基础会计学知识点归纳推荐度:
人民版历史必修一知识点归纳推荐度:
高中生物知识点总结推荐度:
三年级上册英语重点知识点归纳推荐度:
高中生物教学总结推荐度:
高中生物核酸知识点归纳
上学的时候,大家都背过不少知识点,肯定对知识点非常熟悉吧!知识点是知识中的最小单位,最具体的内容,有时候也叫“考点”。掌握知识点是我们提高成绩的关键!下面是小编收集整理的高中生物核酸知识点归纳,仅供参考,希望能够帮助到大家。
高中生物核酸知识点归纳 篇1
1、核酸的简介
由许多核苷酸聚合而成的生物大分子化合物,为生命的最基本物质之一。最早由米歇尔于1868年在脓细胞中发现和分离出来。核酸广泛存在于所有动物、植物细胞、微生物内、生物体内核酸常与蛋白质结合形成核蛋白。不同的核酸,其化学组成、核苷酸排列顺序等不同。根据化学组成不同,核酸可分为核糖核酸,简称RNA和脱氧核糖核酸,简称DNA。DNA是储存、复制和传递遗传信息的主要物质基础,RNA在蛋白质牲合成过程中起着重要作用,其中转移核糖核酸,简称tRNA,起着携带和转移活化氨基酸的作用;信使核糖核酸,简称mRNA,是合成蛋白质的模板;核糖体的核糖核酸,简称rRNA,是细胞合成蛋白质的主要场所。核酸不仅是基本的遗传物质,而且在蛋白质的生物合成上也占重要位置,因而在生长、遗传、变异等一系列重大生命现象中起决定性的作用。
核酸在实践应用方面有极重要的作用,现已发现近2000种遗传性疾病都和DNA结构有关。如人类镰刀形红血细胞贫血症是由于患者的血红蛋白分子中一个氨基酸的遗传密码发生了改变,白化病毒者则是DNA分子上缺乏产生促黑色素生成的酷氨酸酶的基因所致。肿瘤的发生、病毒的感染、射线对机体的作用等都与核酸有关。70年代以来兴起的遗传工程,使人们可用人工方法改组DNA,从而有可能创造出新型的生物品种。如应用遗传工程方法已能使大肠杆菌产生胰岛素、干扰素等珍贵的生化药物
2、核酸的研究历史
核酸是怎么发现的
1869年,FMiescher从脓细胞中提取到一种富含磷元素的酸性化合物,因存在于细胞核中而将它命名为"核质"(nuclein)。核酸(nucleicacids),但这一名词于Miescher的发现20年后才被正式启用,当时已能提取不含蛋白质的核酸制品。早期的研究仅将核酸看成是细胞中的一般化学成分,没有人注意到它在生物体内有什么功能这样的重要问题。
核酸为什么是遗传物质
1944年,Avery等为了寻找导致细菌转化的原因,他们发现从S型肺炎球菌中提取的DNA与R型肺炎球菌混合后,能使某些R型菌转化为S型菌,且转化率与DNA纯度呈正相关,若将DNA预先用DNA酶降解,转化就不发生。结论是:S型菌的DNA将其遗传特性传给了R型菌,DNA就是遗传物质。从此核酸是遗传物质的重要地位才被确立,人们把对遗传物质的注意力从蛋白质移到了核酸上。
双螺旋的`发现
核酸研究中划时代的工作是Watson和Crick于1953年创立的DNA双螺旋结构模型。模型的提出建立在对DNA下列三方面认识的基础上:
1核酸化学研究中所获得的DNA化学组成及结构单元的知识,特别是Chargaff于1950-1953年发现的DNA化学组成的新事实;DNA中四种碱基的比例关系为A/T=G/C=1;
2X线衍射技术对DNA结晶的研究中所获得的一些原子结构的最新参数;
3遗传学研究所积累的有关遗传信息的生物学属性的知识。综合这三方面的知识所创立的DNA双螺旋结构模型,不仅阐明了DNA分子的结构特征,而且提出了DNA作为执行生物遗传功能的分子,从亲代到子代的DNA复制(replication)过程中,遗传信息的传递方式及高度保真性。其正确性于1958年被Meselson和Stahl的著名实验所证实。DNA双螺旋结构模型的确立为遗传学进入分子水平奠定了基础,是现代分子生物学的里程碑。从此核酸研究受到了前所未有的重视。
对核酸研究有突出贡献的科学家
沃森
Watson,JamesDewey
美国生物学家
克里克
Crick,FrancisHarryCompton
英国生物物理学家
3、核酸的分子结构
一、核酸的一级结构
核酸是由核苷酸聚合而成的生物大分子。组成DNA的脱氧核糖核苷酸主要是dAMP、dGMP、dCMP和dTMP,组成RNA的核糖核苷酸主要是AMP、GMP、CMP和UMP。核酸中的核苷酸以3’,5’磷酸二酯键构成无分支结构的线性分子。核酸链具有方向性,有两个末端分别是5’末端与3’末端。5’末端含磷酸基团,3’末端含羟基。核酸链内的前一个核苷酸的3’羟基和下一个核苷酸的5’磷酸形成3’,5’磷酸二酯键,故核酸中的核苷酸被称为核苷酸残基。。通常将小于50个核苷酸残基组成的核酸称为寡核苷酸(oligonucleotide),大于50个核苷酸残基称为多核苷酸(polynucleotide)。
二、DNA的空间结构
(一)DNA的二级结构
DNA二级结构即双螺旋结构(doublehelixstructure)。20世纪50年代初Chargaff等人分析多种生物DNA的碱基组成发现的规则。
DNA双螺旋模型的提出不仅揭示了遗传信息稳定传递中DNA半保留复制的机制,而且是分子生物学发展的里程碑。
DNA双螺旋结构特点如下:
①两条DNA互补链反向平行。
②由脱氧核糖和磷酸间隔相连而成的亲水骨架在螺旋分子的外侧,而疏水的碱基对则在螺旋分子内部,碱基平面与螺旋轴垂直,螺旋旋转一周正好为10个碱基对,螺距为34nm,这样相邻碱基平面间隔为034nm并有一个36的夹角。
③DNA双螺旋的表面存在一个大沟(majorgroove)和一个小沟(minorgroove),蛋白质分子通过这两个沟与碱基相识别。
④两条DNA链依靠彼此碱基之间形成的氢键而结合在一起。根据碱基结构特征,只能形成嘌呤与嘧啶配对,即A与T相配对,形成2个氢键;G与C相配对,形成3个氢键。因此G与C之间的连接较为稳定。
⑤DNA双螺旋结构比较稳定。维持这种稳定性主要靠碱基对之间的氢键以及碱基的堆集力(stackingforce)。
生理条件下,DNA双螺旋大多以B型形式存在。右手双螺旋DNA除B型外还有A型、C型、D型、E型。此外还发现左手双螺旋Z型DNA。Z型DNA是1979年Rich等在研究人工合成的CGCGCG的晶体结构时发现的。Z-DNA的特点是两条反向平行的多核苷酸互补链组成的螺旋呈锯齿形,其表面只有一条深沟,每旋转一周是12个碱基对。研究表明在生物体内的DNA分子中确实存在Z-DNA区域,其功能可能与基因表达的调控有关。DNA二级结构还存在三股螺旋DNA,三股螺旋DNA中通常是一条同型寡核苷酸与寡嘧啶核苷酸-寡嘌呤核苷酸双螺旋的大沟结合,三股螺旋中的第三股可以来自分子间,也可以来自分子内。三股螺旋DNA存在于基因调控区和其他重要区域,因此具有重要生理意义。
(二)DNA三级结构——超螺旋结构
DNA三级结构是指DNA链进一步扭曲盘旋形成超螺旋结构。生物体内有些DNA是以双链环状DNA形式存在,如有些病毒DNA,某些噬菌体DNA,细菌染色体与细菌中质粒DNA,真核细胞中的线粒体DNA、叶绿体DNA都是环状的。环状DNA分子可以是共价闭合环,即环上没有缺口,也可以是缺口环,环上有一个或多个缺口。在DNA双螺旋结构基础上,共价闭合环DNA(covalentlyclosecircularDNA)可以进一步扭曲形成超螺旋形(superhelicalform)。根据螺旋的方向可分为正超螺旋和负超螺旋。正超螺旋使双螺旋结构更紧密,双螺旋圈数增加,而负超螺旋可以减少双螺旋的圈数。几乎所有天然DNA中都存在负超螺旋结构。
(三)DNA的四级结构——DNA与蛋白质形成复合物
在真核生物中其基因组DNA要比原核生物大得多,如原核生物大肠杆菌的DNA约为47×103kb,而人的基因组DNA约为3×106kb,因此真核生物基因组DNA通常与蛋白质结合,经过多层次反复折叠,压缩近10000倍后,以染色体形式存在于平均直径为5μm的细胞核中。线性双螺旋DNA折叠的第一层次是形成核小体(nucleosome)。犹如一串念珠,核小体由直径为11nm×55nm的组蛋白核心和盘绕在核心上的DNA构成。核心由组蛋白H2A、H2B、H3和H4各2分子组成,为八聚体,146bp长的DNA以左手螺旋盘绕在组蛋白的核心175圈,形成核小体的核心颗粒,各核心颗粒间有一个连接区,约有60bp双螺旋DNA和1个分子组蛋白H1构成。平均每个核小体重复单位约占DNA200bp。DNA组装成核小体其长度约缩短7倍。在此基础上核小体又进一步盘绕折叠,最后形成染色体。
遗传信息的携带者——核酸
一、核酸的分类
细胞生物含两种核酸:DNA和RNA
病毒只含有一种核酸:DNA或RNA
核酸包括两大类:一类是脱氧核糖核酸(DNA);一类是核糖核酸(RNA)。
二、核酸的结构
1、核酸是由核苷酸连接而成的长链(CHONP)。DNA的基本单位脱氧核糖核苷酸,RNA的基本单位核糖核苷酸。核酸初步水解成许多核苷酸。基本组成单位—核苷酸(核苷酸由一分子五碳糖、一分子磷酸、一分子含氮碱基组成)。根据五碳糖的不同,可以将核苷酸分为脱氧核糖核苷酸(简称脱氧核苷酸)和核糖核苷酸。
2、DNA由两条脱氧核苷酸链构成。RNA由一条核糖核苷酸连构成。
3、核酸中的相关计算:
(1)若是在含有DNA和RNA的生物体中,则碱基种类为5种;核苷酸种类为8种。
(2)DNA的碱基种类为4种;脱氧核糖核苷酸种类为4种。
(3)RNA的碱基种类为4种;核糖核苷酸种类为4种。
三、核酸的功能:核酸是细胞内携带遗传信息的物质,在生物体的遗传、变异和蛋白质的生物合成中具有极其重要的作用。
核酸在细胞中的分布——观察核酸在细胞中的分布:
材料:人的口腔上皮细胞
试剂:甲基绿、吡罗红混合染色剂
原理:DNA主要分布在细胞核内,RNA大部分存在于细胞质中。甲基绿使DNA呈绿色,吡罗红使RNA呈现红色。盐酸能够改变细胞膜的通透性,加速染色剂进入细胞,同时使染色质中的DNA与蛋白质分离。
结论:真核细胞的DNA主要分布在细胞核中。线粒体、叶绿体内含有少量的DNA。RNA主要分布在细胞质中。
一、核酸的种类:脱氧核糖核酸(DNA)和核糖核酸(RNA)
二、核酸:是细胞内携带遗传信息的物质,对于生物的遗传、变异和蛋白质的合成具有重要作用。
三、组成核酸的基本单位是:核苷酸,是由一分子磷酸、一分子五碳糖(DNA为脱氧核糖、RNA为核糖)和一分子含氮碱基组成;组成DNA的核苷酸叫做脱氧核苷酸,组成RNA的核苷酸叫做核糖核苷酸。
四、DNA所含碱基有:腺嘌呤(A)、鸟嘌呤(G)和胞嘧啶(C)、胸腺嘧啶(T)
RNA所含碱基有:腺嘌呤(A)、鸟嘌呤(G)和胞嘧啶(C)、尿嘧啶(U)
五、核酸的分布:真核细胞的DNA主要分布在细胞核中;线粒体、叶绿体内也含有少量的DNA;RNA主要分布在细胞质中。
高中生物核酸知识点归纳 篇2
天然存在的核酸有两类,即脱氧核糖核酸(deoxyribonucleic acid,DNA)和核糖核酸(ribonucleic acid,RNA)。DNA分子是生物体的遗传信息库,分布在原核细胞的核区,真核细胞的核和细胞器以及病毒中;RNA分子参与遗传信息表达的一些过程,主要存在于细胞质。
一、核酸的基本组成单位
核酸是一种多聚核苷酸,用不同的降解法得到其组成单位——核苷酸。而核苷酸又由碱基、戊糖和磷酸组成。
(一)戊糖
DNA含β—D—2—脱氧核糖,RNA含β—D—核糖。这是核酸分类的依据。核糖中的C记为1'……5'。
(二)碱基(base)
核酸中的碱基有两类:嘌呤碱和嘧啶碱。有5种基本的碱基外,还有一些含量甚少的稀
DNA和RNA中常见的两种嘌呤碱是腺嘌呤(adenine,A)、鸟嘌呤(guanine,G)。有碱基。
而嘧啶碱有所不同:RNA主要含胞嘧啶(cytosine,C)、尿嘧啶(uracil,U),DNA主要含胞嘧啶、胸腺嘧啶(thymine,T)。
tRNA中含有较多的稀有碱基(修饰碱基),多为甲基化的。
(三)核苷
是碱基和戊糖生成的糖苷。通过C1'— N9或C1'— N1糖苷键连接,用单字符表示,脱氧核苷则在单字符前加d。常见的修饰核苷有:次黄苷或肌苷为I、黄嘌呤核苷X、二氢尿嘧啶核苷D、假尿苷Ψ等。注意符号的意义,如m5dC。
(四)核苷酸
是核苷的磷酸酯。生物体内游离存在的多是5'— 核苷酸(如pA、pdG等)。常见的核苷酸为AMP、GMA、CMP、UMP。常见的脱氧核苷酸有dAMP、dGMA、dCMP、dTMP。AMP是一些重要辅酶的结构成分(如NAD+、NADP+、FAD等);环化核苷酸(cAMP/cGMP)是细胞功能的调节分子和信号分子。ATP在能量代谢中起重要作用。
核苷酸是两性电解质,有等电点。核苷酸有互变异构和紫外吸收。(含氧的碱基有酮式和烯醇式两种互变异构体,在生理pH条件下主要以酮式存在)
二、核苷酸的连接方式
RNA和DNA链都有方向性,从5'→ 3'。前一位核苷酸的3'— OH与下一位核苷酸的5'位磷酸基之间形成3',5'—磷酸二酯键,从而形成一个没有分支的线性大分子,两个末端分别称为5'末端和3'末端。大分子的主链由相间排列的戊糖和磷酸构成,而碱基可看作主链上的侧链基团,主链上的磷酸基是酸性的,在细胞pH下带负电荷;而碱基有疏水性。
答案:D
天然DNA分子普遍以右手螺旋结构形式存在(又细分为A型DNA和B型DNA),也存在左手螺旋结构,称为Z型DNA。A项,G-四链体是由富含碱基鸟嘌呤(G)的一种特殊的DNA二级结构。
操纵性能好,倒车功率大并且不需要装备反转主机,安装简单检修方便。
1、因为它能让螺旋桨在垂直轴的平面里360度转动,使螺旋桨发出任意方向的推力,所以不用舵也能控制船舶,并且不需要考虑在微航速下的操控性。
2、采用Z型传动推进装置的船舶不需要像常规船舶那样倒车时倒转螺旋桨,只需要把螺旋桨在垂直轴的平面转动180度就能实现倒车,这样的倒车功率基本和推进时差不多了(略有降低),并且这样也降低了船舶对主机的要求。
3、一般来说Z型传动推进装置都是打包成一个独立的整体,它的制造、安装、调试都可以在车间里进行,大大简化了在船上的安装工艺。
染色质是指间期细胞核内由DNA、组蛋白、非组蛋白及少量RNA 组成的线性复合结构,是间期细胞遗传物质存在的形式。染色体是指细胞在有丝分裂或减数分裂过程中,由染色质聚缩而成的棒状结构。实际上,两者化学组成没有差异,而包装程度即构型不同,是遗传物质在细胞周期不同阶段的不同表现形式。在真核细胞的细胞周期中,大部分时间是以染色质的形态而存在的。
基本介绍 中文名 :染色质 外文名 :Chromatin 套用学科 :医学-医学遗传学 套用学科 :人体组织学-细胞 种类 :常染色质、异染色质 别称 :核染质 位置 :处于细胞核中 发现过程,成分,染色质DNA,染色质蛋白,结构,结构单位,实验依据,结构要点,前期组装,组装模型,功能,分类,常染色质,异染色质,活性染色质,非活性染色质, 发现过程 1879年,W Flemming提出了染色质(chromatin)这一术语,用以描述细胞核中能被碱性染料强烈着色的物质。 1888年,Waldeyer正式提出染色体的命名。 经过一个多世纪的研究,人们认识到,染色质和染色体是在细胞周期不同阶段可以相互转变的形态结构。 成分 通过分离胸腺、肝或其他组织细胞的核,用去垢剂处理后再离心收集染色质进行生化分析,确定染色质的主要成分是DNA和组蛋白,还有非组蛋白及少量RNA。大鼠肝细胞染色质常被当作染色质成分分析模型,其中组蛋白与DNA含量之比近于1:1,非组蛋白与DNA之比是06:1,RNA与DNA之比为01:1。DNA与组蛋白是染色质的稳定成分,非组蛋白与RNA的含量则随细胞生理状态不同而变化。 染色质DNA 基因组 凡是具有细胞形态的生物其遗传物质都是DNA,只有少数病毒的遗传物质是RNA。在真核细胞中,每条未复制的染色体包含一条纵向贯穿的DNA分子。狭义而言,某一生物的细胞中储存于单倍染色体组中的总遗传信息,组成该生物的基因组。真核生物基因组DNA的含量比原核生物高得多。 染色质 突变分析结果表明,并非所有基因都是细胞生存的必需基因,如酵母基因组有40%的基因属于非必需基因,果蝇基因组只有5000个必需基因,最小最简单的细胞支原体,有迄今发现的能独立生活的有机体的最小基因组(482个基因),其中只有256个必需基因。 类型 以人类基因组为例,生物基因组DNA可以分为以下几类。 1、蛋白编码序列。以三联体密码方式进行编码。编码DNA在基因组中所占比例随生物而异,在人类细胞基因组中,这一比例只有15%左右。这类编码序列主要是非重复的单一DNA序列,一般在基因组中只有一个拷贝(单一基因),然而,也有可能有两个或几个拷贝甚至多达上千个拷贝的情况,这些都来自于从基因家族里派生出来的重复基因或多基因。 2、编码rRNA、tRNA、snRNA和组蛋白的串联重复序列。它们在基因组中一般有20~300个拷贝,人类基因组中约含有03%这样的DNA。 3、含有重复序列的DNA。这类DNA在基因组中占有很大一部分。它们又可以分为两个亚类:简单序列DNA和散在重复序列。DNA转座子、LTR反转座子、非LTR反转座子和假基因都属于散在重复序列。非LTR反转座子包括短散在元件和长散在元件。典型SINE其长度少于500bp,如人和灵长类基因组中大量分散存在的Alu家族,人基因组中有50万~70万份Alu拷贝,相当于平均每隔4kb就有一个Alu序列;典型LINE其长度在6~8kb之间,如人基因组中L1家族,有100 000个L1拷贝。 4、未分类的间隔DNA。 5、高度重复DNA序列: ①卫星DNA,重复单位长5~100bp,不同物种重复单位碱基组成不同,一个物种也可能含有不同的卫星DNA序列。 ②小卫星DNA,重复单位长12~100bp,重复3 000次之多,又称数量可变的串联重复序列,每个小卫星区重复序列的拷贝数是高度不变的,因此早前常用于DNA指纹技术作个体鉴定。研究发现小卫星序列的改变可以影响邻近基因的表达,基因的异常表达会导致一系列不良后效应。 ③微卫星DNA,重复单位序列最短,只有1~5bp,串联成簇长度50~100bp。 二级结构 生物的遗传信息储存在DNA的核苷酸序列中,生物界物种的多样性也寓于DNA分子4种核苷酸千变万化的排列之中。DNA分子不仅一级结构具有多样性,而且二级结构也具有多态性。所谓二级结构是指两条多核苷酸链反向平行盘绕所生成的双螺旋结构。DNA二级结构构型分3种: ①B型DNA(右手双螺旋DNA),是“经典”的Watson-Crick结构,二级结构相对稳定,水溶液和细胞内天然DNA大多为B型DNA; ②A型DNA(右手双螺旋DNA),是一般B型DNA的重要变构形式,其分子形状与RNA的双链区和DNA/RNA杂交分子很相近; ③Z型DNA(左手双螺旋DNA),也是B型DNA的变构形式。 3种构型DNA中,特别是大沟的特征在遗传信息表达过程中起关键作用,基因表达调控蛋白都是通过其分子上特定的胺基酸侧链与沟中碱基对两侧潜在的氢原子供体(═NH)或受体(O和N)形成氢键而识别DNA遗传信息的。由于大沟和小沟中这些氢原子供体和受体各异以及排列不同,所以大沟携带的信息要比小沟多。此外,沟的宽窄及深浅也直接影响碱基对的暴露程度,从而影响调控蛋白对DNA信息的识别。B型DNA是活性最高的DNA构型,变构后的A型DNA仍有较高活性,变构后的Z型DNA活性明显降低。 此外,DNA双螺旋能进一步扭曲盘绕形成特定的高级结构,正、负超螺旋是DNA高级结构的主要形式。DNA二级结构的变化与高级结构的变化是相互关联的,这种变化在DNA复制、修复、重组与转录中具有重要的生物学意义。 染色质蛋白 与染色质DNA结合的蛋白负责DNA分子遗传信息的组织、复制和阅读。这些DNA结合蛋白包括两类:一类是组蛋白,与DNA结合但没有序列特异性;另一类是非组蛋白,与特定DNA序列或组蛋白相结合。 组蛋白 组蛋白是构成真核生物染色体的基本结构蛋白,富含带正电荷的Arg和Lys等碱性胺基酸,等电点一般在pH100以上,属碱性蛋白质,可以和酸性的DNA紧密结合,而且一般不要求特殊的核苷酸序列。 染色质 用聚丙烯酰胺凝胶电泳可以区分5种不同的组蛋白:H1、H2A、H2B、H3和H4。几乎所有真核细胞都含有这5种组蛋白,而且含量丰富,每个细胞每种类型的组蛋白约6×10个分子。5种组蛋白在功能上分为两组: ①核小体组蛋白。包括H2A、H2B、H3和H4。这4种组蛋白有相互作用形成复合体的趋势,它们通过C端的疏水胺基酸互相结合,而N端带正电荷的胺基酸则向四面伸出以便与DNA分子结合,从而帮助DNA卷曲形成核小体的稳定结构。这4种组蛋白没有种属及组织特异性,在进化上十分保守,特别是H3和H4是所有已知蛋白质中最为保守的。从这种保守性可以看出,H3和H4的功能几乎涉及它们所有的胺基酸,任何位置上胺基酸残基的突变可能对细胞都将是有害的。 ②H1组蛋白。其分子较大。球形中心在进化上保守,而N端和C端两个“臂”的胺基酸变异较大,所以H1在进化上不如核小体组蛋白那么保守。在构成核小体时H1起连线作用,它赋予染色质以极性。H1有一定的种属及组织特异性。在哺乳类细胞中,组蛋白H1约有6种密切相关的亚型,胺基酸顺序稍有不同。在成熟的鱼类和鸟类的红细胞中,H1 为H5取代。有的生物如酵母缺少H1,结果酵母细胞差不多所有染色质都表现为活化状态。 非组蛋白 非组蛋白主要是指与特异DNA序列相结合的蛋白质,所以又称序列特异性DNA结合蛋白(sequence specific DNA binding protein)。利用凝胶延滞实验(gel retardation assay),可以在细胞抽提物中进行检测。首先制备一段带有放射性标记的已知特异序列的DNA,将要检测的细胞抽提物与标记DNA混合,进行凝胶电泳。未结合蛋白的自由DNA在凝胶上迁移最快,而与蛋白质结合的DNA迁移慢,一般结合的蛋白质分子越大,DNA分子的延滞现象越明显,然后通过放射自显影分析,即可发现一系列DNA带谱,每条带分别代表不同的DNA-蛋白质复合物。每条带相对应的结合蛋白随后再通过细胞抽提物组分分离方法被进一步分开。 特性 ①酸碱性:组蛋白是碱性的,而非组蛋白则大多是酸性的。 ②多样性:非组蛋白占染色质蛋白的60%~70%,不同组织细胞中其种类和数量都不相同,代谢周转快。包括多种参与核酸代谢与修饰的酶类如DNA聚合酶和RNA聚合酶、HGM蛋白(high mobility group protein)、染色体支架蛋白、肌动蛋白和基因表达蛋白等。 ③特异性:能识别特异的DNA序列,识别信息来源于DNA核苷酸序列本身,识别位点存在于DNA双螺旋的大沟部分,识别与结合靠氢键和离子键。在不同的基因组之间,这些非组蛋白所识别的DNA序列在进化上是保守的。这类序列特异性DNA结合蛋白具有一个共同特征,即形成与DNA结合的螺旋区并具有蛋白二聚化的能力。 ④功能多样性:虽然与DNA特异序列结合的蛋白质在每一个真核细胞中只有10 000个分子左右,约占细胞总蛋白的1/50 000,但具有多方面的重要功能,包括基因表达的调控和染色质高级结构的形成。如帮助DNA分子摺叠,以形成不同的结构域;协助启动DNA复制,控制基因转录,调节基因表达等。 结构模式 虽然非组蛋白种类众多,但是根据它们与DNA结合的结构域不同,可分为不同的家族。 ①α螺旋-转角-α螺旋模式(helix - turn - helix motif) 这是最早在原核基因的激活蛋白和阻抑物中发现的。迄今已经在百种以上原核细胞和真核生物中发现这种最简单、最普遍的DNA结合蛋白的结构模式。这种蛋白与DNA结合时,形成对称的同型二聚体(symmetric homodimer)结构模式。构成同型二聚体的每个单体由20个胺基酸的小肽组成α螺旋-转角-α螺旋结构,两个α螺旋相互连线构成β转角,其中羧基端的α螺旋为识别螺旋(recognition helix),负责识别DNA大沟的特异碱基信息,另一个α螺旋没有碱基特异性,与DNA磷酸戊糖链骨架接触。这种蛋白在与DNA特异结合时,以二聚体形式发挥作用,结合靠蛋白质的胺基酸侧链与特异碱基对之间形成氢键。 ②锌指模式(zinc finger motif) 负责 5S RNA、tRNA 和部分 snRNA 基因转录的RNA聚合酶Ⅲ所必须的转录因子。TFⅢ A 是首先被发现的锌指蛋白,由344个胺基酸组成。TFⅢ A 含有9个有规律的锌指重复单位,每个单位30个胺基酸残基,其中一对半胱氨酸和一对组氨酸与Zn 2+ 形成配位键。每个锌指单位是一个DNA结合结构域(DNA-binding domain),每个锌指的 C 末端形成α螺旋负责与DNA结合。这类Cys 2 /His 2 锌指单位的共有序列(consensus sequence)是:Cys - X 2~4 - Cys - X 3 - Leu - X 2 - His - X 3 - His。哺乳类转录因子 SP1 也有类似的锌指结构,由三个锌指单位组成。另一类锌指蛋白含两对半胱氨酸,而不含组氨酸,如哺乳类细胞的甾体类激素受体蛋白。这类Cys 2 /Cys 2 锌指单位的结合Zn 2+ 的共有序列是:Cys - X 2 - Cys - X 13 - Cys - X 2 - Cys。不同的锌指识别不同的碱基序列,因为不同锌指的胺基酸组成不一样。 ③亮氨酸拉链模式(leucine zipper motif,ZIP) 在构建转录复合物过程中,普遍涉及蛋白与蛋白之间的相互作用,形成二聚体是识别特异DNA序列蛋白的相互作用的共同原则,亮氨酸拉链就是富含Leu残基的一段胺基酸序列所组成的二聚化结构。这类序列特异性DNA结合蛋白家族,包括酵母的转录激活因子(GCN4)、癌蛋白Jun、Fos、Myc以及增强子结合蛋白(enhancer binding protein,C/EBP)等。所有这些蛋白的肽链羧基端约35个胺基酸残基有形成α螺旋的特点,每两圈(7个胺基酸残基)有一个亮氨酸残基。这样,在α螺旋一侧的Leu排成一排,两个蛋白质分子的α - 螺旋之间靠Leu残基之间的疏水作用力形成一条拉链状结构。这类蛋白与DNA的特异结合都是以二聚体形式起作用的,但与DNA结合的结构域是拉链区相邻的肽链 N 端带正电荷的碱性胺基酸区。 ④螺旋-环-螺旋结构模式(helix - loop - helix motif,HLH) HLH这一结构模式广泛存在于动、植物DNA结合蛋白中。HLH由40~50个胺基酸组成两个两性α螺旋,两个α螺旋中间被一个或几个β转角组成的环区所分开。每个α螺旋由15~16个胺基酸残基组成,并含有几个保守的胺基酸残基。具有疏水面和亲水面的两性α螺旋有助于二聚体的形成。α螺旋邻近的肽链 N 端也有带正电荷的碱性胺基酸区与靶DNA大沟结合。具有螺旋-环-螺旋结构的蛋白家族成员之间形成同源或异源二聚体是这类蛋白与DNA结合的必要条件,缺失α螺旋的二聚体不能牢固结合DNA。 ⑤HMG框结构模式(HMG-box motif) 在发现一组丰富的高速泳动族蛋白(high mobility group protein)以后,首先命名HMG框结构模式。该结构由3个α螺旋组成 boomerang-shaped 结构模式,具有弯曲DNA的能力。因此,具有HMG框结构的转录因子又称为“构件因子(architectural factor)”,它们通过弯曲DNA、促进与邻近位点相结合的其他转录因子的相互作用而激活转录。SRY是一种HMG蛋白,在人类男性性别分化中具有关键作用,HMG蛋白由Y染色体上一个基因编码,在诱导睾丸分化途径中一些相关基因的转录活性被HMG蛋白所激活。 结构 结构单位 20世纪70年代以前,人们关于染色质结构的传统看法认为,染色质是组蛋白包裹在DNA外面形成的纤维状结构。直到1974年Kornberg等人根据染色质的酶切和电镜观察,发现核小体是染色质组装的基本结构单位,提出染色质结构的“串珠”模型,从而更新了人们关于染色质结构的传统观念。 实验依据 1、用温和的方法裂解细胞核,将染色质铺展在电镜铜网上,通过电镜观察,未经处理的染色质自然结构为30nm的纤丝,经盐溶液处理后解聚的染色质呈现一系列核小体彼此连线的串珠状结构,串珠的直径为10nm。 染色质 2、用非特异性微球菌核酸酶消化染色质时,经过蔗糖梯度离心及琼脂糖凝胶电泳分析,发现绝大多数DNA被降解成大约 200 bp的片段;如果部分酶解,则得到的片段是以 200 bp为单位的单体、二体、三体等。蔗糖梯度离心得到的不同组分,在波长 260 nm的吸收峰的大小和电镜下所见到的单体、二体和三体的核小体组成完全一致。如果用同样方法处理 的DNA,则产生随机大小的片段群体。从而提示染色体DNA除某些周期性位点之外均受到某种结构的保护,避免酶的接近。 3、套用X射线衍射、中子散射和电镜三维重建技术,研究染色质结晶颗粒,发现核小体颗粒是直径为 11 nm、高 60 nm的扁圆柱体,具有二分对称性。核心组蛋白的构成是先形成(H3) 2 -(H4) 2 四聚体,然后再与两个H2A-H2B异二聚体结合形成八聚体。 4、SV40微小染色体分析。用SV40病毒感染细胞,病毒DNA进入细胞后,与宿主的组蛋白结合,形成串珠状微小染色体,电镜观察SV40 DNA为环状,周长1 500 nm,约 50 kb。若 200 bp相当于一个核小体,则可形成25个核小体,实际观察到23个,与推断基本一致。如用025mol/L盐酸将SV40溶解,可在电镜下直接看到组蛋白的聚合体,若除去组蛋白,则完全伸展的DNA长度恰好为 50 kb。 结构要点 1、每个核小体单位包括 200 bp左右的DNA超螺旋和一个组蛋白八聚体以及一个分子的组蛋白H1。 2、组蛋白八聚体构成核小体的盘状核心颗粒,相对分子质量100 000,由4个异二聚体组成,包括两个H2A-H2B和两个H3-H4。 3、146 bp的DNA分子超螺旋盘旋组蛋白八聚体175圈。组蛋白H1在核心颗粒外结合额外 20 bp DNA,锁住核小体DNA的进出端,起稳定核小体的作用。 4、两个相邻核小体之间以连线DNA相连,典型长度 60 bp,不同物种变化值为 0~80 bp不等。 5、组蛋白与DNA之间的相互作用主要是结构性的,基本不依赖于核苷酸的特异序列。正常情况下不与组蛋白结合的DNA,当与从动、植物中分离钝化的组蛋白共同孵育时,可以体外组装成核小体亚单位。实验表明,核小体具有自组装的性质。 6、核小体沿DNA的定位受不同因素的影响。如非组蛋白与DNA特异性位点的结合,可影响邻近核小体的相位;DNA盘绕组蛋白核心的弯曲也是核小体相位的影响因素,因为富含AT的DNA片段优先存在于DNA双螺旋的小沟,面向组蛋白八聚体,而富含GC的DNA片段优先存在于DNA双螺旋的大沟,面向组蛋白八聚体,结果核小体倾向于形成富含AT和富含GC的理想分布,从而通过核小体相位改变影响基因表达。 前期组装 整个过程如下: ①最开始是H3·H4四聚体的结合,由CAF-1介导与新合成的 的DNA结合。 ②然后是两个H2A·H2B二聚体由NAP-1和NAP-2介导加入。为了形成一个核心颗粒,新合成的组蛋白被特异地修饰。组蛋白H4的Lys5和Lys12两个位点典型地被乙酰化。 ③核小体最后的成熟需要ATP来创建一个规则的间距以及组蛋白的去乙酰化。ISWI和SWI/SNF家族的蛋白参与此过程的调节。连线组蛋白(H1)的结合伴随着核小体的摺叠。 ④4个核小体组成一个螺旋或由其他的组装方式形成一个螺线管结构。 ⑤进一步的摺叠事件将使染色质在细胞核中最终形成确定的结构。 这样一个高度压缩的结构极大地阻碍了像转录这样的细胞核活动的进行。为了解决这个问题,有两个家族的染色质修饰酶在染色质上作用,使染色质更接近于转录机器。第一个家族是通过在组蛋白尾部的共价修饰而发挥作用,这些修饰包括组蛋白的磷酸化、乙酰化和泛素化等,它们会影响以后与DNA或组蛋白相互作用因子的作用。第二个家族成员的主要特点是它们能够利用ATP水解时释放的能量来破坏核小体中的组蛋白-DNA接触。 染色质 在真核生物细胞周期的S期,染色体的完全复制不仅需要基因组DNA的复制,也需要把复制好的DNA组装成染色质。普遍认为,在复制叉的移动期间,染色质短暂地解组装,然后在两条复制好的子代DNA链上重新进行组装。新复制的DNA主要通过以下两种途径组装成染色质:第一,在复制叉的移动期间,父代的核小体核心颗粒与DNA分离,到该段DNA复制完成,父代的核小体核心颗粒直接转移到两条子链DNA的一条上;第二,染色质组装因子利用刚刚合成的、乙酰化的组蛋白介导核小体在复制DNA上组装。 染色质组装的前期过程,即从 DNA组装成直径30纳米的螺线管已有直接的实验证据,并被绝大多数科学家认可。然而,染色质如何进一步组装成更高级结构,直至最终成染色体的过程尚不是非常清楚,主要有两种模型。 组装模型 人的每个体细胞所含DNA约6×109bp分布在46条染色体中,总长达2米,平均每条染色体DNA分子长约5厘米,而细胞核直径只有5~8微米,这就意味着从染色质DNA组装成染色体要压缩近万倍,相当于一个网球内包含有2千米长的细线。 多级螺旋模型 由DNA与组蛋白组装成核小体,在组蛋白H1的介导下核小体彼此连线形成直径约10纳米的核小体串珠结构,这是染色质组装的一级结构。不过在细胞中,染色质很少以这种伸展的串珠状形式存在。当细胞核经温和处理后,在电镜下往往会看到直径为30纳米的染色质纤维。在有组蛋白H1存在的情况下,由直径10纳米的核小体串珠结构螺旋盘绕,每圈6个核小体,形成外径25~30纳米,螺距12纳米的螺线管。组蛋白H1对螺线管的稳定起着重要作用。螺线管是染色质组装的二级结构。 Bak等(1977)从胎儿离体培养的分裂细胞中分离出染色体,经温和处理后,在电镜下看到直径04微米,长11~60微米的染色线,成为单位线。在电镜下观察,判明单位线是由螺线管进一步螺旋化形成直径为04微米的圆筒状结构,称为超螺线管,这是染色质组装的三级结构。这种超螺线管进一步螺旋摺叠,形成长2~10微米的染色单体,即染色质组装的四级结构。经过四级螺旋组装形成的染色体结构,共压缩了8 400倍。 骨架-放射环结构模型 Laemmli等人用2mol/L的NaCl或硫酸葡聚糖加肝素处理HeLa细胞中期染色体,除去组蛋白和大部分非组蛋白后,在电镜下可观察到由非组蛋白构成的染色体骨架和由骨架伸出的无数的DNA侧环。此外,实验观察发现,不论是原核细胞的染色体还是两栖类卵母细胞的灯刷染色体或昆虫的多线染色体,几乎都含有一系列的袢环结构域,从而提示袢环结构可能是染色体高级结构的普遍特征。 该模型认为,30纳米的染色线摺叠成环,沿染色体纵轴,由中央向四周伸出,构成放射环,即染色体的骨架-放射环结构模型。首先是直径2纳米的双螺旋DNA与组蛋白八聚体构建成连续重复的核小体串珠结构,其直径10纳米。然后按每圈6个核小体为单位盘绕成直径30纳米的螺线管。由螺线管形成DNA复制环,每18个复制环呈放射状平面排列,结合在核基质上形成微带。微带是染色体高级结构的单位,大约10个微带沿纵轴构建成子染色体。 功能 如果说细胞核是细胞遗传与代谢的调控中心,那么这个中心的最重要成员便是染色质。几乎所有细胞生命活动都要从染色质开始。我们知道细胞的成长、分裂甚至衰老与死亡都是受基因控制的,而细胞内基因存在与发挥功能的结构基础是染色质。与基因组直接相关的细胞活动都是在染色质水平进行的,如DNA复制、基因转录、同源重组、DNA修复,包括转录耦联的修复以及DNA和组蛋白的各种修饰。这些修饰包括甲基化、乙酰化、磷酸化、亚硝基化和泛素化等。 真核生物的基因组都是在细胞核的三维空间中发挥功能,如基因组的复制、DNA 突变、DNA 修复、基因的转录和调控、长链非编码 RNA 的传播和胚胎发育等。 分类 间期染色质按其形态特征、活性状态和染色性能区分为两种类型:常染色质和异染色质。按功能状态的不同可将染色质分为活性染色质和非活性染色质。 常染色质 常染色质是指间期细胞核内染色质纤维摺叠压缩程度低,相对处于伸展状态,用碱性染料染色时着色浅的那些染色质。在常染色质中,DNA组装比为1/2 000~1/1 000,即DNA实际长度为染色质纤维长度的1 000~2 000倍。构成常染色质的DNA主要是单一序列DNA和中度重复序列DNA。常染色质并非所有基因都具有转录活性,处于常染色质状态只是基因转录的必要条件,而不是充分条件。 异染色质 异染色质是指间期细胞核中,染色质纤维摺叠压缩程度高,处于聚缩状态,用碱性染料染色时着色深的那些染色质。异染色质又分为结构异染色质(组成型异染色质)和兼性异染色质。结构异染色质指的是各种类型的细胞中,除复制期以外,在整个细胞周期均处于聚缩状态,DNA组装比在整个细胞周期中基本没有较大变化的异染色质。兼性异染色质是指在某些细胞类型或一定的发育阶段,原来的常染色质聚缩,并丧失基因转录活性,变为异染色质。 活性染色质 活性染色质是指具有转录活性的染色质。活性染色质的核小体发生构象改变,具有疏松的染色质结构,从而便于转录调控因子与顺式调控元件结合和RNA 聚合酶在转录模板上滑动。 活性染色质主要特征活性:染色质具有DNase I超敏感位点(DNase I hypersensitive site);活性染色质很少有组蛋白H1与其结合;活性染色质的组蛋白乙酰化程度高;活性染色质的核小体组蛋白H2B很少被磷酸化;活性染色质中核小体组蛋白H2A在许多物种很少有变异形式;HMG14和HMG17只存在于活性染色质。 非活性染色质 非活性染色质是指不具有转录活性的染色质。
优点:
1、捏合效果好:Z型捏合机采用Z字形双螺旋叠片结构,能够将原料充分揉捏、折叠和反复挤压,使得各种成分更加均匀地混合在一起,从而提高了产品的品质和性能。
2、工作稳定性好:Z型捏合机采用两个螺旋轴协同工作,使得混合过程中摩擦热量均匀分布,不易出现过热或者过冷的情况,保证了生产过程的稳定性和可靠性。
3、适用范围广:Z型捏合机适用于橡胶、塑料、化学纤维等多种高分子材料的加工,具有较广泛的应用领域和市场需求。
4、缺点:
5、生产效率相对较低:由于Z型捏合机的结构比较复杂,混合过程需要多次往返,所以相对于其他捏合机型号来说,其生产效率一般会有所降低。
6、设备成本相对较高:由于Z型捏合机需要采用较为复杂的结构设计和制造工艺,所以其设备成本比一些简单的捏合机型号要高一些。
在生理条件的湿度和盐度下,DNA一般为B型,DNA双螺旋为右手螺旋。湿度降低,DNA双螺旋变为A型,依然为右手螺旋。当DNA进行遗传信息表达时,DNA需要结双螺旋,不断引入负超螺旋,进而形成DNA左手螺旋,而Z型DNA就是左手螺旋,所以Z型DNA是遗传信息表达时DNA的构象状态。
DNA在生理环境的离子强度和pH下会形成双螺旋结构。这只是因为在生理条件下两个互补DNA分子在和水、盐随机互相作用的过程中会发现双螺旋的构象有着最低的自由能,当它们相遇时因为氢键的亲和力,化学平衡会自发地向双螺旋方向发展,就像水蒸气形成氢键凝结成液态水一样。但这并不代表DNA永远是双螺旋结构。
首先双螺旋结构不是单一的,随着温度、pH和盐浓度的条件改变会形成三种结构: A,B,Z
DNA structure in detail 其中Z型构象是左手螺旋,可见左手螺旋并非不可能。Z结构可能在嘌呤-嘧啶交替的结构上出现,比如5'-CGCGCGCG-3' /5'-CGCGCATGC-3'。
其次在非生理条件的时候、或是在解旋酶的催化下DNA会被解开成为两个单分子(不再具有螺旋,常称为变性)。
DNA Denaturation, Annealing and Replication
所谓"非生理条件"比较容易做到的是比较高的温度,比如如果加热到100度,几乎所有DNA都会变性,但其他条件也可能达到这个效果。
dna分子的结构是
DNA分子属于双螺旋结构,由两条平行的链组成,两条链互相绕成螺旋状。每条链都由称为脱氧核糖的糖分子与磷酸在交替连接而成。
DNA分子的结构
DNA分子两条单链以双螺旋结构结成。单链是指由许多脱氧核苷酸残基按一定顺序彼此用3’,5’-磷酸二酯键相连构成的长链。
作用是:原核细胞的染色体是一个长DNA分子。真核细胞核中有不止一个染色体,每个染色体也只含一个DNA分子。不过它们一般都比原核细胞中的DNA分子大而且和蛋白质结合在一起。DNA分子的功能是贮存决定物种的所有蛋白质和RNA结构的全部遗传信息;策划生物有次序地合成细胞和组织组分的时间和空间;确定生物生命周期自始至终的活性和确定生物的个性。除染色体DNA外,有极少量结构不同的DNA存在于真核细胞的线粒体和叶绿体中。DNA病毒的遗传物质也是DNA。
DNA分子双螺旋结构的主要特点
DNA分子是由两条链组成的,这两条链按反向平行方式盘旋成双螺旋结构。
DNA分子中的脱氧核糖和磷酸交替连接,排列在外侧,构成基本骨架;碱基排列在内侧。
两条链上的碱基通过氢键连接成碱基对,并且碱基配对有一定的规律:A一定与T配对;G一定与C配对。碱基之间的这种一一对应的关系,叫做碱基互补配对原则。。
DNA双螺旋结构基本特点
dna规则双螺旋结构的主要特点如下:
dna分子是由两条反向平行的脱氧核苷酸长链盘旋成的双螺旋结构。
dna分子中的脱氧核糖和磷酸交替连接,排列在外侧,构成基本骨架,碱基排列在内侧。
dna分子两条链上的碱基通过氢键连接成碱基对,遵循碱基互补配对原则。
DNA的构型
DNA的结构目前一般划分为一级结构、二级结构、三级结构、四级结构四个阶段
DNA的一级结构
是指构成核酸的四种基本组成单位——脱氧核糖核苷酸,通过3',5'-磷酸二酯键彼此连接起来的线形多聚体,以及起基本单位-脱氧核糖核苷酸的排列顺序每一种脱氧核糖核苷酸由三个部分所组成:一分子含氮碱基+一分子五碳糖+一分子磷酸根核酸的含氮碱基又可分为四类:腺嘌呤,胸腺嘧啶,胞嘧啶和鸟嘌呤DNA的四种含氮碱基组成具有物种特异性即四种含氮盐基的比例在同物种不同个体间是一致的,但在不同物种间则有差异DNA的四种含氮碱基比例具有奇特的规律性,每一种生物体DNA中A=T,C=G查哥夫法则
DNA的二级结构
是指两条脱氧多核苷酸链反向平行盘绕所形成的双螺旋结构DNA的二级结构分为两大类:一类是右手螺旋,如A-DNA、B-DNA、C-DNA、D-DNA等;另一类是左手双螺旋,如Z-DNA詹姆斯·沃森与佛朗西斯·克里克所发现的双螺旋,是称为B型的水结合型DNA,在细胞中最为常见也有的DNA为单链,一般见于原核生物,如大肠杆菌噬菌体φX174、G4、M13等有
的DNA为环形,有的DNA为线形在碱A与T之间可以形成两个氢键,G与C之间可以形成三个氢键,使两条多聚脱氧核苷酸形成互补的双链,由于组成碱基对的两个碱基的分布不在一个平面上,氢键使碱基对沿长轴旋转一定角度,使碱基的形状像螺旋桨叶片的样子,整个DNA分子形成双螺旋缠绕状碱基对之间的距离是034nm,10个碱基对转一周,故旋转一周是34nm,这是β-DNA的结构,在生物体内自然生成的DNA几乎都是以β-DNA结构存在
DNA的三级结构
是指DNA中单链与双链、双链之间的相互作用形成的三链或四链结构如H-DNA或R-环等三级结构DNA的三级结构是指DNA进一步扭曲盘绕所形成的特定空间
结构,也称为超螺旋结构DNA的超螺旋结构可分为正、负超螺旋两大类,并可互相转变超螺旋式克服张力而形成的当DNA双螺旋分子在溶液中以一定构象自由存在时,双螺旋处于能量最低状态此为松弛态如果使这种正常的DNA分子额外地多转几圈或少转几圈,就是双螺旋产生张力,如果DNA分子两端是开放的,这种张力可通过链的转动而释放出来,DNA就恢复到正常的双螺旋状态但如果DNA分子两端是固定的,或者是环状分子,这种张力就不能通过链的旋转释放掉,只能使DNA分子本身发生扭曲,以此抵消张力,这就形成超螺旋,是双螺旋的螺旋
核酸以反式作用存在
这可看作是核酸的四级水平的结构
DNA的拓扑结构
也是DNA存在的一种形式DNA的拓扑结构是指在DNA双螺旋的基础上,进一步扭曲所形成的特定空间结构超螺旋结构是拓扑结构的主要形式,塔可以分为正超螺旋和负超螺旋两类,在相应条件下,它们可以相互转变
DNA的高级结构是
原核生物的DNA高级结构为超螺旋结构。
由于具有螺旋结构的双链各自闭合,结果使整个DNA分子进一步旋曲而形成三级结构。自然界中主要是负超螺旋。
另外如果一条或二条链的不同部位上产生一个断口,就会成为无旋曲的开环DNA分子。
从细胞中提取出来的质粒或病毒DNA都含有闭环和开环这二种分子。可根据两者与色素结合能力的不同,而将两者分离开来。
扩展资料:
在双螺旋结构中,每旋转一圈含有10个碱基对处于能量最低的状态,少于10个就会形成右手超螺旋,反之为左手超螺旋。
前者称为负超螺旋,后者称为正超螺旋。这是一种三级构造。
原核细胞中的DNA超螺旋是在DNA旋转酶作用下,由ATP提供能量形成的环状DNA负超螺旋,真核细胞中的DNA与组蛋白形成的核小体以正超螺旋结构存在。
DNA超螺旋有两种存在形式:具绞旋线超螺旋以及螺管式超螺旋。具绞旋线是发生在当DNA从细胞中独立出来后形成的超螺旋状态,而螺管式则是当DNA处于染色质中维持的超螺旋状态。
其中以螺管式缠绕的更加紧密,且需要蛋白质的辅助方能形成——染色质中组蛋白。
-原核生物
-超螺旋
简述DNA的结构
1、dna结构是双链结构,DNA即脱氧核糖核酸。脱氧核糖核酸是分子结构复杂的有机化合物。作为染色体的一个成分而存在于细胞核内。功能为储藏遗传信息。
2、细胞核是真核细胞内最大、最重要的细胞结构,是细胞遗传与代谢的调控中心,是真核细胞区别于原核细胞最显著的标志之一。,它主要由核膜、染色质、核仁、核基质等组成。
欢迎分享,转载请注明来源:品搜搜测评网