供暖系统运行中的常见问题分析
摘 要:我国集中供热事业发展,特别是近年来城市集中供热发展较快,但在实际运行中也存在很多的问题,根据调研及近二十年的设计和运行管理经验,就我国目前供暖系统普遍存在的共性问题,如水力失调、系统积气、系统失水以及系统压力不稳定等做了简要分析,提出了解决方案,并列举了供暖系统改造的工程实例。
关键词:供暖系统 水力失调 压力波动
1、问题的提出
供热工程是利用热媒(如水、蒸汽或其它介质)将热能从热源输送到各热用户的工程技术。通常的供暖系统由热源、热网、热用户的三部分组成,其能否正常运行主要取决于系统设计、施工、运行管理水平等三个方面,并且这三个方面相互影响、相互制约,其中的任何一个环节出现问题都会影响到整个系统的正常运行,使供暖的质量无法满足用户的要求。根据调研,我国目前的供暖系统在设计、施工、运行管理等方面均不同程度的存在着问题,主要表现为系统冷热不均、失调严重、运行中的水、煤、电等的能耗严重,运行故障时有发生,严重的威胁着热网的正常运行,供热质量难以保证。
一个供暖系统若按规范进行设计施工,其正常运行是有保障的。但是,我国的采暖系统大部分都不是很合理,集中表现为热负荷选取过大,造成设备选型过大,输送设备大,备用率高,经济效益差。在实际工程中还常常出现这样的情况,供热系统若按规范和节能标准设计,由于施工和运行管理中的种种问题,使得系统往往满足不了热用户的需求,造成设计者不能按常规的设计理论进行设计,出现了节能建筑不节能的尴尬局面,即建筑的墙体是节能墙体,而供暖系统未能按节能标准设计。尤其在改扩建工程中表现得尤为突出,设计者必须按原有的老建筑的供暖设计负荷进行设计,否则将造成系统的不平衡;在对原有系统的运行状况缺乏了解,或根本无从了解时,设计者只能利用大负荷进行弥补。久而久之,不合理反而变得合理,为人们所接受。就我国的供暖现状而言,采取何种措施,在保证供暖质量的同时,尽可能的减少浪费,提高现有供热系统的效率是工程设计和运行管理人员所面临的一个重大课题。
2、存在的问题及对策
21水力失调
供热系统各立管之间、各层之间存在水力不平衡,由于管道系列规格的限制,设计一般是无法使之完全平衡,各环路的自然压头差别影响到它们的不平衡程度。
212系统水力失调的处理办法
解决供热系统水力失调问题主要在于改善二次水系统和户内系统,以改善小区内建筑物之间和建筑物内部房屋冷热不均的状况,并通过运行调节实现按用户热负荷分配流量,即“按需分配”使每个用户室温达到一致且满足要求。
(a)水平失调的处理方法
1)在每个用户引入口安装调节性能较好的调节阀,于系统正式运行前进行初调节。
2)在热用户引入口安装自立式压差调节阀、流量调节阀或自立式平衡阀,对其初调节并锁定,可以有效的解决小区内建筑物之间冷热不均的问题。
3)有条件的设置热源和热网的微机监控系统,对系统进行有效的监视、调整和控制,可实行最优化的运行调节和控制。
(b)垂直失调的处理方法
1)在供热系统立管和散热器入口支管上设置调节性能好的阀门,并对系统进行初调节,投资少,国内应用较多。
2)在供热系统立管设置平衡阀平衡各立管之间的流量,散热器入口支管上设置温控阀控制室内温度,能够有效地解决建筑物内部房屋冷热不均的问题,不仅节约能源,还为计量收费,用户自由调节室温打下了基础。
22系统积气
221系统积气的主要原因
(a)系统积气的主要原因有两个:
热水中溶解的气体在系统的低速低压部位自动析出,积存在散热器内或系统的局部高点,补水量越大析出的气体可能就越多,影响管道内热媒的流动和散热效果。
(b)系统倒空,即室内系统的局部形成真空,使大量的气体进入系统。对失水量比较大的采暖系统,若系统丢水后不能及时补水,倒空则不可避免。
222系统积气的处理方法
减少系统的跑、冒、滴、漏,控制系统丢水,从而减少了系统的补水,把系统的补水率控制在2%以下,可有效减少溶解在补水中的气体析出。如某系统的补水率通常在10%~15%,系统总有排不完的气体,当补水量降下来以后,积气量明显减少。
在系统运行中,如果系统丢水应及时补水,目前常用的定压方式有以下几种:膨胀水箱定压、定压罐定压、间歇补水定压、连续补水定压和变频调速补水定压方式。
采用膨胀水箱定压易加重系统腐蚀,膨胀水箱必须安装在系统最高处,很不方便,在实际运行中往往由于压力表精度、人为的观测误差等因素容易造成系统倒空、进气,空气被循环水带到系统之中在压力大的部位溶解在水中,在压力小的部位析出,增加了积气。同时热媒中的气体过多加剧了热源、管道、散热器的氧化腐蚀,缩短了设备的使用寿命。系统中的积气需要及时排出,增加了运行管理人员的工作量,否则系统不但不能正常运行,还可能出现冻裂管道和散热器的事故。
定压罐体积大占地大,每隔一段时间要充一次气,充气工作非常繁琐。
间歇补水定压是根据系统的压力变化控制其补水,即系统压力低于某值时补水泵启动,高于某值时补水泵关闭。这种方式比较节能,但是系统压力波动大,运行不稳定。
连续补水定压和变频调速补水定压效果都很好。实践证明,利用变频调速技术补水定压比连续补水定压在电能消耗上要节省很多。相比较而言,供热系统宜采用变频调速补水定压方式。不仅压力稳定,节约电耗,又可以减少频繁启动对设备的损耗,延长设备的使用寿命,最重要的是克服了膨胀水箱定压的缺点,减少供暖系统积气的产生。
供热系统进气也是值得注意的,在实践中我们曾遇到由于除污器未及时清洗,其阻力变大,在循环泵的吸入口形成负压,在水泵盘根及其封闭不严处进气,这是一个比较容易忽略的一个问题。克服方法:在循环泵的吸入口加压力表,随时监视系统的压力变化,定期清洗除污器,并注意除污器的安装方向要正确,不要装反。
23系统压力波动
231系统压力波动的原因
对于膨胀水箱定压方式的供暖系统经常出现压力波动。一般情况,如系统定压正常,压力低系统则缺水;压力高系统则散热器有可能超压爆裂。目前,大部分供暖系统所用补水泵的补水量都大于实际需要的补水量,采用的是大流量、高扬程的补水泵。当系统补水时,补水迅速进入,系统一旦充满则补水通过膨胀管进入膨胀水箱,而膨胀水箱的管径一般较小,阻力较大,使补水泵的压力全部作用于系统,造成系统超压,而补水泵停止工作时作用在系统上的压力减小,形成压力波动。系统的形式如图1所示。
如图1 膨胀水箱定压系统示意图
232处理方法
上述原因发生的压力波动可通过更换与系统相匹配的补水泵和压力控制器自动控制补水来解决。如利用补水泵与电磁阀相配和,利用补水泵既实现了系统的压力稳定,又实现了系统的连续补水。补水泵定压系统与膨胀水箱定压系统相比较,补水泵定压系统增加了一个电磁阀,系统形式也由开式循环变为闭式循环,供热系统实现了自动化,减少了操作人员的工作量。
如图2 补水泵定压系统示意图
在实际运行中,还有一些情况产生压力波动,我们遇到过补水泵出口逆止阀不严密的情况,有时是因为阀体内进入杂质,有时因为阀体本身质量问题,以上原因产生系统补水回坐至软水箱内,甚至混合了二次网水,从而造成压力不稳。另外还遇到换热器片损坏一二次网串水的问题,运行人员发现二次网侧压力升高,停止循环水泵运行后压力仍然很高,经现场观察发现二次网侧压力与一次网侧压力接近,分析认为一二次网串水,经检查的确是由于换热器片发生多处点蚀,有些地方穿孔造成一二次网水互串。
3、结论
由此可见,针对供暖系统存在的问题认真分析,找出系统存在的问题,采取相应的处理办法。通过技术改造,提高供热的技术及管理水平,实行量化管理是提高供热质量,节约能源的有效手段。
这个跟泵没关系,是控制系统让泵这么干的,找控制的原因。
泵扬程30米,你的停泵是32米,你说能达到么?达不到所以不停
“把放水阀门打开放一部分水后,补水泵又能补水,是怎么回事?”
这种情况可能是泵入口的管路有气体进入泵内导致。小心转坏水泵。
定压供水设备是利用气体的可压缩性能设计的,它是在管网系统和管网补水泵之间增加了一台定压罐,同时在管道上增加电接点压力表,电接点压力表将直接显示管网的系统压力,当系统压力低于设置最小压力时,电接点压力表将传输信号给管网补水泵,管网补水泵开始工作;当系统压力大于设置最高压力时,电接点压力表将传输信号给管网补水泵,管网补水泵停止工作。在管网补水泵停止工作后,系统压力靠定压罐来补偿,当管网系统压力下降时,定压罐内的气体要自然膨胀,罐体内的水在气体压力下自动补入系统;当定压罐内的水减小到一定程度,靠管网补水泵来实现增压,罐内的气体再次被压缩。如此往复的工作,实现对管网系统的稳压。
系统特点
◆ 一次充气可保持长久使用;
◆罐体为密闭装置,气水不接触,保证水质不受外界污染;
◆
占地面积少、安装快、投资省、操作维修方便;
◆可取代生活消防及采暧,空调用的高位水箱及水塔,有利于建筑美观和结构抗震,降低建筑的造价;
◆能自动消除管网中的水锤及噪音;
◆在热水采暖及空调系统中起膨胀水箱作用和自动补水作用。
欢迎分享,转载请注明来源:品搜搜测评网