双碱法脱硫技术改进
双碱法脱硫是指采用NaOH和石灰(氢氧化钙)两种碱性物质做脱硫剂的脱硫方法
双碱法脱硫一般只有一个循环水池,NaOH、石灰与除尘脱硫过程中捕集下来的烟灰同在一个循环池内混合,在清除循环水池内的灰渣时烟灰、反应生成物亚硫酸钙、硫酸钙及石灰渣和未完全反应的石灰同时被清除,清出的灰渣是一种混合物不易被利用而形成废渣
为克服传统双碱法的缺点对双碱法工艺进行改进,工艺改进情况见图1
图1 双碱法脱硫工艺流程
主要工艺过程是:清水池一次性加入氢氧化钠溶剂制成氢氧化钠脱硫液(循环水),用泵打入脱硫除尘器进行脱硫3种生成物均溶于水在脱硫过程中,烟气夹杂的烟道灰同时被循环水湿润而捕集进入循环水,从脱硫除尘器排出的循环水变为灰水(稀灰浆)一起流入沉淀池,烟道灰经沉淀定期清除,回收利用,如制内燃砖等上清液溢流进入反应池与投加的石灰进行反应,置换出的氢氧化钠溶解在循环水中,同时生成难溶解的亚硫酸钙、硫酸钙和碳酸钙等,可通过沉淀清除;可以回收,是制水泥的良好原料
因此可做到废物综合利用,降低运行费用
用NaOH脱硫,循环水基本上是NaOH的水溶液在循环过程中对水泵、管道、设备均无腐蚀与堵塞现象,便于设备运行与保养天猫美国普卫欣提示:雾霾天气出行记得做好防护。
为保证脱硫除尘器正常运行,烟气排放稳定达标,确保脱硫剂有足够使用量是一个关键问题脱硫剂用量计算如下:
脱硫反应中,NaOH的消耗量是SO2和CO2与其反应的消耗量用量需要过量5%以上(按5%计算)
前面计算的10 t/h锅炉烟气中SO2排放量为42 kg/h,CO2排放是为2 161 kg/h
SO2和CO2中和反应用氢氧化钠量为:
(80×42÷64+80×2 161÷44)×105%
=4 180 kg
脱硫过程由于NaOH的转换实际消耗是石灰折算成生石灰消耗量56×4 180÷80=2 926 kg
生石灰日消耗量为70 224 kg
综上所述,脱硫过程的碱消耗量是很大的但要保证脱硫效率,就必须要保证碱的用量,通过比较双碱法脱硫可以实现脱硫效率高,运行费用相对比较低,操作方便,无二次污染,废渣可综合利用所以改进后的双碱法脱硫工艺是值得推荐和推广应用的
燃煤烟气中的二氧化硫是国家环保部门重点监控的排放指标,烟气脱硫技术的发展和应
用在我国发展较快。燃煤烟气脱除S02的工艺之一是利用MgO吸收S02,即MgO+
S02--~MgS04。在清除烟气中的S02后,会产生大量的废渣,其主要成分是MgS04‘7H20,
这些废渣每年要占用大面积的堆放场地。所以,烟气脱硫工程能否持续运行,其关键问题是
能否找到废弃物再利用的途径。如果不加以妥善处置,会对环境造成二次污染,因此,应用
脱硫镁渣进行沙漠治理,是一个除弊兴利的环保循环经济课题。
2应用说明
我国有大面积无法利用的沙漠,这种土壤被人们认为是极其难以改良利用的。主要原因
是沙漠地区常年干旱缺雨,即使偶尔降雨也会很快蒸发。要使沙漠变绿洲,就必须使沙漠储
存足够的可供植物吸收的水分。
课题组野外考察发现,草原成分的植物基本上是依赖于当年的降水返青与生长,而荒漠
成分的植物却并不依赖于当年的降水。但水是植物的生命线,没有水是不能生存的。不靠降
水,那么必然有一个另外的特殊的水源。从荒漠土壤剖面结构上看,在50~100cm之间,会
出现一个连续、带状的白色的盐霜带。这是一个易溶性盐分的聚积层。上面的50cm是盐分
的淋溶层,也是非盐化层。研究发现多年生的草本植物根系,主要分布在淋溶层内,且不分
又、无细根;而进入盐分聚积层以后,侧根和细根则大量展布开来。草原植物一般是不抗盐
的,其渗透压和吸水力不能从高浓度=L壤溶液中吸收水分,只能在表层20cm内等待当年的
降水:沙漠植物是盐生植物,具有很高的渗透压和吸水力,只要不是很高浓度的液态水
一般分为烟气脱硫和橡胶专业的脱硫 烟气脱硫——除去烟气中的硫及化合物的过程,主要指烟气中的SO、SO2。以达到环境要求。 橡胶专业的脱硫——devulcanizing 指采用不同加热方式并应用相应设备使废胶粉在再生剂参与下与硫键断裂获得具有类似生胶性能的化学物理降解过程。它是制造再生胶过程的一道主要工序。分为:水油法、油法。
脱硫技术
将煤中的硫元素用钙基等方法固定成为固体防止燃烧时生成SO2
通过对国内外脱硫技术以及国内电力行业引进脱硫工艺试点厂情况的分析研究,目
前脱硫方法一般可划分为燃烧前脱硫、燃烧中脱硫和燃烧后脱硫等3类。
其中燃烧后脱硫,又称烟气脱硫(Flue gas desulfurization,简称FGD),在FGD技术中,按脱硫剂的种类划分,可分为以下五种方法:以CaCO3(石灰石)为基础的钙法,以MgO为基础的镁法,以Na2SO3为基础的钠法,以NH3为基础的氨法,以有机碱为基础的有机碱法。世界上普遍使用的商业化技术是钙法,所占比例在90%以上。按吸收剂及脱硫产物在脱硫过程中的干湿状态又可将脱硫技术分为湿法、干法和半干(半湿)法。湿法FGD技术是用含有吸收剂的溶液或浆液在湿状态下脱硫和处理脱硫产物,该法具有脱硫反应速度快、设备简单、脱硫效率高等优点,但普遍存在腐蚀严重、运行维护费用高及易造成二次污染等问题。干法FGD技术的脱硫吸收和产物处理均在干状态下进行,该法具有无污水废酸排出、设备腐蚀程度较轻,烟气在净化过程中无明显降温、净化后烟温高、利于烟囱排气扩散、二次污染少等优点,但存在脱硫效率低,反应速度较慢、设备庞大等问题。半干法FGD技术是指脱硫剂在干燥状态下脱硫、在湿状态下再生(如水洗活性炭再生流程),或者在湿状态下脱硫、在干状态下处理脱硫产物(如喷雾干燥法)的烟气脱硫技术。特别是在湿状态下脱硫、在干状态下处理脱硫产物的半干法,以其既有湿法脱硫反应速度快、脱硫效率高的优点,又有干法无污水废酸排出、脱硫后产物易于处理的优势而受到人们广泛的关注。按脱硫产物的用途,可分为抛弃法和回收法两种。
脱硫的几种工艺(1)石灰石——石膏法烟气脱硫工艺
石灰石——石膏法脱硫工艺是世界上应用最广泛的一种脱硫技
术,日本、德国、美国的火力发电厂采用的烟气脱硫装置约90%采用此工艺。
它的工作原理是:将石灰石粉加水制成浆液作为吸收剂泵入吸收塔与烟气充分接触混合,烟气中的二氧化硫与浆液中的碳酸钙以及从塔下部鼓入的空气进行氧化反应生成硫酸钙,硫酸钙达到一定饱和度后,结晶形成二水石膏。经吸收塔排出的石膏浆液经浓缩、脱水,使其含水量小于10%,然后用输送机送至石膏贮仓堆放,脱硫后的烟气经过除雾器除去雾滴,再经过换热器加热升温后,由烟囱排入大气。由于吸收塔内吸收剂浆液通过循环泵反复循环与烟气接触,吸收剂利用率很高,钙硫比较低,脱硫效率可大于95% 。
(2)旋转喷雾干燥烟气脱硫工艺
喷雾干燥法脱硫工艺以石灰为脱硫吸收剂,石灰经消化并加水制成消石灰乳,消
石灰乳由泵打入位于吸收塔内的雾化装置,在吸收塔内,被雾化成细小液滴的吸收剂与烟气混合接触,与烟气中的SO2发生化学反应生成CaSO3,烟气中的SO2被脱除。与此同时,吸收剂带入的水分迅速被蒸发而干燥,烟气温度随之降低。脱硫反应产物及未被利用的吸收剂以干燥的颗粒物形式随烟气带出吸收塔,进入除尘器被收集下来。脱硫后的烟气经除尘器除尘后排放。为了提高脱硫吸收剂的利用率,一般将部分除尘器收集物加入制浆系统进行循环利用。该工艺有两种不同的雾化形式可供选择,一种为旋转喷雾轮雾化,另一种为气液两相流。
喷雾干燥法脱硫工艺具有技术成熟、工艺流程较为简单、系统可靠性高等特点,脱硫率可达到85%以上。该工艺在美国及西欧一些国家有一定应用范围(8%)。脱硫灰渣可用作制砖、筑路,但多为抛弃至灰场或回填废旧矿坑。
(3) 磷铵肥法烟气脱硫工艺
磷铵肥法烟气脱硫技术属于回收法,以其副产品为磷铵而命名。该工艺
过程主要由吸附(活性炭脱硫制酸)、萃取(稀硫酸分解磷矿萃取磷酸)、中和(磷铵中和液制备)、吸收( 磷铵液脱硫制肥)、氧化(亚硫酸铵氧化)、浓缩干燥(固体肥料制备)等单元组成。它分为两个系统:
烟气脱硫系统——烟气经高效除尘器后使含尘量小于200mg/Nm3,用风机将烟压升高到7000Pa,先经文氏管喷水降温调湿,然后进入四塔并列的活性炭脱硫塔组(其中一只塔周期性切换再生),控制一级脱硫率大于或等于70%,并制得30%左右浓度的硫酸,一级脱硫后的烟气进入二级脱硫塔用磷铵浆液洗涤脱硫,净化后的烟气经分离雾沫后排放。
肥料制备系统——在常规单槽多浆萃取槽中,同一级脱硫制得的稀硫酸分解磷矿粉(P2O5 含量大于26%),过滤后获得稀磷酸(其浓度大于10%),加氨中和后制得磷氨,作为二级脱硫剂,二级脱硫后的料浆经浓缩干燥制成磷铵复合肥料。
(4)炉内喷钙尾部增湿烟气脱硫工艺
炉内喷钙加尾部烟气增湿活化脱硫工艺是在炉内喷钙脱硫工艺的基础上在锅炉尾部增设了增湿段,以提高脱硫效率。该工艺多以石灰石粉为吸收剂,石灰石粉由气力喷入炉膛850~1150℃
温度区,石灰石受热分解为氧化钙和二氧化碳,氧化钙与烟气中的二氧化硫反应生成亚硫酸钙。由于反应在气固两相之间进行,受到传质过程的影响,反应速度较慢,吸收剂利用率较低。在尾部增湿活化反应器内,增湿水以雾状喷入,与未反应的氧化钙接触生成氢氧化钙进而与烟气中的二氧化硫反应。当钙硫比控制在20~25时,系统脱硫率可达到65~80%。由于增湿水的加入使烟气温度下降,一般控制出口烟气温度高于露点温度10~15℃,增湿水由于烟温加热被迅速蒸发,未反应的吸收剂、反应产物呈干燥态随烟气排出,被除尘器收集下来。
该脱硫工艺在芬兰、美国、加拿大、法国等国家得到应用,采用这一脱硫技术的最大单机容量已达30万千瓦。
(5)烟气循环流化床脱硫工艺
烟气循环流化床脱硫工艺由吸收剂制备、吸收塔、脱硫灰再循环、除尘
器及控制系统等部分组成。该工艺一般采用干态的消石灰粉作为吸收剂,也可采用其它对二氧化硫有吸收反应能力的干粉或浆液作为吸收剂。
由锅炉排出的未经处理的烟气从吸收塔(即流化床)底部进入。吸收塔底部为一个文丘里装置,烟气流经文丘里管后速度加快,并在此与很细的吸收剂粉末互相混合,颗粒之间、气体与颗粒之间剧烈摩擦,形成流化床,在喷入均匀水雾降低烟温的条件下,吸收剂与烟气中的二氧化硫反应生成CaSO3 和CaSO4。脱硫后携带大量固体颗粒的烟气从吸收塔顶部排出,进入再循环除尘器,被分离出来的颗粒经中间灰仓返回吸收塔,由于固体颗粒反复循环达百次之多,故吸收剂利用率较高。
此工艺所产生的副产物呈干粉状,其化学成分与喷雾干燥法脱硫工艺类似,主要由飞灰、CaSO3、CaSO4和未反应完的吸收剂Ca(OH)2等组成,适合作废矿井回填、道路基础等。
典型的烟气循环流化床脱硫工艺,当燃煤含硫量为2%左右,钙硫比不大于13时,脱硫率可达90%以上,排烟温度约70℃。此工艺在国外目前应用在10~20万千瓦等级机组。由于其占地面积少,投资较省,尤其适合于老机组烟气脱硫。
(6)海水脱硫工艺
海水脱硫工艺是利用海水的碱度达到脱除烟气中二氧化硫的一种脱硫方法
。在脱硫吸收塔内,大量海水喷淋洗涤进入吸收塔内的燃煤烟气,烟气中的二氧化硫被海水吸收而除去,净化后的烟气经除雾器除雾、经烟气换热器加热后排放。吸收二氧化硫后的海水与大量未脱硫的海水混合后,经曝气池曝气处理,使其中的SO32-被氧化成为稳定的SO42-,并使海水的PH值与COD调整达到排放标准后排放大海。海水脱硫工艺一般适用于靠海边、扩散条件较好、用海水作为冷却水、燃用低硫煤的电厂。海水脱硫工艺在挪威比较广泛用于炼铝厂、炼油厂等工业炉窑的烟气脱硫,先后有20多套脱硫装置投入运行。近几年,海水脱硫工艺在电厂的应用取得了较快的进展。此种工艺最大问题是烟气脱硫后可能产生的重金属沉积和对海洋环境的影响需要长时间的观察才能得出结论,因此在环境质量比较敏感和环保要求较高的区域需慎重考虑。
(7) 电子束法脱硫工艺
该工艺流程有排烟预除尘、烟气冷却、氨的充入、电子束照射和副产品捕
集等工序所组成。锅炉所排出的烟气,经过除尘器的粗滤处理之后进入冷却塔,在冷却塔内喷射冷却水,将烟气冷却到适合于脱硫、脱硝处理的温度(约70℃)。烟气的露点通常约为50℃,被喷射呈雾状的冷却水在冷却塔内完全得到蒸发,因此,不产生废水。通过冷却塔后的烟气流进反应器,在反应器进口处将一定的氨水、压缩空气和软水混合喷入,加入氨的量取决于SOx浓度和NOx浓度,经过电子束照射后,SOx和NOx在自由基作用下生成中间生成物硫酸(H2SO4)和硝酸(HNO3)。然后硫酸和硝酸与共存的氨进行中和反应,生成粉状微粒(硫酸氨(NH4)2SO4与硝酸氨NH4NO3的混合粉体)。这些粉状微粒一部分沉淀到反应器底部,通过输送机排出,其余被副产品除尘器所分离和捕集,经过造粒处理后被送到副产品仓库储藏。净化后的烟气经脱硫风机由烟囱向大气排放。
(8)氨水洗涤法脱硫工艺
该脱硫工艺以氨水为吸收剂,副产硫酸铵化肥。锅炉排出的烟气经烟气换
热器冷却至90~100℃,进入预洗涤器经洗涤后除去HCI和HF,洗涤后的烟气经过液滴分离器除去水滴进入前置洗涤器中。在前置洗涤器中,氨水自塔顶喷淋洗涤烟气,烟气中的SO2被洗涤吸收除去,经洗涤的烟气排出后经液滴分离器除去携带的水滴,进入脱硫洗涤器。在该洗涤器中烟气进一步被洗涤,经洗涤塔顶的除雾器除去雾滴,进入脱硫洗涤器。再经烟气换热器加热后经烟囱排放。洗涤工艺中产生的浓度约30%的硫酸铵溶液排出洗涤塔,可以送到化肥厂进一步处理或直接作为液体氮肥出售,也可以把这种溶液进一步浓缩蒸发干燥加工成颗粒、晶体或块状化肥出售。
燃烧前脱硫
燃烧前脱硫就是在煤燃烧前把煤中的硫分脱除掉,燃烧前脱硫技术主要有物理洗选煤法、化学洗选煤法、添加固硫剂、煤的气化和液化、水煤浆技术等。洗选煤是采用物理、化学或生物方式对锅炉使用的原煤进行清洗,将煤中的硫部分除掉,使煤得以净化并生产出不同质量、规格的产品。微生物脱硫技术从本质上讲也是一种化学法,它是把煤粉悬浮在含细菌的气泡液中,细菌产生的酶能促进硫氧化成硫酸盐,从而达到脱硫的目的;微生物脱硫技术目前常用的脱硫细菌有:属硫杆菌的氧化亚铁硫杆菌、氧化硫杆菌、古细菌、热硫化叶菌等。添加固硫剂是指在煤中添加具有固硫作用的物质,并将其制成各种规格的型煤,在燃烧过程中,煤中的含硫化合物与固硫剂反应生成硫酸盐等物质而留在渣中,不会形成SO2。煤的气化,是指用水蒸汽、氧气或空气作氧化剂,在高温下与煤发生化学反应,生成H2、CO、CH4等可燃混合气体(称作煤气)的过程。煤炭液化是将煤转化为清洁的液体燃料(汽油、柴油、航空煤油等)或化工原料的一种先进的洁净煤技术。水煤浆(Coal Water Mixture,简称CWM)是将灰份小于10%,硫份小于05%、挥发份高的原料煤,研磨成250~300μm的细煤粉,按65%~70%的煤、30%~35%的水和约1%的添加剂的比例配制而成,水煤浆可以像燃料油一样运输、储存和燃烧,燃烧时水煤浆从喷嘴高速喷出,雾化成50~70μm的雾滴,在预热到600~700℃的炉膛内迅速蒸发,并拌有微爆,煤中挥发分析出而着火,其着火温度比干煤粉还低。
燃烧前脱硫技术中物理洗选煤技术已成熟,应用最广泛、最经济,但只能脱无机硫;生物、化学法脱硫不仅能脱无机硫,也能脱除有机硫,但生产成本昂贵,距工业应用尚有较大距离;煤的气化和液化还有待于进一步研究完善;微生物脱硫技术正在开发;水煤浆是一种新型低污染代油燃料,它既保持了煤炭原有的物理特性,又具有石油一样的流动性和稳定性,被称为液态煤炭产品,市场潜力巨大,目前已具备商业化条件。
煤的燃烧前的脱硫技术尽管还存在着种种问题,但其优点是能同时除去灰分,减轻运输量,减轻锅炉的沾污和磨损,减少电厂灰渣处理量,还可回收部分硫资源。
燃烧中脱硫,又称炉内脱硫
炉内脱硫是在燃烧过程中,向炉内加入固硫剂如CaCO3等,使煤中硫分转化成硫酸盐,随炉渣排除。其基本原理是:
CaCO3==高温==CaO+CO2↑
CaO+SO2====CaSO3
2CaSO3+O2====2CaSO4
(1) LIMB炉内喷钙技术
早在本世纪60年代末70年代初,炉内喷固硫剂脱硫技术的研究工作已开展,但由于脱硫效率低于10%~30%,既不能与湿法FGD相比,也难以满足高达90%的脱除率要求。一度被冷落。但在1981年美国国家环保局EPA研究了炉内喷钙多段燃烧降低氮氧化物的脱硫技术,简称LIMB,并取得了一些经验。Ca/S在2以上时,用石灰石或消石灰作吸收剂,脱硫率分别可达40%和60%。对燃用中、低含硫量的煤的脱硫来说,只要能满足环保要求,不一定非要求用投资费用很高的烟气脱硫技术。炉内喷钙脱硫工艺简单,投资费用低,特别适用于老厂的改造。
(2) LIFAC烟气脱硫工艺
LIFAC工艺即在燃煤锅炉内适当温度区喷射石灰石粉,并在锅炉空气预热器后增设活化反应器,用以脱除烟气中的SO2。芬兰Tampella和IVO公司开发的这种脱硫工艺,于1986年首先投入商业运行。LIFAC工艺的脱硫效率一般为60%~85%。
加拿大最先进的燃煤电厂Shand电站采用LIFAC烟气脱硫工艺,8个月的运行结果表明,其脱硫工艺性能良好,脱硫率和设备可用率都达到了一些成熟的SO2控制技术相当的水平。我国下关电厂引进LIFAC脱硫工艺,其工艺投资少、占地面积小、没有废水排放,有利于老电厂改造。
燃烧后脱硫,又称烟气脱硫简介
(Flue gas desulfurization,简称FGD)
燃煤的烟气脱硫技术是当前应用最广、效率最高的脱硫技术。对燃煤电厂而言,在今后一个相当长的时期内,FGD将是控制SO2排放的主要方法。目前国内外火电厂烟气脱硫技术的主要发展趋势为:脱硫效率高、装机容量大、技术水平先进、投资省、占地少、运行费用低、自动化程度高、可靠性好等。
1.3.1干式烟气脱硫工艺
该工艺用于电厂烟气脱硫始于80年代初,与常规的湿式洗涤工艺相比有以下优点:投资费用较低;脱硫产物呈干态,并和飞灰相混;无需装设除雾器及再热器;设备不易腐蚀,不易发生结垢及堵塞。其缺点是:吸收剂的利用率低于湿式烟气脱硫工艺;用于高硫煤时经济性差;飞灰与脱硫产物相混可能影响综合利用;对干燥过程控制要求很高。
(1) 喷雾干式烟气脱硫工艺:喷雾干式烟气脱硫(简称干法FGD),最先由美国JOY公司和丹麦Niro Atomier公司共同开发的脱硫工艺,70年代中期得到发展,并在电力工业迅速推广应用。该工艺用雾化的石灰浆液在喷雾干燥塔中与烟气接触,石灰浆液与SO2反应后生成一种干燥的固体反应物,最后连同飞灰一起被除尘器收集。我国曾在四川省白马电厂进行了旋转喷雾干法烟气脱硫的中间试验,取得了一些经验,为在200~300MW机组上采用旋转喷雾干法烟气脱硫优化参数的设计提供了依据。
(2) 粉煤灰干式烟气脱硫技术:日本从1985年起,研究利用粉煤灰作为脱硫剂的干式烟气脱硫技术,到1988年底完成工业实用化试验,1991年初投运了首台粉煤灰干式脱硫设备,处理烟气量644000Nm3/h。其特点:脱硫率高达60%以上,性能稳定,达到了一般湿式法脱硫性能水平;脱硫剂成本低;用水量少,无需排水处理和排烟再加热,设备总费用比湿式法脱硫低1/4;煤灰脱硫剂可以复用;没有浆料,维护容易,设备系统简单可靠。
1.3.2 湿法FGD工艺
世界各国的湿法烟气脱硫工艺流程、形式和机理大同小异,主要是使用石灰石(CaCO3)、石灰(CaO)或碳酸钠(Na2CO3)等浆液作洗涤剂,在反应塔中对烟气进行洗涤,从而除去烟气中的SO2。这种工艺已有50年的历史,经过不断地改进和完善后,技术比较成熟,而且具有脱硫效率高(90%~98%),机组容量大,煤种适应性强,运行费用较低和副产品易回收等优点。据美国环保局(EPA)的统计资料,全美火电厂采用湿式脱硫装置中,湿式石灰法占396%,石灰石法占474%,两法共占87%;双碱法占41%,碳酸钠法占31%。世界各国(如德国、日本等),在大型火电厂中,90%以上采用湿式石灰/石灰石-石膏法烟气脱硫工艺流程。
石灰或石灰石法主要的化学反应机理为:
石灰法:SO2+CaO+1/2H2O→CaSO3·1/2H2O
石灰石法:SO2+CaCO3+1/2H2O→CaSO3·1/2H2O+CO2
其主要优点是能广泛地进行商品化开发,且其吸收剂的资源丰富,成本低廉,废渣既可抛弃,也可作为商品石膏回收。目前,石灰/石灰石法是世界上应用最多的一种FGD工艺,对高硫煤,脱硫率可在90%以上,对低硫煤,脱硫率可在95%以上。
传统的石灰/石灰石工艺有其潜在的缺陷,主要表现为设备的积垢、堵塞、腐蚀与磨损。为了解决这些问题,各设备制造厂商采用了各种不同的方法,开发出第二代、第三代石灰/石灰石脱硫工艺系统。
湿法FGD工艺较为成熟的还有:氢氧化镁法;氢氧化钠法;美国Davy Mckee公司Wellman-Lord FGD工艺;氨法等。
在湿法工艺中,烟气的再热问题直接影响整个FGD工艺的投资。因为经过湿法工艺脱硫后的烟气一般温度较低(45℃),大都在露点以下,若不经过再加热而直接排入烟囱,则容易形成酸雾,腐蚀烟囱,也不利于烟气的扩散。所以湿法FGD装置一般都配有烟气再热系统。目前,应用较多的是技术上成熟的再生(回转)式烟气热交换器(GGH)。GGH价格较贵,占整个FGD工艺投资的比例较高。近年来,日本三菱公司开发出一种可省去无泄漏型的GGH,较好地解决了烟气泄漏问题,但价格仍然较高。前德国SHU公司开发出一种可省去GGH和烟囱的新工艺,它将整个FGD装置安装在电厂的冷却塔内,利用电厂循环水余热来加热烟气,运行情况良好,是一种十分有前途的方法。
等离子体烟气脱硫技术
等离子体烟气脱硫技术研究始于70年代,目前世界上已较大规模开展研究的方法有2类:
(1) 电子束辐照法(EB)
电子束辐照含有水蒸气的烟气时,会使烟气中的分子如O2、H2O等处于激发态、离子或裂解,产生强氧化性的自由基O、OH、HO2和O3等。这些自由基对烟气中的SO2和NO进行氧化,分别变成SO3和NO2或相应的酸。在有氨存在的情况下,生成较稳定的硫铵和硫硝铵固体,它们被除尘器捕集下来而达到脱硫脱硝的目的。
(2) 脉冲电晕法(PPCP)
脉冲电晕放电脱硫脱硝的基本原理和电子束辐照脱硫脱硝的基本原理基本一致,世界上许多国家进行了大量的实验研究,并且进行了较大规模的中间试验,但仍然有许多问题有待研究解决。
海水脱硫
海水通常呈碱性,自然碱度大约为1.2~2.5mmol/L,这使得海水具有天然的酸碱缓冲能力及吸收SO2的能力。国外一些脱硫公司利用海水的这种特性,开发并成功地应用海水洗涤烟气中的SO2,达到烟气净化的目的。
海水脱硫工艺主要由烟气系统、供排海水系统、海水恢复系统等组成。
脱硫法的方程式
(1) SO2被液滴吸收;
SO2(气)+H2O→H2SO3(液)
(2) 吸收的SO2同溶液的吸收剂反应生成亚硫酸钙;
Ca(OH)2(液)+H2SO3(液)→CaSO3(液)+2H2O
Ca(OH)2 (固) +H2SO3(液)→CaSO3(液)+2H2O
(3) 液滴中CaSO3达到饱和后,即开始结晶析出;
CaSO3(液)→CaSO3(固)
(4) 部分溶液中的CaSO3与溶于液滴中的氧反应,
氧化成硫酸钙;
CaSO3(液)+1/2O2(液)→CaSO4(液)
(5) CaSO4(液)溶解度低,从而结晶析出
CaSO4(液)→CaSO4(固)
SO2与剩余的Ca(OH)2 及循环灰的反应
Ca(OH)2 (固) →Ca(OH)2 (液)
SO2(气)+H2O→H2SO3(液)
Ca(OH)2 (液)+H2SO3(液)→CaSO3(液)+2H2O
CaSO3(液)→CaSO3(固)
CaSO3(液)+1/2O2(液)→CaSO4(液)
CaSO4(液)CaSO4(固)
双碱法
2NaOH+SO2→Na2SO3+H2O
Na2SO3+SO2+H2O→2NaHSO3
Ca(OH)2 + Na2SO3 → 2 NaOH + CaSO3
4NaHSO3+2Ca(OH)2→2Na2SO3+2CaSO3·H2O+H2O
2Na2SO3+O2 +2Ca(OH)2+4H2O→4NaOH+2CaSO4·2H2O
名称: 亚硫酸钙;calcium sulfite
化学分子式CaSO3·2H2O,分子量15617。
密度: 1595
性状: 白色结晶粉末。
溶解情况: 微溶于水。
用途: 用于制钙塑材料,也用作纤维素制品的漂白脱氯剂、食品防腐剂、发酵杀菌剂等。
制备或来源: 将二氧化硫通入石灰乳或石灰水,或由亚硫酸钠与硫酸钙起复分解而制得。
备注: 在100℃失去结晶水。在650℃分解。在空气中缓慢氧化成硫酸钙。在酸中分解,产生二氧化硫。
类别: 无机盐
亚硫酸钙的相关资料
详情
http://productcheminfogovcn/J0103/J01030311htm
与半干法脱硫渣中亚硫酸钙的低温催化氧化的 2007-08-10
摘要:和碳酸钙等物质组成,由于其中含有较多的亚硫酸钙而不利于脱硫渣的综合利用。本文提出了用廉价催化剂对亚硫酸钙进行催化氧化使其转化成为硫酸钙的实验方案,比较了几种催化剂在同样条件下对亚硫酸钙的催化氧化的效果
湿法烟气脱硫技术在1×330MW机组中的 2007-06-21
摘要:入石灰石一石膏湿法脱硫工艺技术。该工艺过程是在吸收塔中,石灰石浆液与烟气中的SO2发生反应,生成亚硫酸钙,亚硫酸钙被氧化生成石膏,从而除去烟气中的SO2。实际应用结果表明,该技术成熟脱硫效率高,但设备
脱硫灰在水泥工业中的应用 2007-06-21
摘要:研究了脱硫灰在水泥工业中的应用。研究结果表明:亚硫酸钙含量较多的脱硫灰可用作水泥的调凝剂,并且与二水石膏复掺后的效果更好。通过控制脱硫灰与二水石膏复合掺入到水泥中的比例可有效地调节水泥的凝结时间,不仅
提高氯化尾气TiCl4回收率的试验研究 2007-06-21
摘要:〈水泥化学分析法》和GB/T5484-2000((膏化学分析法》中的基准法即重量法不能准确测定含亚硫酸钙的脱硫灰中的硫含量;蒸馏法可以较准确测定,所研发的蒸馏-双氧水吸收法原理与GB/T5009.34
非洲南部有色金属的溶剂萃取(二) 2007-06-21
摘要:〈水泥化学分析法》和GB/T5484-2000((膏化学分析法》中的基准法即重量法不能准确测定含亚硫酸钙的脱硫灰中的硫含量;蒸馏法可以较准确测定,所研发的蒸馏-双氧水吸收法原理与GB/T5009.34
我国铝土矿与氧化铝生产的现状与探讨 2007-06-21
摘要:〈水泥化学分析法》和GB/T5484-2000((膏化学分析法》中的基准法即重量法不能准确测定含亚硫酸钙的脱硫灰中的硫含量;蒸馏法可以较准确测定,所研发的蒸馏-双氧水吸收法原理与GB/T5009.34
炼油和石化工业用锻轧和铸造耐热不锈钢及镍 2007-06-21
摘要:〈水泥化学分析法》和GB/T5484-2000((膏化学分析法》中的基准法即重量法不能准确测定含亚硫酸钙的脱硫灰中的硫含量;蒸馏法可以较准确测定,所研发的蒸馏-双氧水吸收法原理与GB/T5009.34
窑头电除尘器喷水管的改进 2007-06-21
摘要:〈水泥化学分析法》和GB/T5484-2000((膏化学分析法》中的基准法即重量法不能准确测定含亚硫酸钙的脱硫灰中的硫含量;蒸馏法可以较准确测定,所研发的蒸馏-双氧水吸收法原理与GB/T5009.34
锤式破碎机高锰钢锤头的修复经验 2007-06-21
摘要:〈水泥化学分析法》和GB/T5484-2000((膏化学分析法》中的基准法即重量法不能准确测定含亚硫酸钙的脱硫灰中的硫含量;蒸馏法可以较准确测定,所研发的蒸馏-双氧水吸收法原理与GB/T5009.34
脱硫灰中硫含量测定方法的研究 2007-06-21
摘要:〈水泥化学分析法》和GB/T5484-2000((膏化学分析法》中的基准法即重量法不能准确测定含亚硫酸钙的脱硫灰中的硫含量;蒸馏法可以较准确测定,所研发的蒸馏-双氧水吸收法原理与GB/T5009.34
过氧乙酸催化氧化亚硫酸钙的反应动力学 2007-06-21
摘要:化亚硫酸钠的本征反应动力学,得到各反应物的分级数及表观活化能.在此基础上,利用鼓泡式反应装置,通过改变pH、亚硫酸钙浓度、过氧乙酸浓度、空气流量及温度,研究了过氧乙酸催化氧化亚硫酸钙的宏观反应动力学.
含亚硫酸钙粉煤灰中三氧化硫的分析 2007-06-21
摘要:介绍了双氧水氧化-硫酸钡重量法分析含亚硫酸钙粉煤灰中三氧化硫的原理和方法,并对它进行实际验证,结果表明该方法是可行的
亚硫酸钙对C┏3┓A和C┏4┓AF凝结时 2007-06-21
摘要:间相含量较多、C┏3┓A含量较高,自身凝结很快的熟料,在水泥中SO┏3┓不大于35%的条件下,亚硫酸钙不起缓凝作用;对于中间相含量较少、C┏3┓A含量较低,自身凝结较慢的熟料,亚硫酸钙有缓凝作用;与
烟气脱硫灰对水泥凝结时间的影响 2007-06-21
摘要:用;对于中间相含量较多、C3A含量较高,自身凝结时间短的熟料,在水泥中SO3≤3.5%的务件下,亚硫酸钙不起缓凝作用;对于中间相含量较少、C3A含量较低而C4AF含量较高、自身凝结时间较长的熟料,亚硫
粉煤灰混凝土 2007-06-18
摘要:一部分燃煤电厂实施烟气脱硫后, 导致粉煤灰或脱硫灰渣含有亚硫酸钙此时如果仍用GB/T176-1996<水泥化学分析方法>中所列方法测定灰渣的硫含量, 存在于亚硫酸钙中的硫大部分不能测出, 以致会把S
可作为生产建筑材料,如水泥等的添加原料。
脱硫石灰石粉掺量的多少主要会对砂浆产生影响,对砂浆的影响主要表现在石灰石粉掺量的多少,随着石灰石粉掺量的增加,砂浆中的空隙逐渐被细小石灰石粉颗粒填充,浆体所需的填充水减少。
停车情况下电厂大多选择石灰石作为脱硫固化剂是基于其来源广泛、价格低廉且脱硫效率较高。也可以因地置宜地选择石灰、氧化锌、电石渣等作为脱硫固化剂,不同的脱硫固化剂产生的硫酸盐性能有所不同,影响到灰渣的综合利用性能。
扩展资料:
注意事项:
1、在操作过程中,尽可能短的操作时间,在容器之中恰当的低昂进行放置,会产生将密封空间中的湿润气体或水珠进行吸收的作用。
2、在使用之前,进行存放的时候,应当隔绝潮湿环境,在挪动的时候要十分小心,防止包装毁坏而接触到潮湿空气,使原料受到影响,进一步影响使用效果。
3、注意脱硫石灰石粉一旦误食或误入眼睛,由于它与水反应可以释放出大量的热,所以入口之后也能够反应,一不小心入口,要立刻漱口,将脱硫石灰石粉吐掉并迅速就医。千万不要喝水,因为脱硫石灰石粉在水的作用下会产生腐蚀效果,损伤食道。
-石灰或石灰石脱硫
欢迎分享,转载请注明来源:品搜搜测评网