参考资料:
3
a
丙烯酸(甲基丙烯酸)酯
b
马来酸酯、富马酸酯和衣康酸酯
c
烯丙基酯
这
3
类可应用于塑料、
橡胶、
树脂等多种聚合体的加工,
主要用于塑
料的增塑。
丙烯酸(甲基丙烯酸)酯的结构式可以如下表示:
CH2=CHCOO(CH2)XOOCCH=CH2
其中的
X=1~12
丙烯酸(甲基丙烯酸)
酯有如下用途:
丙烯酸酯、甲基丙烯酸酯
是有机合成的中间体及高分子的单体,可与多种化合物聚合或共聚,
形成不同的独特性能的聚合体。
可用于加工成包装用片材、
容器以及
一些建筑材料。可用于聚氯乙烯的涂层材料、树脂及橡胶的交联剂、
胶粘剂和共聚物改性剂等。
马来酸酯、富马酸酯和衣康酸酯,三者结构式可如下表示:
马来酸酯
(
顺丁烯二酸酯
)
富马酸酯
(反丁烯二酸酯)
C
H
2
C
C
O
O
(C
H
2
)
X
O
O
C
C
C
H
2
C
H
3
C
H
3
C
H
C
O
O
R
C
H
C
O
O
R
4
衣康酸酯
(亚甲基丁二酸酯)
马来酸酯、
富马酸酯和衣康酸酯主要用途有:
主要作为高分子物
质的单体、
共聚单体和有机合成的中间体。
在用于高分子化合物除单
独聚合外,
多数情况下都是做内增塑剂,
即作为共聚单体以使树脂改
性,增加塑性,所得的共聚体可做表面涂覆剂、纤维及薄膜处理剂、
合成润滑油以及添加剂、粘结剂、离子交换树脂等。
烯丙基酯系:
丙烯醇与多元酸制得。
常用的多元酸有邻苯二甲酸、
间苯二甲酸、顺丁烯二酸、氰尿酸、异氰尿酸、磷酸等。
最常用的一种是邻苯二甲酸二烯丙酯(
DAP
)
DAP
结构式如下:
邻苯二甲酸二烯丙酯
(
DAP
)
主要用于制备邻苯二甲酸二异丙酯
树脂、不饱和聚酯树脂的交联剂、纤维素酯的增强剂,可供不加抑制
C
H
C
O
O
R
C
H
C
O
O
R
C
H
2
C
C
H
2
C
O
O
R
C
O
O
R
C
C
O
O
C
H
2
C
H
C
H
2
O
C
H
2
C
H
O
C
H
2
5
剂即自行聚合的树脂类作为增塑剂。
通用增塑剂改进橡胶实例:甲基丙烯酸酯改善顺丁二烯橡胶性
能。用甲基丙烯酸
C7~C12
烷基酯增塑顺丁二烯橡胶,可改善橡胶的
加工性,延长耐老化性
,抗疲劳强度,同时不影响橡胶的耐寒性。
C7~C9
烷基酯对改善该橡胶的加工性能最好,
C10~C12
烷基酯对改
善疲劳强度最好。而这六种烷基酯中,甲基丙烯庚酯增塑能力最强。
橡胶用反应性增塑剂
专用于橡胶生产中的反应性增塑剂,
主要是一些低分子量的液体
橡胶,
只用于增塑某一种或几种橡胶的特别增塑剂,
以及近年来发展
的生物基增塑剂。
液体橡胶增塑剂主要有液体聚异戊二烯
(LIR)
和液体丁腈橡胶
(LNBR)
。
液体聚异戊二烯
(LIR)
由锂系阴离子活性聚合而成,玻璃化转化
温度为
63
℃,是一种无色无味粘稠性透明液体,其结构可随意调整、
制品颜色浅、几乎无杂质、流动性好,可用在一些对纯度要求较高的
场合。
除具有普通液体橡胶的性能外,
由于与天然橡胶链节结构相同,
更适合于作橡胶增塑剂。
作为增塑剂,
LIR
可加入天然橡胶(
NR
)
、顺丁橡胶
(BR)
、异戊
橡胶
(IR)
、丁苯橡胶
(SBR
,嵌段或无规
)
、戊苯橡胶(
SIR
,嵌段或无
规)
、
三元乙丙橡胶等各类低极性橡胶中,
有效降低橡胶的门尼粘度,
有利于混炼加工
。
作为反应性增塑剂,
LIR
不迁移、挥发,也不会被溶剂抽出,制
6
品不产生收缩、变形、污染等现象。
LIR
能节省混炼胶的能量消耗,
提高挤出效率和挤出物尺寸稳定性,
改善挤出和压延胶料表面质量及
改善未硫化胶片的粘性。
LIR
增塑天然橡胶/顺丁橡胶体系与芳烃油
增塑相比,橡胶压缩疲劳生热和压缩永久变形低,
滚动阻力也低,有
利于轮胎节能。
液体丁腈橡胶
(LNBR)
的合成主要采用自由基聚合历程,
即以自由
基机理进行的乳液聚合和溶液聚合。
LNBR
常温下呈黏稠液体状态,
其数均分子量通常在
10000
以下。
可用作增塑剂、胶粘剂、涂料以
及固体火箭推进剂。
液体丁腈橡胶
(LNBR)LBNR
作为增塑剂能有效降低橡胶的门尼
粘度,
改善其加工性能;
可以延迟橡胶的起始硫化而正硫化时间基本
不变;对橡胶拉伸强度影响较小,同时可改善橡胶耐压缩性能;
耐抽
出性能高。
生物基反应性增塑剂是近年来刚刚发展起来的一类增塑剂,
它可
以有效解决增塑剂迁移和食品安全问题,
减少了环境污染,
改善人类
的生存环境,
对于实现经济的可持续发展具有重要的意义。
开发生物
基、
环保型增塑剂已成为当今橡胶助剂行业研究的热点问题。
大豆油
增塑三元乙丙橡胶
(
EPDM
)
就是生物基反应性增塑剂一个较好的应用
实例。
大豆油取自大豆种子,
是世界上产量最多的油脂。
大豆油主要成
分有:棕榈酸
7-10%
,硬脂酸
2-5%
,花生酸
1-3%
,油酸
22-30%
,亚油
酸
50-60
,亚麻油酸
5-9%
。
7
大豆油作为反应性增塑剂与石蜡油、
芳烃油、
环烷油等传统的橡
胶增塑剂相比。具有无毒、环保、耐油、耐抽出稳定性好、挥发度低
等特点;
大豆油自身含有大量双键,
可以在硫化过程中发生自聚、也
可以在胶料硫化交联过程当中起到反应性增塑剂的效果。
大豆油增塑三元乙丙橡胶(
EPDM
)可以有效降低
EPDM
门尼粘度、
表观粘度,改善
EPDM
加工性能;大豆油对
EPDM
的增塑机理符合反应
性增塑剂的增塑机理,
大豆油在胶料中一部分产生了自聚,
一部分与
EPDM
第三组分反应,接到了橡胶的分子链段上。当交联剂含量达到
一定量
(6
份以上
)
时几乎不会被有机溶剂抽出。
个人总结
反应性增塑剂可以有效的解决物理增塑剂易挥发,
易迁移、
易抽
出,使制品体积收缩等缺点,
是近年来来研究发展的重点。而生物基
植物基反应性增塑剂具有易加工、低成本、
无毒无污染的优势,
是一
种无可比拟的环保型增塑剂,具有无限的前景。
在我们的生活当中,经常会有淀粉的身影,例如包饺子,包馄饨,勾芡等,这些都会用到淀粉。而我们知道的,淀粉大多是由绿豆粉,小麦粉,红薯粉等所制成。就在2021年9月24日,我国科学院天津工业生物技术研究所主导完成了人工合成淀粉重大科技突破进展成果论文。
而这个人工合成淀粉是由二氧化碳到淀粉的从头合成,可以说是非常重大性,具有颠覆性,原创性的突破,这是国际上首次。这一人工途径的淀粉合成速率是玉米淀粉合成速率的85倍。使用二氧化碳人工合成淀粉,能够大大的降低很多成本。可以减少90%以上的耕地淡水资源,还能够尽量避免化肥,农药对我们环境的负面影响。进而推动可持续的生物基社会,提高我们人类粮食安全水平。
除此之外,还能够为我们推进碳达峰和碳中和的目标实现技术路线提供一种新思路。我们都知道淀粉属于量是最主要的成分,同样也是我们工业原料的重要成分。一般是由农作物制成,但是农作物需要长时间的周期,再加上它要占用大量的土地,肥料。以及淡水资源等。所以二氧化碳转换率属于当今社会乃至世界科技创新的战略方向。不再依赖于植物的光合作用,就能够将二氧化碳合成淀粉,属于影响世界的重大颠覆性技术。
这项研究并不是一朝一夕得来的,是从2015年就已经在实施,当时聚合了很多有资质,有能力的优秀科学家团队,经过六年来不断的摸索,探究,终于他们成功研发出了人工合成淀粉。
它们的合成方式主要是结合了化学以及生物,具体的可能需要研究人员讲解,简单一点的讲,就是将原本的二氧化碳一点一点的变成符合淀粉的化合物。感兴趣的小朋友和大朋友可以去看相关的新闻报道。
奔驰为什么不能选白色?
你可能会想到的理由是白色车漆更容易脏,更容易受到日晒和自然氧化的影响,但实际上,奔驰不允许选择白色车身的原因是出于对生产过程的质量控制。
在制造车辆时,汽车制造商需要为车身使用漆面涂料,而这种涂料包含一种称为“生物基材料”的特殊成分。由于生物基材料易于发酵和导致味道不佳,因此需要添加抗菌材料来控制生长。德国车厂在运输和储存期间对涂料进行了监控,以保护其完整性。
然而,当涂料在炎热的气候条件下暴露在空气中时,容易被激发发酵反应,导致涂层变质,失去色彩,因此无法使用。白色车漆对气候条件的敏感性更高,因此德国车厂通常不允许白色涂层使用,以确保汽车生产过程的高品质和一致性。
虽然这可能会限制消费者的选择,但这也是为了保护消费者获得最高标准的品质和保证汽车的寿命与性能。因此,虽然不允许选择白色车身,但这也是奔驰品质的一种体现。
淀粉基塑料不可以放微波炉,因为它会溶解。
有些塑料能够放在微波炉里面加热,有些就不能。主要就是看一下塑料的成分,有很多种,而且在它的外表有一个标志,比如用三角箭头表示,框内有不同的数字。
如果显示的是5,就说明是pp的塑料材质,可以放在微波炉里面加热,而且还能够反复加热。现在很多的微波炉餐具底部都会有这样的字样,说明它是用pp制作而成,完全可以达到加热的效果。
但是有些塑料盒子就不能够放在微波炉里面加热,比如有的是PVC,底部用3数字区别,这样的塑料盒子放进去以后,会产生有毒的物质,直接食用之后,会影响到我们的身体健康,并且这样的塑料盒加热的过程中,可能还会引发火灾。
淀粉是地球上产量仅次于纤维素的天然高分子,它来源丰富、可再生、价格低廉,通过改性塑化可用于生产淀粉基塑料。
淀粉基塑料作为生物基材料中的一个重要品类,已经成功实现产业化生产和应用。淀粉基塑料是以淀粉为主要原材料,经过改性塑化后再与其它聚合物共混加工而成的一种塑料产品,属于生物塑料的一种。淀粉基生物塑料可分为生物基塑料和生物降解塑料两大类。
欢迎分享,转载请注明来源:品搜搜测评网