体脂秤是除了可测量体重外还可以测量脂肪、水分等的称重计。市场上有ito膜和电极片两种材料的传感器测体脂。
人体脂肪秤的原理是肌肉内含有较多血液等水份,可以导电,而脂肪是不导电的。因为体内电流的通道导体是肌肉,从电流通过的难易度可以知道肌肉的重量,由此可判断在体中的比例。
研究中发现:如某种频率电信号通过人体时,脂肪部分比肌肉和人体的其他组织“阻抗”值更高。利用一个安全的特定频率电信号通过人体时,电信号会因人体“阻抗”值的不同而发生不同程度的变化。
原理:肌肉内含有较多血液等水份,可以导电,而脂肪是不导电的。因为体内电流的通道导体是肌肉,从电流通过的难易度可以知道肌肉的重量,由此可判断,在体重的比例中,肌肉较少的人脂肪的比例较高。
正确的健康理念:健康的身体,在于体内脂肪的平衡,脂肪过量积聚对身体产生危害,导致各种疾病。人体脂肪是人体的重要组成部分,在人体内有重要的功能和作用,例如提供能量,保护内脏,维持体温,协助水溶性维生素的吸收,参与人体代谢活动等。但是,过多的脂肪却会影响人体健康,导致糖尿病、心脑血管疾病等。另外,肥胖疾病患者又往往面临着怕热、影响体形、易疲劳等种种苦恼。因此,医生和专家建议将体型控制在一定的范围内。随着人们生活水平的提高,健康问题正越来越得到重视,这也促进为人体成分测量科学的发展。
电子脂肪秤,就是根据以上原理,利用秤体表面的电极片与用户的双腿接触,通过一定的安全电流,测量人体电阻(bio-impedance)。然后基于输入的用户数据和测量得到的人体电阻,使用我们在广泛实验的得到的公式,能够比较精确地测量人体脂肪百分比、人体水分百分比、人体肌肉百分比、骨骼重量等人体成分。
核糖体里的RNA是rRNA 它的合成与核仁有关
核糖体是细胞内一种核糖核蛋白颗粒(ribonucleoprotein particle), 其惟一功能是按照mRNA的指令将氨基酸合成蛋白质多肽链,所以核糖体是细胞内蛋白质合成的分子机器。
按核糖体存在的部位可分为三种类型:细胞质核糖体、线粒体核糖体、叶绿体核糖体。
按存在的生物类型可分为两种类型:真核生物核糖体和原核生物核糖体。
原核细胞的核糖体较小, 沉降系数为70S,相对分子质量为25x103 kDa,由50S和30S两个亚基组成; 而真核细胞的核糖体体积较大, 沉降系数是80S,相对分子质量为39~45x103 kDa, 由60S和40S两个亚基组成。典型的原核生物大肠杆菌核糖体是由50S大亚基和30S小亚基组成的。在完整的核糖体中,rRNA约占2/3, 蛋白质约为1/3。50S大亚基含有34种不同的蛋白质和两种RNA分子,相对分子质量大的rRNA的沉降系数为23S,相对分子质量小的rRNA为5S。30S小亚基含有21种蛋白质和一个16S的rRNA分子。
真核细胞中, 核糖体进行蛋白质合成时,既可以游离在细胞质中, 称为游离核糖体(free ribosome)。 也可以附着在内质网的表面, 称为膜旁核糖体或附着核糖体。 参与构成RER,称为固着核糖体或膜旁核糖体,是以大亚基圆锥形部与膜接着游离核糖体(free ribosome)。 。分布在线粒体中的核糖体,比一般核糖体小,约为55S(35S和25S大、小亚基),称为胞器或线粒体核体。 凡是幼稚的、未分化的细胞、胚胎细胞、培养细胞、肿瘤细胞,它们生长迅速,在胞质中一般具有大量游离核糖体。 真核细胞含有较多的核糖体, 每个细胞平均有106 ~107 个, 而原核细胞中核糖体较少每个细胞平均只有15×102 ~18×103 个。真核细胞核糖体的沉降系数为80S,大亚基为60S,小亚基为40S。在大亚基中,有大约49种蛋白质,另外有三种rRNA∶28S rRNA、5S rRNA和58S rRNA。小亚基含有大约33种蛋白质,一种18S的rRNA。
无论哪种核糖体,在执行功能时,即进行蛋白质合成时,常3-5个或几十个甚至更多聚集并与mRNA结合在一起,由mRNA分子与小亚基凹沟处结合,再与大亚基结合,形成一串,称为多聚核糖体(游离多聚核糖体及固着多聚核糖体),Polyribosome或Polysome。mRNA的长短,决定多聚核糖体的多少,可排列成螺纹状,念珠状等,多聚核糖体是合成蛋白质的功能团。此时,每一核糖体上均在以mRNA的密码为模板,翻译成蛋白质的氨基酸顺序。 在活细胞中,核糖体的大小亚基,单核糖体和多聚核糖体是处于一种不断解聚与聚合的动态平衡中,随功能而变化,执行功能量为多聚核糖体、功能完成后解聚为大、小亚基。
非膜相结构,大小15-20nm,可单个或成群分布于细胞质中,也可附着在核外膜,内质网上,或存在于线粒体,叶绿体中,用负染色高分辨电镜观察,核糖体不是圆形颗粒,而是由大、小二个亚基组成的不规则颗粒。
大亚基侧面观是低面向上的倒圆锥形,底面不是平的,边缘有三个突起,中央为一凹陷,似沙发的靠背和扶手。 小亚基是略带弧形的长条,一面稍凹陷,一面稍外突,约1/3处有一细缢痕,将其分成大小两个不等部份。 小亚基趴在大亚基上,似沙发上趴了一只小猴。大小亚基凹陷部位彼此对应相结合,就形成了一个内部空间。此部位可容纳mRNA、tRNA及进行氨基酸结合等反应。
此外,在大亚基内有一垂直的通道为中央管,所合成的多肽链由此排放,以免受蛋白酶的分解。 一般真核细胞中,106-107个/细胞,原核细胞中15-18× 103个/细胞,蛋白质合成旺盛的细胞可达1×1012个/细胞。
人人都希望健康,但只有对自己身体的组成情况有了充分的了解,才能更好地拥有健康。人体的组成是极为复杂的,想要搞清人体的组成成分绝非一件易事。简而言之,我们可以从微观及宏观两个水平对人体进行分析。所谓微观水平,就是分析组成人体的原子和分子。首先从原子水平看,一个活生生的人是由各种元素组成的,包括氧、氢、碳、氮、硫、磷、钙等元素。分析这些元素的组成情况,可在一定程度上评估其总体的状况,例如,我们可通过测定身体中钙元素的水平来评价全身骨质的状况等。当然,这些元素并不是独立存在的,而是组成不同的分子,这就是从分子水平看人体。组成人体的主要分子有水、蛋白质、糖、脂肪和矿物质等。一个体重为70公斤的健康男性的蛋白质、脂肪、糖原的含量分别大约为128公斤、105公斤和06公斤,其余部分为水和矿物质等,其中水占人体重量的绝大部分。脂肪组织与肥胖关系最为密切,脂肪组织中含80%的脂肪、18%的水和2%的蛋白质。所谓宏观角度,就是从组织、器官和系统等水平看人体。从宏观角度来看,人的体重就等于骨骼肌、脂肪、骨骼、内脏等组织和器官的重量之和。表1显示了一个70公斤体重的成年男性和一个体重为34公斤的新生儿组织和器官组成情况。
常量元素:
人体含氧65%、碳18%、氢10%、氮3%、钙15%、磷1%、钾035%、硫025%、钠015%、氯015%、镁005%,它们被称为人体常量元素。
微量元素:
铁铁在人体中含量约为4—5克。铁在人体中的功能主要是参与血红蛋白的形成而促进造血。在血红蛋白中的
含量约为72%。铁元素在菠菜、瘦肉、蛋黄、动物肝脏中含量较高。
铜正常成人体内含铜100—200毫克。其主要功能是参与造血过程;增强抗病能力;参与色素的形成。
铜在动物肝脏、肾、鱼、虾、蛤蜊中含量较高;果汁、红糖中也有一定含量。
锌对人体多种生理功能起着重要作用。参与多种酶的合成;加速生长发育;增强创伤组织再生能力;增强抵抗力;促进性机能。锌在鱼类、肉类、动物肝肾中含量较高。
氟是骨骼和牙齿的正常成分。可预防龋齿,防止老年人的骨质疏松。含氟量较多的食物有粮食(小麦、黑麦粉) 、水果、茶叶、肉、青菜、西红柿、土豆、鲤鱼、牛肉等。但是,过多吃进氟元素,又会发生氟中毒,得“牙斑病”。体内含氟量过多时,还可产生氟骨病,引起自发性骨折。
硒成年人每天约需04毫克。硒具有抗氧化,保护红细胞的功用,并发现有预防癌症的作用。硒在小麦、玉米、 大白菜、南瓜、大蒜和海产品中含量较丰富。
碘通过甲状腺素发挥生理作用,如促进蛋白质合成;活化100多种酶;调节能量转换;加速生长发育;维持中 枢神经系统结构。碘在海带、紫菜、海鱼、海盐等中含量丰富。
钴是维生素B12的重要组成部分。钴对蛋白质、脂肪、糖类代谢、血红蛋白的合成都具有重要的作用,并可扩 张血管,降低血压。但钴过量可引起红细胞过多症,还可引起胃肠功能紊乱,耳聋、心肌缺血。
铬可协助胰岛素发挥作用,防止动脉硬化,促进蛋白质代谢合成,促进生长发育。但当铬含量增高,如长期吸入铬酸盐粉,可诱发肺癌。
扩展资料:
根据机体对微量元素的需要情况又分为必需微量元素和非必需微量元素。维持人体正常生命活动不可缺少的元素称为必需微量元素。所谓不可缺少,并非指缺少将危及生命不能生存,而是指缺少时会引起机体生理功能及结构异常,导致疾病发生。
目前多数人公认的必需微量元素有:铁(Fe)、铜(Cu)、锌(Zn)、钴(Co)、钼(Mo)、锰(Mn)、钒(V)、锡(Sn)、硅(Si)、硒(Se)、碘(I)、氟(F)、镍(Ni)13种。目前尚未明确其生物学作用亦未发现有毒性的元素称为非必需微量元素。
将微量元素分为必需与非必需、有毒或无害,只有相对的意义。因为即使同一种微量元素,低浓度时是有益的,高浓度时则可能是有害的。同时亦不意味着以任何浓度使用该元素都是安全的。
因此,今后应对微量元素的生物学作用及其安全浓度进行更深入的探讨,以防止盲目摄入过多的必需微量元素或从膳食中去除某种可能必需的“有毒”元素。随着研究的深入,将会发现一些“非必需元素”“有害元素”具有一定的生物学作用,甚至可能是必需的元素。
参考资料:
构成细胞的基本物质是蛋白质。
蛋白质占人体重量的16%~20%,是构成细胞的基本物质,机体中的每一个细胞和所有重要组成部分都有蛋白质参与,是生命活动的主要承担者,可以说没有蛋白质就没有生命。
人体内蛋白质的种类很多,性质、功能各异,但都是由20多种氨基酸(Amino acid)按不同比例组合而成的,并在体内不断进行代谢与更新。
蛋白质是以氨基酸为基本单位构成的生物高分子。蛋白质分子上氨基酸的序列和由此形成的立体结构构成了蛋白质结构的多样性。蛋白质具有一级、二级、三级、四级结构,蛋白质分子的结构决定了它的功能。
一级结构(primary structure):氨基酸残基在蛋白质肽链中的排列顺序称为蛋白质的一级结构,每种蛋白质都有唯一而确切的氨基酸序列。
二级结构(secondary structure):蛋白质分子中肽链并非直链状,而是按一定的规律卷曲(如α-螺旋结构)或折叠(如β-折叠结构)形成特定的空间结构,这是蛋白质的二级结构。蛋白质的二级结构主要依靠肽链中氨基酸残基亚氨基上的氢原子和羰基上的氧原子之间形成的氢键而实现的。
三级结构(tertiary structure):在二级结构的基础上,肽链还按照一定的空间结构进一步形成更复杂的三级结构。肌红蛋白,血红蛋白等正是通过这种结构使其表面的空穴恰好容纳一个血红素分子。
四级结构(quaternary structure):具有三级结构的多肽链按一定空间排列方式结合在一起形成的聚集体结构称为蛋白质的四级结构。如血红蛋白由4个具有三级结构的多肽链构成,其中两个是α-链,另两个是β-链,其四级结构近似椭球形状。
欢迎分享,转载请注明来源:品搜搜测评网