下面介绍下主要考虑的几个方面:
一、HLB值 乳化剂必须有较强的乳化能力,评定这种乳化能力的标准是乳化剂的HLB值它表示乳化剂的亲油基和亲水基之间在大小和力量上的平衡关系HLB值=7+Σ(亲油基)+Σ(亲水基) 也可根据乳化剂的HLB值表查询 由于沥青的HLB值一般为8~18,用于沥青的乳化剂的HLB值也应该近在此范围为宜如果作为乳化沥青的乳化剂亲水基过大,亲油基数过小,与水连接,与沥青脱离;如果乳化剂亲油基数过大,亲油基数过小,只与沥青连接,与水脱离只有亲油基与亲水基为适宜时,乳化剂便将沥青和水相连接起来这就是说有许多带有亲油基和亲水基结构的表面活性剂不能作用乳化剂,尤其不能作为沥青乳化剂因此,当沥青的标号与成分发生变化时,一定要重新配乳化剂的品种及用量
二、ξ电位值 各种乳化剂制出的沥青乳液性能,检测其ξ电位值具有重要意义因为ξ电位值越大,乳化沥青微粒之间的相互排斥力越大,乳液的稳定性越好,而且沥青微粒上所带离子电荷也强,与骨料的粘附性也大
三、离子特性 乳化剂根据电荷分为阳离子、阴离子、非离子型乳化剂在道路施工中,由于选择的集料的种类不同,乳化剂也要因此作出调整安山岩、辉绿岩等因二氧化硅含量较高,碳酸钙含量较低,耐酸性较好,石料一般带有负电荷、所以选用阳离子型的乳化剂生产的乳化沥青对集料的粘附性较好对于石灰岩集料,如采用阳离子乳化剂制作的乳化沥青,对石灰石集料有腐蚀性,并放出二氧化碳而发泡,影响铺路质量,就必须选用阴离子乳化剂制作的乳化剂制作的乳化沥青在施工中,选用何种离子乳化剂制作的乳化沥青,应根据工程要求而定
四、根据分裂速度选择 在沥青路面铺筑中,因施工性能的需要,对乳化沥青提出许多特殊的要求例如修筑贯入式沥青路面时,从喷洒到完全分裂和凝固要求时间较短,以防集料来不及吸附而被流失,造成铺筑的沥青路面黏附性差,路面松散,强度低,要求选用的乳化沥青分裂速度要快、凝结快根据路面铺筑的施工要求,选择分裂速度适宜的乳化剂,生产适宜分裂速度的乳化沥青
五、根据沥青组成特性选择 沥青材料的组成不同,对乳化沥青的要求也不相同,每种乳化剂对一定类型的沥青是最有效的一般的讲,对于少芳香族而富环烷烃的石油沥青,直链烷烃的乳化剂最为有效;对芳香烃含量占优势的石油沥青,以高分子环烷烃的钠皂比较有效;对于高芳烃结构化的沥青,用分子有芳香环的乳化剂比较理想当被乳化的沥青极性较大时,则要求亲水性极强的乳化剂,才能得到稳定的乳化沥青;相反,若对被乳化的沥青极性较小时或无极性时,则要求亲油性极强的乳化剂,才能获得稳定的乳化沥青对聚合物改性沥青、煤焦油沥青,可选用极性的有机乳化剂或无机胶体乳化剂,可获得稳定的无机胶体乳化沥青如果沥青中天然存在的有机酸含量太低,不足以使苛性碱溶液制造快裂型乳化沥青,可在沥青中添加表面活性酸类物质,用来改善乳化性质用高温空气氧化重油得到的沥青,比只用蒸汽蒸馏或真空蒸馏的方法得到的沥青具有较好的乳化性
六、乳化剂分子结构 乳化剂的亲油基的碳氢链及其支链直接影响亲油基的亲和沥青的能力
七、乳化剂的毒性 阳离子型>阴离子型>非离子型
1、乳化设备的影响
衡量乳化沥青质量的一项重要指标是沥青微粒的均细化程度。均细化程度越高,乳化沥青的使用性能及贮存稳定性越好。均细化程度的高低与生产乳化沥青所用的核心设备一乳化机有直接关系,它是乳化设备的心脏。用乳化机破碎、分散沥青液相的过程是一个很复杂的力学作用过程,一般都是利用剪切、挤压、摩擦、冲击和膨胀扩散等作用完成沥青液相的粉碎分散,其性能的优劣对乳液的质量和稳定性有重要影响。目前,应用于沥青乳化的设备主要有三类。按照生产乳化沥青均细化程度由高到低的顺序依次为:胶体磨类乳化机、均化器类乳化机、搅拌式乳化机。因而,在购置乳化设备时应选择均细化程度高的乳化机,保证乳化沥青的生产质量和稳定性。
2、乳化剂对稳定性的影响
乳化剂的种类、乳化剂的浓度以及影响乳化剂乳化作用的各种因素都会影响乳化沥青的稳定性。乳化剂本身就有快裂、中裂、慢裂三种类型。制备的乳化沥青也相应的分为快裂、中裂、慢裂三种。它们的稳定性逐次增强。用相同的乳化剂制备乳化沥青,由于所用乳化剂用量的不同,在一定程度上也影响乳化沥青的稳定性。随着乳化剂用量的增加,沥青微粒变小,沉降速度减慢,沥青微粒间的电位值增加,乳液的粘度升高,贮存的沉降值降低,进而乳液的质量和稳定性提高。但是,当乳化剂增加到一定量后,其稳定性不再发生明显的变化。因而,正确选择乳化剂适宜的用量范围,既保证了乳化液的质量和稳定性,又不造成经济上的浪费。
3、基质沥青影响
基质沥青是乳化沥青最基本的成分之一,占总量的50%-70%。路用乳化沥青大多选用针入度为100-250(01mm)基质沥青。基质沥青的针入度,组成和化学结构对其乳化的难易有较大的影响。通常饱和分子含量高和酸值低的基质沥青较难乳化,要求乳化剂具有较长的烷基链。基质沥青的含量可以改变乳化沥青的粘度和其他性能,其含量越高,乳液的粘度越大,储存稳定性越好。
4、PH值影响
乳液的PH值与其乳化稳定性和储存稳定性关系密切,不同类型乳化剂适应PH值范围不同,阴离子型乳化沥青需加入碱性化合物,如NaOH、KOH等,将乳液的PH值调节到10-12。对于胺型乳化剂水溶液,必须添加无机酸或有机酸才能溶于水。这是因为胺类化合物作为沥青乳化剂时必须先转化成胺盐,用不同的酸调整PH值,就能得到不同的HLB值(亲水亲油平衡值)的胺盐类沥青乳化剂,其最佳PH值在3-5之间。使用季胺盐类乳化剂时,添加无机酸或有机酸,可以增强乳化剂的活性,在提高乳化沥青的乳化稳定性和储存稳定性的同时,可以降低乳化剂的用量;用季胺盐类乳化剂制备乳化沥青时,其乳液的最佳PH值为5-6。
5、温度的影响
沥青和水的温度是比较重要的工艺参数,温度过高或过低都将影响沥青的乳化效果。温度低了,流动性不好,过高,不仅消耗能源,增加成本,而且还会使水汽化,导致乳液的浓度变化,即沥青同水的比例发生变化,同时产生大量的气泡,降低产品质量,乳化沥青的稳定性下降。此外,对于非离子型乳化剂,随着温度升高,氢链逐渐被破坏,其亲水性下降,尤其是接近乳化剂的“浊点”时,乳液的稳定性明显下降。一般来说,沥青和水混合后的平均温度(即乳液温度)控制在80℃-70℃以下为好。
6、储存温度
乳化沥青随着储存温度的升高,其稳定性越来越差,甚至会结团(块),这是由于乳液的水分不断蒸发,温度越高,蒸发的越快。尤以表层水分散失严重,明显改变油水比,使得表层破乳结皮,从而分层结团,内部乳液在较高温度下,沥青微粒布朗运动加快,微粒与微粒之间的碰撞机会增多,少部分乳液破乳,致使油水分离,从而影响产品质量。因此,产品生产出来后,要尽快将将乳液温度降下来,避免影响产品的储存稳定性。
7、机械作用
在乳液存放,运转过程中的泵送、转移,以及在应用过程中的混合、处理等都会使乳液受到各种形式的机械剪切作用。这会给予沥青微粒相当大的能量,当这个能量超过了聚结活化能时,沥青微粒就会越过势能屏障,使乳液失去稳定性而发生凝聚。它会给乳液的生产、各种处理及应用带来困难,尤其是在需要直接利用乳液的场合,凝聚的结果就使其失去了使用价值。
8、冻结及溶化
当乳液遇到低温条件时就会发生冻结,冻结和消融会影响乳液的稳定性。冻结的乳液消融之后,轻则造成乳液表面粘度升高,重则造成乳液的凝聚。故在运输或存放过程中应注意防冻。冻结之所以会影响乳液的稳定性,是因为水结冰后要发生膨胀,对聚集在冰晶之间的沥青微粒产生巨大的压力迫使其相互接近,最终聚结在一起。最常用的防冻措施是向乳液中加入防冻剂。最常用的防冻剂有甲醇、乙二醇及甘油等,这些物质可降低乳液的冻结温度。
9、长期放置的影响
乳液在长期放置过程中由于布朗运动会发生沥青微粒之间的碰撞而导致凝聚。同时,由于重力的作用也会导致沥青微粒的沉降或升浮,而形成凝聚层。无论乳液具有多么高的稳定性,在长期放置过程中终将不可避免的形成不可逆的凝聚体而遭破乳。所以,对于乳液应规定存放期限。实践证明,乳液放置稳定性与沥青微粒的大小,体系粘度及环境条件等因素有关。
综上所述,乳化沥青是一种热力学不稳定体系,稳定性只是相对而言的,沥青乳液的破坏终究会发生,通过分析影响乳液稳定性的因素,意在乳液生产、储存、运转、使用过程中,尽量避开这些不利因素,保持乳液的相对稳定性。
石油沥青是原油加工过程的一种产品,在常温下是黑色或黑褐色的粘稠的液体、半固体或固体,主要含有可溶于氯仿的烃类及非烃类衍生物,其性质和组成随原油来源和生产方法的不同而变化。石油沥青的主要组分是油分、树脂和地沥青质。还含2%~3%的沥青碳和似碳物,还含有蜡。沥青中的油分和树脂能浸润沥青质。沥青的结构以地沥青质为核心,吸附部分树脂和油分,构成胶团。
产品性能
石油沥青色黑而有光泽,具有较高的感温性。对石油沥青可以按以下体系加以分类:
生产方法
(1)蒸馏法:是将原油经常压蒸馏分出汽油、煤油、柴油等轻质馏分,再经减压蒸馏(残压10~100mmHg)分出减压馏分油,余下的残渣符合道路沥青规格时就可以直接生产出沥青产品,所得沥青也称直馏沥青,是生产道路沥青的主要方法。
(2)溶剂沉淀法:非极性的低分子烷烃溶剂对减压渣油中的各组分具有不同的溶解度,利用溶解度的差异可以实现组分分离,因而可以从减压渣油中除去对沥青性质不利的组分,生产出符合规格要求的沥青产品,这就是溶剂沉淀法。
(3)氧化法:是在一定范围的高温下向减压渣油或脱油沥青吹入空气,使其组成和性能发生变化,所得的产品称为氧化沥青。减压渣油在高温和吹空气的作用下会产生汽化蒸发,同时会发生脱氢、氧化、聚合缩合等一系列反应。这是一个多组分相互影响的十分复杂的综合反应过程,而不仅仅是发生氧化反应,但习惯上称为氧化法和氧化沥青,也有称为空气吹制法和空气吹制沥青。
(4)调合法:调合法生产沥青最初指由同一原油构成沥青的4组分按质量要求所需的比例重新调合,所得的产品称为合成沥青或重构沥青。随着工艺技术的发展,调合组分的来源得到扩大。例如可以从同一原油或不同原油的一、二次加工的残渣或组分以及各种工业废油等作为调合组分,这就降低了沥青生产中对油源选择的依赖性。随着适宜制造沥青的原油日益短缺,调合法显示出的灵活性和经济性正在日益受到重视和普遍应用。
(5)乳化法:沥青和水的表面张力差别很大,在常温或高温下都不会互相混溶。但是当沥青经高速离心、剪切、重击等机械作用,使其成为粒径01~5微米的微粒,并分散到含有表面活性剂(乳化剂——稳定剂)的水介质中,由于乳化剂能定向吸附在沥青微粒表面,因而降低了水与沥青的界面张力,使沥青微粒能在水中形成稳定的分散体系,这就是水包油的乳状液。这种分散体系呈茶褐色,沥青为分散相,水为连续相,常温下具有良好流动性。从某种意义上说乳化沥青是用水来“稀释”沥青,因而改善了沥青的流动性。
(6)改性沥青:现代公路和道路发生许多变化:交通流量和行驶频度急剧增长,货运车的轴重不断增加,普遍实行分车道单向行驶,要求进一步提高路面抗流动性,即高温下抗车辙的能力;提高柔性和弹性,即低温下抗开裂的能力;提高耐磨耗能力和延长使用寿命。现代建筑物普遍采用大跨度预应力屋面板,要求屋面防水材料适应大位移,更耐受严酷的高低温气候条件,耐久性更好,有自粘性,方便施工,减少维修工作量。使用环境发生的这些变化对石油沥青的性能提出了严峻的挑战。对石油沥青改性,使其适应上述苛刻使用要求,引起了人们的重视。经过数十年研究开发,已出现品种繁多的改性道路沥青、防水卷材和涂料,表现出一定的工程实用效果。但鉴于改性后的材料价格通常比普通石油沥青高2~7倍,用户对材料工程性能尚未能充分把握,改性沥青产量增长缓慢。改性道路沥青主要用于机场跑道、防水桥面、停车场、运动场、重交通路面、交叉路口和路面转弯处等特殊场合的铺装应用。欧洲将改性沥青应用到公路网的养护和补强,较大地推动了改性道路沥青的普遍应用。改性沥青防水卷材和涂料主要用于高档建筑物的防水工程。随着科学技术进步和经济建设事业的发展,将进一步推动改性沥青的品种开发和生产技术的发展。改性沥青的品种和制备技术取决于改性剂的类型、加入量和基质沥青(即原料沥青)的组成和性质。由于改性剂品种繁多,形态各异,为了使其与石油沥青形成均匀的可供工程实用的材料,多年来评价了各种类型改性剂,并开发出相应的配方和制备方法,但多数已工程实用的改性沥青属于专利技术和专利产品。
主要用途
主要用途是作为基础建设材料、原料和燃料,应用范围如交通运输(道路、铁路、航空等)、建筑业、农业、水利工程、工业(采掘业、制造业)、民用等各部门。
包装与贮存
沥青在生产和使用过程中可能需要在贮罐内保温贮存,如果处理适当,沥青可以重复加热即可在较高温度保持相当长的时间而不会使其性能受到严重损害。但是如果接触氧、光和过热就会引起沥青的硬化,最显著的标志是沥青的软化点上升,针入度下降,延度变差,使沥青的使用性能受到损失
加热输出
沥青存储在大型储罐中,当在使用输出时,需要对储罐中的沥青进行加热后,提高沥青的流动性,方可顺利、快速输出。加热输出需要的热源一般是导热油。据石油化工技术推广中心介绍,传统加热方式如下缺点:
1、加热过程不经济。当只需要倒出少量沥青时,也要对整个罐内的沥青全部进行加热,加热的沥青量是该次使用量的几倍,使大量的导热油做了无用功。
2、罐内各部分沥青温度不均衡。靠近加热器的沥青温度较高,远离加热器的沥青温度较低,严重影响了出油的流动性。
3、影响沥青质量。反复对罐内沥青进行加热,加热过程中产生大量细小的分解物,对沥青色度质量产生一定的影响,增加了后期处理的成本。
局部加热技术:导热油进入“局部快速加热器”后,对沥青罐中的沥青进行局部快速加热,需要多少沥青,加热多少沥青,不用整罐、反复加热,在节省能源的同时,沥青输出更加迅速。 沥青路面的流动变形是国际上最常见的沥青路面损坏现象。据统计,在路面的维修统计中,约有80%是因为车辙引起的变形破坏。通过工程实践发现,加入岩沥青的改性沥青在高温稳定方面有较大的优势,能够很好地解决高等级沥青路面由于大交通量,超重超载等引起的路面车辙,早期病害等现象。
岩沥青是石油经过长达亿万年的沉积、变化,在热、压力、氧化、触媒、细菌等的综合作用下生成的沥青类物质。常用为基质沥青改性剂。岩沥青的物理特性趋近于“煤”。
国内已经探明的天然岩沥青矿产资源主要分布于我国新疆,青海以及四川青川一带。青川岩沥青矿分布在我国有着天府之国美誉的四川北部龙门山地区,初步探明的储量在300万吨以上,远景储量1000万吨,被专家誉为“中国乃至世界罕见的沥青天然矿体”,储藏量位居全国第一。川北的天然岩沥青是以分子量高达一万的沥青质为主要组成成分,其化学构成为碳817%,氢75%,氧23%,氮195%,硫44%,铝11%,硅018%及其他金属087%。其中,碳、氢、氧、氮、硫的含量较高,几乎每个沥青质的大分子中都含有上述元素的极性官能团,使其在岩石的表面产生极强的吸附力。 2014年5月25日,中国军队首次在郑民高速公路上进行第三代战机跑道试飞。扬子晚报军事专家孙小伟解读说,可供飞机起降的高速路跑道要求非常严格,与一般高速公路铺设的标准不一样。其中一个关键点是这条高速公路的“材质”,郑民高速公路的最上面铺了一层特殊的改进沥青混凝土。记者昨日从东南大学采访获悉,这种耐300℃高温零下30℃低温的“超级沥青”由东南大学联合句容宁武科技开发公司研制的。
“超级”沥青
能耐300℃高温,耐酸耐碱有弹性
“郑民高速(郑州至民权),是河南省高速公路网中重要的一条联络通道,全线采用双向四车道高速公路技术标准。2008年,郑民高速公路开始修建,由东南大学博士后张占军担任总负责,铺设这条高速所用的国产‘超级沥青’是由江苏研发制造的。”东南大学校长助理朱建设研究员告诉记者,这种沥青叫“环氧沥青”。
与常见的沥青不同,制造环氧沥青是将环氧树脂加入沥青中,经过与固化剂发生反应,使沥青具有很高的强度及韧性,且在高低温下变形很小。这种材料看起来简单,只要把沥青和环氧树脂按照一定比例混合起来即可。然而,要想得到材料的合适配比却比登天还难。科研几乎是在一片空白中展开。“就像人的血型一样,输血得找能配对的,沥青和环氧树脂,显然相互不能融合,难就难在这里。
由江苏自主研发的这种环氧沥青究竟有多牛呢?朱建设介绍,在反复实验室中,国产环氧沥青保持在300℃高温及零下30℃低温下不变形,“喷气式飞机起降时喷出的气体温度达1000℃,瞬间可‘融化’普通沥青。”这种沥青还耐腐蚀,“我们曾做实验,把环氧沥青分别浸泡在酸、碱、盐中一个多月,拿出来几乎没有变化。”这种沥青还有一个特点是有韧性,“过去我们的路面多是刚性,车开上去硬碰硬,噪音大,车轮和路面的磨损都严重。新型沥青有一定弹性,为重型飞机起降时提供缓冲力,飞机不易磨损。”还有一个关键点,这种材质是吸水的,可渗透因雨雪导致的积水。
研发之路
长江二桥铺的美国沥青,国产造价便宜一半
不过在2006年前,这种耐高温低温、耐压的环保沥青的制造技术由美国垄断,并实行技术封锁。2001年,中国工程院院士、东南大学黄卫教授领衔的团队在铺设长江二桥时,用了美国的“环氧沥青”,如果用普通的沥青铺装,在温差大的季节,桥面容易出现裂缝并产生滑移,会陷入“屡坏屡修、屡修屡坏”的怪圈。“但美国的环氧沥青价格高得吓人,一吨要人民币7万多元。二桥铺完了,黄卫教授就说,必须开发中国自己的环氧沥青铺装材料与成套技术,国家重大工程建设的核心技术,必须掌握在我们中国人手里!”
2001年,东南大学成立了“新型环氧沥青制造设备及工程应用项目组”,黄卫教授担任组长,朱建设研究员是主要负责人,并选择了句容宁武开展产学研合作。“东南大学交通学院、化学化工学院、自动化学院三大学院教授和宁武科技的技术人员携手,一起努力了6年多,终于掌握了这种特殊沥青的制造方法。”“美国的要7万多一吨,我们的价格只有它的一半,3万多。”
欢迎分享,转载请注明来源:品搜搜测评网