spss的主成分分析主要应用在因子分析里,目的是将原来很多的因素,通过他们内在的相关分析,整合成新的一个或多个相对独立的综合因素,来代表原来散乱的因素。
例如我们测量客户满意度设计了10个题目,那数据收集完后,就可以通过因子分析,来看看这10个题目是否能综合成几个因素。通过spss的主成分分析,就可以得出相应结果。
结果可能是其中5个题目的相关显著,可以通过一个因素来归纳这5个因素,另外3个、 2个也可以分别组成一个,而且主成分对应的特征值大于1,这样就最后就可以通过3个综合因素来研究和分析客户满意度了。
主成分分析可以理解为一种数据的处理理论,也可以理解为一种应用方法。而因子分析则可以理解为一种应用方法,因为做因子分析采用的比较多的就是用主成分分析的方法来浓缩因子。
所以其实所谓的区别只不过是在学科研究当中存在的,因为同属于统计学的理论,所以一定要找出两者的区别来。但是如果你只是应用的话,那就没必要考虑两者有什么区别。
一、性质不同
1、主成分分析法性质:通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量。
2、因子分析法性质:研究从变量群中提取共性因子的统计技术。
二、应用不同
1、主成分分析法应用:比如人口统计学、数量地理学、分子动力学模拟、数学建模、数理分析等学科中均有应用,是一种常用的多变量分析方法。
2、因子分析法应用:
(1)消费者习惯和态度研究(U&A)
(2) 品牌形象和特性研究
(3)服务质量调查
(4) 个性测试
(5)形象调查
(6) 市场划分识别
(7)顾客、产品和行为分类
扩展资料:
主成分分析的原理是设法将原来变量重新组合成一组新的相互无关的几个综合变量,同时,根据实际需要,尽量少取几个求和变量,以反映原始变量的信息。
这种统计方法被称为主成分分析或主成分分析,这也是一种处理降维的数学方法。主成分分析(PCA)是试图用一组新的不相关的综合指标来代替原来的指标。
因子分析为社会研究的一种有力工具,但不能确定一项研究中有几个因子。当研究中选择的变量发生变化时,因素的数量也会发生变化。此外,对每个因素的实际含义的解释也不是绝对的。
-主成分分析
-因子分析
主成分分析PCA是将多指标重新组合成一组新的无相关的几个综合指标,是根据实际需要从中选取尽可能少的综合指标,以达到尽可能多地反应原指标信息的分析方法。由于这种方法的第一主成分在所有的原始变量中方差最大,因而综合评价函数的方差总不会超过第一主成分的方差,所以该方法有一定的缺陷,且提取的主成分个数m通常应明显小于原始变量个数p(除非p本身较小),所以在变量较少时就不太适合先用主成分筛选变量,这个视数据情况而定
主成分分析实现步骤:
1、原始数据标准化,消除变量量纲不同的影响;
2、计算相关系数矩阵,计算特征值和对应的特征向量;
3、计算贡献率和累计贡献率。
疑问解答:
1计算特征值的含义?
PCA的本质是对角化协方差矩阵,后对一个n x n的对称协方差矩阵分解求特征值和特征向量,就会产生n个n维正交基,每个正交基对应一个特征值,吧矩阵投影在这n个基上,此时的特征值的横就表示在该基上的投影长度,特征值越大,说明矩阵对应的特征向量上的方差越大,样本点越离散,越容易区分,包含的信息量越多
2主成分系数
根据主成分系数判断主成分主要依赖的几个变量,根据主要依赖变量总结该主成分(综合指标)代表的性质
3主成分得分
主成分得分其实就是降维之后数据,可对降维之后的主成分得分进行聚类分析,得到相似的类别群体
主成分分析最主要的用途在于“降维”。
举个例子,你要做一项分析,选中了20个指标,你觉得都很重要,但是20个指标对于你的分析确实太过繁琐,这时候,你就可以采用主成分分析的方法进行降维。
20个指标之间会有这样那样的相互关系,相互之间会有影响,通过主成分分析后,得到4个或者5个主成分指标。此时,这几个主成分指标既涵盖了你20个指标中的绝大部分信息,又让你的分析得到了简化(从20维降到4、5维),简化了分析过程,增加了结果精度。
欢迎分享,转载请注明来源:品搜搜测评网