方法来确定权重。主要步骤是:
(1)首先将数据标准化,这是考虑到不同数据间的量纲不一致,因而必须要无量纲化。
(2)对标准化后的数据进行因子分析(主成分方法),使用方差最大化旋转。
(3)写出主因子得分和每个主因子的方程贡献率。
Fj =β1jX1 +β2jX2 +β3jX3 + ……+ βnjXn ; Fj 为主成分(j=1、2、……、m),X1、X2 、X3 、……、Xn 为各个指标,β1j、β2j、β3j、……、βnj为各指标在主成分Fj 中的系数得分,用ej表示Fj的方程贡献率。
(4)求出指标权重。 ωi=[(m∑j)βijej]/[(n∑i)(m∑j)βijej],ωi就是指标Xi的权重。
因子分析应用在评价指标权重确定中,通过主成分分析法得到的各指标的公因子方差,其值大小表示该项指标对总体变异的贡献,通过计算各个公因子方差占公因子方差总和的百分数。
问题十:什么是因子分析,该方法可以解决哪些问题 可以将变量或指标划分为若干维度,以便进一步做更高级的统计分析。南心网SPSS。
要求是最少二十个样本,十个变量。
1、主成分分析在于对原始变量的线性变换,注意是转换、变换;而因子分析在于对原始变量的剖析,注意是剖析,是分解,分解为公共因子和特殊因子。
2、这两种分析法得出的新变量,也就是成分或者因子,并不是原始变量筛选或者提出后剩余的变量。
3、因子分析只能解释部分变异(指公共因子),主成分分析能解释所有变异(如果提取了所有成分)。
4、主成分分析,有几个变量就至少有几个成分,一般只提取能解释80%以上的成分;因子分析,有几个变量不一定有几个公共因子,因为这里的因子是公因子,潜在的存在与每一个变量中,需要从每一个变量中去分解,无法解释的部分是特殊因子。
5、spss因子分析过程对各变量间量纲和单位造成的影响,默认自动进行标准化处理,因此不必要在开始之前单独进行数据标准化处理,因为,标准化与否结果一致。
6、spss因子分析重要结果:KMO值,此值是否进行计算与变量个数、样本个数有关,不一定会在每次执行中都显示,如没有此结果,可通过调整变量和样本的比例实现。
因子分析的方法约有10多种,如重心法、影像分析法,最大似然解、最小平方法、阿尔发抽因法、拉奥典型抽因法等等。这些方法本质上大都属近似方法,是以相关系数矩阵为基础的,所不同的是相关系数矩阵对角线上的值,采用不同的共同性□2估值。在社会学研究中,因子分析常采用以主成分分析为基础的反覆法。 主成分分析为基础的反覆法 主成分分析的目的与因子分析不同,它不是抽取变量群中的共性因子,而是将变量□1,□2,…,□□进行线性组合,成为互为正交的新变量□1,□2,…,□□,以确保新变量具有最大的方差: 在求解中,正如因子分析一样,要用到相关系数矩阵或协方差矩阵。其特征值□1,□2,…,□□,正是□1,□2,…,□□的方差,对应的标准化特征向量,正是方程中的系数□,□,…,□。如果□1>□2,…,□□,则对应的□1,□2,…,□□分别称作第一主成分,第二主成分,……,直至第□主成分。如果信息无需保留100%,则可依次保留一部分主成分□1,□2,…,□□(□<□)。 当根据主成分分析,决定保留□个主成分之后,接着求□个特征向量的行平方和,作为共同性□: □并将此值代替相关数矩阵对角线之值,形成约相关矩阵。根据约相关系数矩阵,可进一步通过反复求特征值和特征向量方法确定因子数目和因子的系数。 因子旋转 为了确定因子的实际内容,还须进一步旋转因子,使每一个变量尽量只负荷于一个因子之上。这就是简单的结构准则。常用的旋转有直角旋转法和斜角旋转法。作直角旋转时,各因素仍保持相对独立。在作斜角旋转时,允许因素间存在一定关系。 Q型因子分析 上述从变量群中提取共性因子的方法,又称R型因子分析和R型主要成分分析。但如果研究个案群的共性因子,则称Q型因子分析和Q型主成分分析。这时只须把调查的□个方案,当作□个变量,其分析方法与R型因子分析完全相同。 因子分析是社会研究的一种有力工具,但不能肯定地说一项研究中含有几个因子,当研究中选择的变量变化时,因子的数量也要变化。此外对每个因子实际含意的解释也不是绝对的。
一、性质不同
1、主成分分析法性质:通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量。
2、因子分析法性质:研究从变量群中提取共性因子的统计技术。
二、应用不同
1、主成分分析法应用:比如人口统计学、数量地理学、分子动力学模拟、数学建模、数理分析等学科中均有应用,是一种常用的多变量分析方法。
2、因子分析法应用:
(1)消费者习惯和态度研究(U&A)
(2) 品牌形象和特性研究
(3)服务质量调查
(4) 个性测试
(5)形象调查
(6) 市场划分识别
(7)顾客、产品和行为分类
扩展资料:
主成分分析的原理是设法将原来变量重新组合成一组新的相互无关的几个综合变量,同时,根据实际需要,尽量少取几个求和变量,以反映原始变量的信息。
这种统计方法被称为主成分分析或主成分分析,这也是一种处理降维的数学方法。主成分分析(PCA)是试图用一组新的不相关的综合指标来代替原来的指标。
因子分析为社会研究的一种有力工具,但不能确定一项研究中有几个因子。当研究中选择的变量发生变化时,因素的数量也会发生变化。此外,对每个因素的实际含义的解释也不是绝对的。
-主成分分析
-因子分析
问题一:因子分析法的优缺点 ・ 简化系统结构,探讨系统内核。可采用主成分分析、因子分析、对应分析等方法,在众多因素中找出各个变量最佳的子 ,从子 所包含的信息描述多变量的系统结果及各个因子对系统的影响。“从树木看森林”,抓住主要矛盾,把握主要矛盾的主要方面,舍弃次要因素,以简化系统的结构,认供系统的内核。 ・ 构造预测模型,进行预报控制。在自然和社会科学领域的科研与生产中,探索多变量系统运动的客观规律及其与外部环境的关系,进行预测预报,以实现对系统的最优控制,是应用多元统计分析技术的主要目的。在多元分析中,用于预报控制的模型有两大类。一类是预测预报模型,通常采用多元线性回归或逐步回归分析、判别分析、双重筛选逐步回归分析等建模技术。另一类是描述性模型,通常采用聚类分析的建模技术。 ・ 进行数值分类,构造分类模式。在多变量系统的分析中,往往需要将系统性质相似的事物或现象归为一类。以便找出它们之间的联系和内在规律性。过去许多研究多是按单因素进行定性处理,以致处理结果反映不出系统的总的特征。进行数值分类,构造分类模式一般采用聚类分析和判别分析技术。 如何选择适当的方法来解决实际问题,需要对问题进行综合考虑。对一个问题可以综合运用多种统计方法进行分析。例如一个预报模型的建立,可先根据有关生物学、生态学原理,确定理论模型和试验设计;根据试验结果,收集试验资料;对资料进行初步提炼;然后应用统计分析方法(如相关分析、逐步回归分析、主成分分析等)研究各个变量之间的相关性,选择最佳的变量子 ;在此基础上构造预报模型,最后对模型进行诊断和优化处理,并应用于生产实际。
问题二:因子分析法和数据包络分析法 有何区别? 100分 因子分析是指研究从变量群中提取共性因子的统计技术。最早由英国心理学家CE斯皮尔曼提出。他发现学生的各科成绩之间存在着一定的相关性,一科成绩好的学生,往往其他各科成绩也比较好,从而推想是否存在某些潜在的共性因子,或称某些一般智力条件影响着学生的学习成绩。因子分析可在许多变量中找出隐藏的具有代表性的因子。将相同本质的变量归入一个因子,可减少变量的数目,还可检验变量间关系的假设。
数据包络分析方法(DataEnvelopmentAnalysis,DEA)是运筹学、管理科学与数理经济学交叉研究的一个新领域。它是根据多项投入指标和多项产出指标,利用线性规划的方法,对具有可比性的同类型单位进行相对有效性评价的一种数量分析方法。DEA方法及其模型自1978年由美国著名运筹学家ACharnes和WWCooper提出以来,已广泛应用于不同行业及部门,并且在处理多指标投入和多指标产出方面,体现了其得天独厚的优势。
问题三:因子分析是否一定能得分析得到主因子 主成分分析法在SPSS中没有办法直接实现,是通过因子分析来构建模型的它们的区别还是模型构建体系不一样,因子分析是 F=AX; 主成分分析则是用特征根向量求出的矩阵算出因子得分,与因子分析直接得出的得分是不一样的
问题四:因子分析是否一定能得分析得到主因子 因子分析有前提条件的
问题五:因子分析法在研究企业业绩评价中有什么优点 可以用因子熵值法:
因子熵值法的原理是运用因子分析法减少评价指标,在尽量减少原指标所含信息的损失的基础上,将众多的单项指标综合为少数综合指标;运用熵值法客观确定指标权重,在数学变换中伴随生成综合评价所涉及的权数,最大限度减少评价者个人因素对评价结果的影响。
如下:案例
某建筑集团公司下属有六个施工企业,每年需要对其进行绩效评价。评价指标体系为塔式结构,包含3个指标层,共49个指标(具体评价指标体系略)。以往采用加权合成法、模糊综合评价等方法进行评价,评价工作复杂,评价结果往往受到评价者个人因素的较大影响。因此,该企业尝试在绩效评价体系中应用因子熵值法。
项目管理者联盟文章,深入探讨。
因子熵值法首先需要对因子分析以提取主因子并命名,它的过程包含以下内容:①对原始数据进行标准化处理,对标准化指标求相关系数矩阵。相关系数可反映指标间信息重迭的程度,其值越大,信息重迭的程度越高;其值越小,重迭的程度越低。②计算相关系数矩阵的特征值、特征向量、特征值贡献率和特征值累积贡献率。③根据特征值贡献率和累积贡献率确定主因子个数。确定的一般原则为:当累积贡献率>80%,某一主因子贡献率 问题六:怎么判断样本能不能因子分析? 基本指标层面的因子分析检验
在对数据进行因子分析前首先要对其进行检验,来判断是否适合做因子分析,检验所采用的方法为巴特利特球度检验(BartlettTestofSphericity)和KMO(Kaiser-Meyer-Olkin)检验。
巴特利特球度检(BartlettTestofSphericity)是假设相关系数矩阵是一个单位阵,如果统计量值比较大,且其相对应的相伴概率值小于用户指定的显著性水平,拒绝原假设,认为适合作因子分析。反之,接受原假设,不适合作因子分析。
问题七:探索性因子分析的目的意义有哪些 看你对变量理论的分组符不符合实际的情况,是确保模型合理性的前提
欢迎分享,转载请注明来源:品搜搜测评网