核膜的详细组成成分

核膜的详细组成成分,第1张

除了那些的话,我认为还有核纤维。核纤层:位于内核膜的内表面的纤维网络,可支持核膜,并与染色质及核骨架相连。

还有就是核糖体吧。外层核膜与内质网相通,常带有核糖体。核糖体的组成成分中有rRNA

糖类与蛋白质。

根据中国生物信息技术网显示原核生物细胞膜的两个成分原核生物细胞膜的主要成分与真核生物相似,都是以磷脂及蛋白质为主体,原核生物的细胞膜的主要成分是由糖类与蛋白质结合而成的化合物。

原核生物是指一类细胞核无核膜包裹,只有称作核区的裸露DNA的原始单细胞生物。

高中生物细胞核知识点归纳如下:

1、细胞核概述

细胞核是存在于真核细胞中的封闭式膜状胞器,内部含有细胞中大多数的遗传物质,也就是DNA。细胞核的主要构造为核膜,是一种将细胞核完全包覆的双层膜,可使膜内物质与细胞质、以及具有细胞骨架功能的网状结构核纤层分隔开来。RNA是核糖体的主要成分。细胞核内不含有任何其他膜状的结构,但也并非完全均匀,其中存在许多由特殊蛋白质、RNA以及DNA所复合而成的次核体。核糖体在核仁中产出之后,会进入细胞质进行mRNA的转译。

2、细胞核定义

细胞核是细胞的控制中心,在细胞的代谢、生长、分化中起着重要作用,是遗传物质的主要存在部位。尽管细胞核的形状有多种多样,但是它的基本结构却大致相同,即主要结构是核膜、染色质、核仁和核骨架。

绝大多数真核生物细胞中;呈现球形或者卵形或圆形

(1)原核细胞中没有真正的细胞核(称为拟核),一般7微米左右;

(2)有的真核细胞中也没有细胞核,如哺乳动物的成熟的红细胞,高等植物成熟的筛管细胞等极少数的细胞。

3、细胞核结构

(1)核被膜:核被膜使细胞核成为细胞中一个相对独立的体系,使核内形成一相对稳定的环境。同时,核被膜又是选择性渗透膜,起着控制核和细胞质之间的物质交换作用。

(2)染色质:是遗传物质DNA和组蛋白在细胞间期的形态表现。

(3)核仁:是形成核糖体前身的部位,核仁由细丝成分、颗粒成分与核仁相随染色质三部分构成。核仁经常出现在间期细胞核中,它是匀质的球体,其形状、大小、数目依生物种类,细胞形成和生理状态而异。核仁的主要功能是进行核糖体RNA的合成和核糖体的形成。

(4)核基质:是核中除染色质与核仁以外的成分,包括核液与核骨架两部分。

4、细胞核功能

(1)遗传物质储存和复制的场所。

(2)细胞遗传性和细胞代谢活动的控制中心。

核被膜是包裹在核表面,核被膜上有核孔穿通。核被膜表面有核糖体附着,并与粗面内质网相续,核周隙亦与内质网腔相通,因此,核被膜也参与蛋白质合成。

基本介绍 中文名 :核被膜 外文名 :nuclear envelope 来源 :真核生物 单位膜 :两层 结构,核纤层,定义,作用,核孔,物质运输,染色观察,核苷三磷酸酶,改造, 结构 核被膜由核心膜(inner nuclear membrane)、外核膜(outer nuclear membrane)和核周隙(perinuclear space)三部分构成。核被膜上有核孔与细胞质相通。 核被膜(nuclear envelope)包裹在核表面,由基本平行的内层膜、外层膜两构成。两层膜的间隙宽10~15nm,称为核周隙(perinuclear cisterna)。核被膜上有核孔(nuclear pore)穿通。外核膜表面有核糖体附着,并与粗面内质网相续;核周隙亦与内质网腔相通,因此,核被膜也参与蛋白质合成。核心膜也参与蛋白质合成。核心膜的核质面有厚20~80nm的核纤层(fibrous lamina),是一层由细丝交织形成的致密网状结构。核纤层不仅对核膜有支持、稳定作用,也是染色质纤维西端的附着部位。 核纤层 定义 外核膜胞质面附有核糖体,并与内质网相连,核周隙与内质网腔相通,可以说是内质网的一部分。外核膜上附着10nm的中间纤维(intermediate filament),可见核是被内质网和中间纤维相对固定的。 核周隙宽20~40nm,腔内电子密度低,一般不含固定的结构。 核心膜的内表面有一层网路状纤维蛋白质,叫核纤层(nuclear lamina),可支持核膜。 核纤层由核纤肽(lamin)构成,核纤肽分子量约60~80KD,是一类中间纤维,在哺乳类和鸟类中可分为A、B两型。 作用 1.保持核的形态: 是核被膜的支架,用高盐溶液、非离子去污剂和核酸酶去除大部分核物质,剩余的核纤层仍能维持核的轮廓。此外,核纤层与核骨架以及穿过核被膜的中间纤维相连,使胞质骨架和核骨架形成一连续网路结构。 2.参与染色质和核的组装 :核纤层在细胞分裂时呈现出周期性的变化,在间期核中,核纤层提供了染色质(异染色质)在核周边锚定的位点。在前期结束时,核纤层被磷酸化,核膜解体。其中B型核纤肽与核膜残余小泡结合,A型溶于胞质中。在分裂末期,核纤肽去磷酸化重新组装,介导了核膜的重建。 核孔 核孔是直径50~80nm 的圆形孔。内、外核膜在孔缘相连续,孔内有环(annulus)与中心颗粒组成核孔复合体。环有16个球形亚单位,孔内、外线各有8个。从位于核孔中心的中心颗粒(又称孔栓)放射状发出细丝与16个亚单位相连。核孔所在处无核纤层。一般认为,水离子和核苷等小分子物质可直接通透核被膜;而RNA与蛋白质等大分子则经核孔出入核,但其出入方式尚不明了。显然,核功能活跃的细胞核孔数量多。成熟的 几乎无核孔,而卵母细胞的核孔极其丰富,成为研究该结构的主要材料。 核孔是细胞核与细胞质之间物质交换的通道,一方面核的蛋白都是在细胞质中合成的,通过核孔定向输入细胞核,另一方面细胞核中合成的各类RNA、核糖体亚单位需要通过核孔运到细胞质。此外注射实验证明,小分子物质能够以自由扩散的方式通过核孔进入细胞核。 核孔由至少50种不同的蛋白质(nucleoporin)构成,称为核孔复合体(nuclear pore complex,NPC)。一般哺乳动物细胞平均有3000个核孔。细胞核活动旺盛的细胞中核孔数目较多,反之较少。如蛙卵细胞每个核可有377X106个核孔,但其成熟后细胞核仅150~300个核孔。 在电镜下观察,核孔是呈圆形或八角形,一般认为其结构如fish-trap,主要包括以下几个部分:①胞质环(cyla ic ring),位于核孔复合体胞质一侧,环上有8条纤维伸向胞质;②核质环(nuclear ring),位于核孔复合体核质一侧,上面伸出8条纤维,纤维端部与端环相连,构成笼子状的结构;③转运器(transporter),核孔中央的一个栓状的中央颗粒;④辐(Spoke):核孔边缘伸向核孔中央的突出物。 物质运输 1982年R Laskey发现核内含量丰富的核质蛋白(nucleopla in)的C端有一个信号序列,可引导蛋白质进入细胞核,称作核定位信号(nuclear localization signal,NLS)。第一个被确定的NLS是病毒SV40的T抗原,它在胞质中合成后很快积累在核中。其NLS为:pro-pro-lys-lys-lys-Arg-Lys-val,即使单个胺基酸被替换,亦失去作用。 NLS由4-8个胺基酸组成,含有Pro、Lys和Arg。对其连线的蛋白质无特殊要求,并且完成核输入后不被切除。 Karyopherin是一类与核孔选择性运输有关的蛋白家族,相当于受体蛋白。其中imporin负责将蛋白从细胞质运进细胞核,exportin负责相反方向的运输。 通过核孔复合体的转运还涉及Ran蛋白,Ran是一种G蛋白,调节货物受体复合体的组装和解体,在细胞核内Ran-GTP的含量远高于细胞质。 核质蛋白向细胞核的输入可描述如下:①蛋白与NLS受体,即imporin α/β二聚体结合;②货物与受体的复合物与NPC胞质环上的纤维结合;③纤维向核弯曲,转运器构象发生改变,形成亲水通道,货物通过;④货物受体复合体与Ran-GTP结合,复合体解散,释放出货物;⑤与Ran-GTP结合的imporin β,输出细胞核,在细胞质中Ran结合的GTP水解,Ran-GDP返回细胞核重新转换为Ran-GTP;⑥imporin α在核内exportin的帮助下运回细胞质。 对细胞核向细胞质的大分子输出了解较少,大多数情况下,细胞核内的RNA是与蛋白质形成RNP复合物转运出细胞核的。RNP的蛋白质上具有核输出信号(nuclear export signal, NES),可与细胞内的受体exportin结合,形成RNP-exportin-Ran-GTP复合体,输出细胞核后,Ran-GTP水解,释放出结合的RNA,Ran-GDP、exportin和RNP蛋白返回细胞核。 染色观察 在HE染色切片上,细胞核(nucleus)以其强嗜碱性而成为细胞内最醒目的结构。由于它含有DNA--遗传信息,因此,借DNA复制与选择性转录,细胞核成为细胞增殖、分化、代谢等活动中关键环节之一。人体绝大多数种类的细胞具有单个细胞核,少数无核、双核或多核。核的形态在细胞周期各阶段不同,间期核的形态在不同细胞亦相差甚远,但其结构都包括核被膜,染色质,核仁与核基质四部。 核被膜观察: 在电镜下观察,可见核被膜由两层平行排列的单位膜组成。内、 外两层膜之间的腔隙称核周腔。核被膜外层表面有核蛋白体附着,并与内质网相接。核被膜上有许多由内、外膜层融合而成的孔,称核孔。核孔是核内与细胞质之间进行物质交换的通道,核孔的数目可随细胞生理状况的不同而变化。核被膜对控制细胞质与核之间的物质交流,维持核内环境的恒定有重要作用。 核苷三磷酸酶 核被膜上NTPase的活性与核膜结构的完整 息相关,因此任何能影响细胞核膜结构的因素几乎都可以影响核膜NTPase活性。膳食中脂肪含量可影响NTPase的活性与核膜中的脂质组成及胆固醇含量,喂食高P/S膳食的大鼠肝细胞核膜上C18:2ω6水平增加,NTPase酶活性升高;核膜上胆固醇及其氧化产物等均可直接影响NTPase的活性;JCR:LA-cp肥胖大鼠肝细胞核膜上胆固醇含量变化可调节其酶的活性。致癌物黄曲霉毒素、DM-NA等低剂量时可使NTPase酶活性增加,而致癌物高剂量时其毒性作用则可掩盖NTPase酶的活性变化,推测NTPase酶活性变化可能是致癌剂使细胞核膜发生膨胀的结果,此可部分解释某些肿瘤发生过程中为什么成熟mRNA要发生转运的增加。同样细胞核膜上自由基的变化也可影响核被膜NTPase的活性,进而影响成熟mRNA的转运过程。 电镜和萤光光子漂白扫描技术证实大鼠肝细胞核膜上存在胰岛素结合位点,胰岛素与其核膜上相应位点的结合后,可通过核膜上NTPase酶的活性变化,和核孔actinomyosin样收缩器的定向作用来影响生物大分子包括mRNA在内的特异性出核转运;同样核膜上有甲状腺素和类固醇结合位点以及EGF受体,它们在与其配体结合后,通过核膜空间结构的改变或者通过其它途径,影响NTPase活性和生物分子的跨核膜转运。6月龄肥胖雌性大鼠肝细胞核膜NTPase酶活性明显高于相应大鼠NT-Pase的活性,且NTPase的Vmax值随年龄的增加而增加,提示其NTPase活性变化可能是体内雌激素经核膜受体作用的结果。 分子生物学的发展尤其是Northern杂交技术的简化使人们能从mRNA水平推测蛋白质的表达情况,但是mRNA和蛋白质的变化发展显然是不平行的。自从细胞核膜NTPase被发现与确认以来,人们越来越感到要研究蛋白功能的实验必须补充了解mRNA的特异转运。Gupta报导大鼠心肌细胞核膜NTPase受去磷酸化作用调节,因此由激素或其它因子引起信号转导作用,经细胞核膜NTPase的活性变化调节mRNA的特异转运,可能会成为今后进一步研究代谢调控的重点。 改造 伴护分子p97是一种ATP酶,参与各种不同的功能,如内质网中蛋白的降解和细胞周期调控等。在有丝分裂开始的时候,核被膜被拆开,并在过程的最后被改造。这项研究为核被膜的改造提供了一个机理上的解释。研究发现,p97与染色质上Aurora B(核被膜形成的一种已知的抑制成分)的一种泛素化形式相结合。这导致Aurora B从染色质中被提取出来,从而允许染色体解凝和核被膜形成。

问题一:细胞分裂的时候核膜和核仁的消失跟哪些细胞器有关? 1 核膜:与内质网有关。细胞分裂前期核膜一般破碎形成小泡,随细胞分裂。末期核膜重新形成的机理有两种观点:一是由原来旧核膜碎片形成;二是由内质网膜重新形成。

2核仁:与核糖体有关。细胞分裂期的染色体中的13、14、15以及21、22号染色体上有随体,在它们的随体柄处就是副缢痕区,是核仁组织区。在细胞分裂间期,染色体的这些次缢痕区松散成了核仁组织区,其中含有构成染色质丝的DNA ,就能合成构成核仁的rRNA,因而就有了核仁。 而在细胞分裂期,这些染色质又螺旋成紧密的染色体,这时就不能合成核仁了。简单地说,核仁是某几条染色体上转录rRNA的部分(随体互聚在一起形成的结构,细胞处于分裂期时各染色体相互分离,核仁自然就解体了。

问题二:电镜下核膜和核仁的结构特点 一、核膜:

核膜由内外两层单位膜组成,每层膜厚约65毫微米,两层膜间隙宽约10~30毫微米,两层膜之间的间隙,称核周隙,核周隙中也含有酶。

核膜外层的外表面附有核糖体颗粒。有的细胞中,外膜与粗面内质网膜相连续,因为内质网膜与质膜是连续的,所以核膜间隙似乎与细胞外相通。

核膜内层的内表面上,有一层由多肽物质组成的网架,其作用是保持细胞核的形状和附着染色质纤维;在有丝分裂过程中,对核膜的破裂和重建有一定的作用。

核膜上还有许多散在的孔,称为核孔,在核孔周围,核膜的内层与外层相连。核孔是核与细胞质进行物质交换的孔道。

核膜并不是完全连续的,有许多部位内外膜互相连接,形成穿过核膜的核孔。

二、核仁:核仁超微结构有纤维中心(FC)、致密纤维组分(DFC)、颗粒组分(GC)三个特征性的区域。

u纤维中心(FC):被DFC包围的一个或几个低电子密度的圆形结构区域,主要成分为rDNA,可看成rRNA基因储存的场所。

u致密纤维组分(DFC):由致密的纤维构成,是核仁中电子密度最高的部分,是新合成的rRNA及其结合蛋白存在的场所,rRNA剪切和加工场所。

u颗粒组分(GC):由核糖 白颗粒构成,是正在加工成熟的核糖体亚单位的前体颗粒,容易被蛋白酶和RNase(核糖核酸酶)。

核仁组成成分包括rRNA,rDNA和核糖 白。核仁是rRNA基因存储,rRNA合成加工以及核糖体亚单位的装配场所。

一、核膜:

核膜由内外两层单位膜组成,每层膜厚约65毫微米,两层膜间隙宽约10~30毫微米,两层膜之间的间隙,称核周隙,核周隙中也含有酶。

核膜外层的外表面附有核糖体颗粒。有的细胞中,外膜与粗面内质网膜相连续,因为内质网膜与质膜是连续的,所以核膜间隙似乎与细胞外相通。

核膜内层的内表面上,有一层由多肽物质组成的网架,其作用是保持细胞核的形状和附着染色质纤维;在有丝分裂过程中,对核膜的破裂和重建有一定的作用。

核膜上还有许多散在的孔,称为核孔,在核孔周围,核膜的内层与外层相连。核孔是核与细胞质进行物质交换的孔道。

核膜并不是完全连续的,有许多部位内外膜互相连接,形成穿过核膜的核孔。

二、核仁:核仁超微结构有纤维中心(FC)、致密纤维组分(DFC)、颗粒组分(GC)三个特征性的区域。

u纤维中心(FC):被DFC包围的一个或几个低电子密度的圆形结构区域,主要成分为rDNA,可看成rRNA基因储存的场所。

u致密纤维组分(DFC):由致密的纤维构成,是核仁中电子密度最高的部分,是新合成的rRNA及其结合蛋白存在的场所,rRNA剪切和加工场所。

u颗粒组分(GC):由核糖核蛋白颗粒构成,是正在加工成熟的核糖体亚单位的前体颗粒,容易被蛋白酶和RNase(核糖核酸酶)。

核仁组成成分包括rRNA,rDNA和核糖核蛋白。核仁是rRNA基因存储,rRNA合成加工以及核糖体亚单位的装配场所。

欢迎分享,转载请注明来源:品搜搜测评网

原文地址:https://pinsoso.cn/meirong/1962034.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-10-30
下一篇2023-10-30

随机推荐

  • 日月之精华是什么词语?

    日月之精华,这个词语令人们感到神秘又充满遐想。它是指日月所蕴含的核心精髓,代表着宇宙的奥秘和生命的力量。无论是古人还是现代人,对于日月之精华的探索和理解都是永恒的话题。从科学的角度来看,日月之精华可以理解为温度。在宇宙中,太阳是光和热的源泉

    2024-04-15
    45500
  • 黑松露能使白发变黑吗 黑松露能治白发吗

    黑松露大家应该都不陌生,它是一种很珍贵的食材,其实有不少人应该都有吃过的,有着极高的营养价值,那么经常吃黑松露能使白发变黑吗?黑松露能使白发变黑吗不能,黑松露没有这个作用。黑松露含有的多糖、多肽、三萜具有增强免疫力、抗衰老、抗疲劳等

    2024-04-15
    36800
  • 什么补水喷雾好?

    1 妮维雅娇柔爽肤水(粉)49元:的确是很好用的一款 拍到脸上 润润的 不含酒精 也很耐用呢 不错不错(摇后泡沫细腻丰富,厚厚的一层而且经久不消。泡泡少说明营养成分少,泡泡多但大说明含有水杨酸,洁肤效果好但敏感肌肤尽量不要用,泡泡多且细但很

    2024-04-15
    27000
  • pmpm玫瑰和白松露哪个好用

    pmpm玫瑰和白松露各有优势,具体选择取决于个人需求和偏好。pmpm千叶玫瑰精油含有千叶玫瑰精准定位提取,具有抗初老、强韧肌肤屏障以及双重vc成分,抗氧化、提亮肤色,可以改善肤色暗沉,抵御自由基,使肌肤饱满有光泽。白松露具有保湿、补水、抗初

    2024-04-15
    39800
  • 关于芍药的诗句 古诗

    -1-浩态狂香昔未逢,红灯烁烁绿盘笼。觉来独对情惊恐,身在仙宫第几重。——唐代:韩愈《芍药》-2-芍药花开出旧栏,春衫掩泪再来看。主人不在花长在,更胜青松守岁寒。——唐代:钱起《故王维右丞堂前芍药花开,凄然感怀》-3-香清粉澹怨残春,蝶翅蜂

    2024-04-15
    26700
  • 妮维雅和欧莱雅哪个好?妮维雅是哪国的品牌?

    妮维雅这个品牌大家都比较熟悉,很多人都会想到它们家的洗面奶,还经常被拿来和其他的护肤品牌做比较,比如说欧莱雅这个品牌,因为欧莱雅的护肤产和妮维雅一样也是有男士和女士的,那妮维雅和欧莱雅哪个好?妮维雅是哪国的品牌?1、妮维雅和欧莱雅哪个好妮维

    2024-04-15
    28800
  • 哪一款男士洗面奶具备控油美白的功效?妮维雅、欧兰雅、还是曼秀蕾敦?如题 谢谢了

    近年来,男士护肤品市场迅速发展,男士洗面奶也成为了男性日常护肤的重要产品之一。对于控油美白效果的男士洗面奶,妮维雅、欧兰雅和曼秀蕾敦都是备受瞩目的品牌。哪一款男士洗面奶具备控油美白的功效呢?让我们来看看妮维雅男士洗面奶。妮维雅一直以来都是大

    2024-04-15
    31600

发表评论

登录后才能评论
保存