问题一:陶瓷的密度是多少 陶瓷的密度和石头的密度应该是一样的,陶瓷也就是人造石,陶瓷的成分和陶瓷矿石成分基本一样。石头的密度是27/m3
问题二:陶瓷的比重是多少 普通陶瓷比重在22到24 中铝陶瓷在26-31,高铝陶瓷在32-36,进口陶瓷在36--40
问题三:瓷砖的密度是多少? 瓷砖的密度计算方式:单片瓷砖质量÷单片瓷砖体积。不同吸水率的瓷砖其密度不尽相同。
国家在关于瓷砖的密度衡量的指标,不是通过检查瓷砖密度来体现,主要是通过瓷砖吸水率来进行鉴别和判断。瓷砖的密度越大,对应的吸水率会越低;相反密度越小,其吸水率会越大。
问题四:瓷器的密度是多少?(不是要计算的物理题) 陶瓷的密度和石头的密度应该是一样的,陶瓷也就是人造石,陶瓷的成分和陶瓷矿石成分基本一样。
石头的密度是27/m3
网址 cmseszuedu/jp/daolun/5#z51
陶瓷的密度具有特殊的含义。如果我们说铁的密度是78Mg/m3,聚丙烯的密度是089 Mg/m3,高密度聚乙烯的密度是094 Mg/m3,意义是很清楚的。但当我们描述陶瓷的密度时,就必须说明是什么密度。因为陶瓷一般是由微小的颗粒烧结而成的,颗粒之间必然存在孔隙,于是就有了表观体积与真实体积之别,显然,表观体积为真实体积与材料内孔隙体积之和(这里“孔隙”的概念不是指晶格中原子排列的空隙,而是由于球形颗粒堆积时必然留下的孔隙,尺寸在微米或纳米级)。陶瓷的重量除以表观体积就得到表观密度,除以真实体积就得到真实密度。但所谓“真实”密度并不等于理论密度(r),理论密度是计算得到的晶格密度,而真实密度是用某种测定方法得到的不含孔隙的密度。孔隙体积占表观体积的百分数称为孔隙度。如果我们说某一陶瓷的孔隙度为20%,那么其表面密度就应是理论密度的80%。在实际情况中,陶瓷的密度一般低于理论密度的60%。要想提高陶瓷的密度,可采取很多措施。如使用宽分布的颗粒,让小颗粒嵌入大颗粒的缝隙中;或采用机械振动,拍打等手段。即使如此,也很难使陶瓷的表观密度达到理论密度的80%以上。要想进一步提高密度,就不能使用颗粒烧结的方法,必须采用新技术。气相渗滤法、定向氧化法就可以大大降低孔隙度,使表观密度达到95%以上
氧化物是最大的一族陶瓷材料。氧可以与几乎所有金属形成化合物,也可以与许多非金属元素化合。氧化物可分为单氧化物与复氧化物两大类。单氧化物是氧与另一种元素形成的二元化合物,而复氧化物是氧与两种以上元素形成的化合物。单氧化物是按氧原子数与另一种原子数的比例分类的。以字母A代表另一种元素,单氧化物可以有A2O,AO,A3O4,A2O3,AO2,AO3等类型。AO型中比较重要的有氧化镁(MgO)、氧化锌(ZnO)和氧化镍(NiO);AO2型中较重要的有二氧化硅(SiO2)、二氧化钛(TiO2)和二氧化锆(ZrO2);A2O3型中最重要的是三氧化二铝(Al2O3)。氧化物体系由图5-15所示。
图5-15氧化物的分类
二氧化钛(TiO2)有三种晶形:低温下稳定的锐钛(anatase)、板钛(brookite)与高温下稳定的金红石(rutile)。锐钛与板钛在400~1000°C的温度范围内会不可逆地转化为金红石。
氧化铝(Al2O3)是在铝钒土(Al2O3・2H2O)的加热过程中制得的。在不断升温的过程中,会产生一系列不同结构的氧化铝,这些结构都是不稳定的,最终都会不可逆地转化为a- Al2O3。a- Al2O3具有六方的刚玉结构,是1200°C以上唯一可用作结构材料与电子材料的稳定形式。另一个稳定结构是g- Al2O3,但只能在催化方面应用。故在本书中Al2O3特指a- Al2O3。由于O-Al键的键能高达400kcal/mol,Al2O3具有突出的物理性质,硬度是氧化物中最高的,而熔点高达2050°C。
硅酸盐是地壳中最丰富的矿物,有正式名称的硅酸盐就有几千种。大多数硅酸盐都不是人工>>
问题五:陶瓷产品釉浆的密度一般是多少 那要看施釉的方法而定,也看产品种类而定,喷釉的话,卫生洁具机器人喷釉密度在175-185。人工喷釉在165-175。工艺陶瓷浸釉的话,在15-165。深色釉在155-165。透明釉在135-145。
总之很复杂,要看坯有没有素烧,白坯还是有色坯体坯的吸釉速度瓷砖还是卫生洁具还是工艺陶瓷是一般釉还是变化釉所有的条件都不一定的密度。
问题六:瓷砖的密度是多少就符合标准 道格拉斯瓷砖提醒您:
国家分类标准:
瓷质砖 吸水率 小于等于05%;
炻瓷质 吸水率 大于05%小于等于3%;
细炻质 吸水率 大于3%小于等于6%;炻质砖 吸水率 大于6%小于等于10%;
陶质砖 吸水率 大于10%。
吸水率表达:
陶质砖>10%≥炻质砖>6%≥细炻质>3%≥炻瓷质>05%≥瓷质砖。
吸水率 05%-10%概括为半瓷
依用途分:外墙砖、内墙砖、地砖、广场砖、工业砖等。
依成型分:干压成型砖、挤压成型砖、可塑成型砖。
依烧成分:氧化性瓷砖、还原性瓷砖。
依施釉分:有釉砖、无釉砖。
依吸水率分:瓷质砖、炻瓷砖、细炻砖、炻质砖、陶质砖。
依品种分:抛光砖、仿古砖、瓷片、全抛釉、抛晶砖、微晶石、劈开砖、广场砖(文化砖)。
依生产工艺分:印花砖、抛光砖、斑点砖、水晶砖、无釉砖。
问题七:陶瓷纤维板密度是多少 湿法成形纤维板的密度在280-320kg/立方。再轻的,国俯中叫陶瓷纤维毡,密度最大可以做到700左右。我指的是我们家。
陶瓷的密度和石头的密度应该是一样的,陶瓷也就是人造石,陶瓷的成分和陶瓷矿石成分基本一样。
石头的密度是27/m3
网址 http://cmseszueducn/jp/daolun/5htm#z51
陶瓷的密度具有特殊的含义。如果我们说铁的密度是78Mg/m3,聚丙烯的密度是089 Mg/m3,高密度聚乙烯的密度是094 Mg/m3,意义是很清楚的。但当我们描述陶瓷的密度时,就必须说明是什么密度。因为陶瓷一般是由微小的颗粒烧结而成的,颗粒之间必然存在孔隙,于是就有了表观体积与真实体积之别,显然,表观体积为真实体积与材料内孔隙体积之和(这里“孔隙”的概念不是指晶格中原子排列的空隙,而是由于球形颗粒堆积时必然留下的孔隙,尺寸在微米或纳米级)。陶瓷的重量除以表观体积就得到表观密度,除以真实体积就得到真实密度。但所谓“真实”密度并不等于理论密度(r),理论密度是计算得到的晶格密度,而真实密度是用某种测定方法得到的不含孔隙的密度。孔隙体积占表观体积的百分数称为孔隙度。如果我们说某一陶瓷的孔隙度为20%,那么其表面密度就应是理论密度的80%。在实际情况中,陶瓷的密度一般低于理论密度的60%。要想提高陶瓷的密度,可采取很多措施。如使用宽分布的颗粒,让小颗粒嵌入大颗粒的缝隙中;或采用机械振动,拍打等手段。即使如此,也很难使陶瓷的表观密度达到理论密度的80%以上。要想进一步提高密度,就不能使用颗粒烧结的方法,必须采用新技术。气相渗滤法、定向氧化法就可以大大降低孔隙度,使表观密度达到95%以上
氧化物是最大的一族陶瓷材料。氧可以与几乎所有金属形成化合物,也可以与许多非金属元素化合。氧化物可分为单氧化物与复氧化物两大类。单氧化物是氧与另一种元素形成的二元化合物,而复氧化物是氧与两种以上元素形成的化合物。单氧化物是按氧原子数与另一种原子数的比例分类的。以字母A代表另一种元素,单氧化物可以有A2O,AO,A3O4,A2O3,AO2,AO3等类型。AO型中比较重要的有氧化镁(MgO)、氧化锌(ZnO)和氧化镍(NiO);AO2型中较重要的有二氧化硅(SiO2)、二氧化钛(TiO2)和二氧化锆(ZrO2);A2O3型中最重要的是三氧化二铝(Al2O3)。氧化物体系由图5-15所示。
图5-15氧化物的分类
二氧化钛(TiO2)有三种晶形:低温下稳定的锐钛(anatase)、板钛(brookite)与高温下稳定的金红石(rutile)。锐钛与板钛在400~1000°C的温度范围内会不可逆地转化为金红石。
氧化铝(Al2O3)是在铝钒土(Al2O3·2H2O)的加热过程中制得的。在不断升温的过程中,会产生一系列不同结构的氧化铝,这些结构都是不稳定的,最终都会不可逆地转化为a- Al2O3。a- Al2O3具有六方的刚玉结构,是1200°C以上唯一可用作结构材料与电子材料的稳定形式。另一个稳定结构是g- Al2O3,但只能在催化方面应用。故在本书中Al2O3特指a- Al2O3。由于O-Al键的键能高达400kcal/mol,Al2O3具有突出的物理性质,硬度是氧化物中最高的,而熔点高达2050°C。
硅酸盐是地壳中最丰富的矿物,有正式名称的硅酸盐就有几千种。大多数硅酸盐都不是人工合成的,而是直接取自矿物,用于耐火材料、砖瓦、瓷器和陶器。一般说来,硅酸盐的力学性能低于氧化铝、氧化锆等单氧化物,但在民用领域,各种硅酸盐得到了广泛的应用,也有少数作为工程陶瓷应用。我们只以堇青石和叶蜡石作为此类工程陶瓷的代表加以介绍。
堇青石(Cordierite, 2MgO·2Al2O3·5SiO2)的热胀系数极低,所以有很高的抗热冲击性能。其力学性能也不低,所以被用在发动机过滤器、火花塞、汽轮机换热器的叶轮等热敏感部位。堇青石有两种结构形式,天然存在的形式是四方晶形,人工合成的形式是六方晶形。为保证纯度与加工重复性,工程应用中都使用六方晶形的合成堇青石。
叶蜡石(Pyrophyllite)是一种层状结构的硅酸盐,化学组成为Al2(Si2O5)2(OH)2。它的用途非常广泛。由于价廉易得,不仅可以烧制成各种陶瓷,还可以机械加工,在西方被称为“魔石”。层间作用力主要是范德华力,因此材料较软,易于机械加工。热处理时,在800°C发生脱羟基反应,在1100°C时发生相转变,产生白硅石(SiO2)和铝红柱石(3Al2O3·2SiO2)的双相结构。在脱羟基和相转变过程中尺寸变化仅有2%。
铝红柱石在自然界非常罕见,主要矿藏发现于英国Mull岛,故称为Mullite。其热胀系数低于Al2O3,故具有更好的抗热冲击性,尤其是在1000°C以上的温度。工程上应用的铝红柱石都是人工合成的。最初的合成方法是将Al2O3与SiO2在1600°C下烧结,但强度与韧性都不高。采用新技术合成的新一代铝红柱石,具备了高强度和高韧性,强度达到500MPa,断裂韧性可达到2-4MPa·m1/2。铝红柱石的传统用途是熔炉中的耐火材料。工程化的铝红柱石的用途大大加宽,包括电子元件的基板、保护性涂料、发动机部件和红外透射窗等。
表5-5氧化物陶瓷的性质
性质 氧化铝
铝红柱石
尖晶石
堇青石
氧化铝/氧化锆
化学成分
Al2O3
3Al2O3·2SiO2
MgO·Al2O3
2MgO·2Al2O3
·5SiO2
200wt% Al2O3
757 wt% ZrO2
42 wt% Y2O3
熔点/°C
2015
1830
2135
1470
--
热胀系数/
(10-6/°C)
83
45-53
76-88
14-26
9
导热系数/
(W/cm·K)
027
0059
015
--
0035
杨氏模量/
GPa
366
150-270
240-260
139-150
260
挠曲强度/
MPa
550
500
110-245
120-245
2400
532 碳化物
一般意义上的碳化物可以分为三类:(1)离子碳化物,即碳与I,II,III族金属或镧系金属形成的化合物;(2)共价碳化物,只包括两种:碳化硅(SiC)与碳化硼(B4C);(3)间隙碳化物,包括许多与过渡元素形成的化合物,如IVa族的钛、锆,Va族的铌、钽,VIa族的铬、钼、钨,以及VIII族的铁、钴、镍等。从工程的角度看,离子碳化物可以不必考虑。因为它们在空气中极不稳定,还容易与潮分作用分解为烃类。间隙碳化物虽然数量众多,但目前有工程价值只有碳化钨与碳化钛两种。主要碳化物的性能见表5-6。
5321 碳化硼
在工业上碳化硼不单独使用,而是以与石墨的复合材料的形式使用。碳化硼是通过氧化硼与碳在熔炉中作用生成。这种共价的陶瓷很难制成100%密度的制品,所以常用石墨粉与碳化硼混合使用,形成两者的复合材料。石墨的加入降低了碳化硼的使用性能,但目前还找不到更好的助剂。工业上的碳化硼制品一般用热压法成型,少数制品先进行烧结,再进行均匀热压。热压条件为2100°C,35MPa,30min。典型的烧结条件为2200-2250°C,30min,压力只需10Pa左右。烧结后的均匀热压条件为2000°C,200MPa和120min。热压只能加工简单形状的制品,如管、板、轴向对称的喷管等。复杂形状的制品必须先经过烧结。碳化硼能够捕捉热中子,同时释放出低能粒子。5B10原子吸收中子后的蜕变并不放出高能射线:
5B10 + 0n1 ® 3Li7 + 2He4
故其主要用途是中子吸收剂和屏蔽材料。
5322 碳化硅
碳化硅有上百种结构,最简单的一种具有金刚石结构,每隔一个碳原子被硅取代一个。这种立方结构被称为b体,其它的六方和菱形结构合称为a体。碳化硅粉末用Acheson法生产。将电流通过SiO2与焦炭的混合物。当混合物温度升到2200°C左右时,焦炭会与SiO2作用生成SiC与CO。根据反应时间与温度的不同,还原产物可能是细粉末,也可能是团块。结团的产物则必须粉碎后使用,较细的级分可以用来烧结,较粗的级分直接用作磨料。
根据不同的用途,碳化硅可用三种方法加工。(1)将碳化硅粉末与第二相材料如树脂、金属、氮化硅、粘土等混合,然后根据第二相材料进行处理,将碳化硅粘结起来。(2)将碳化硅粉末与纯碳粉或纯硅粉混合,制成型坯。让碳与硅蒸汽反应形成碳化硅,新形成的碳化硅会将原有的碳化硅融合起来,这一过程称为自融合。如果让硅粉与氮气作用生成氮化硅,也可将碳化硅融合起来。这两种加工技术都称为反应融合。(3)用碳化硼作助剂,烧结碳化硅制品。这种方法可得到高密度的制品。以上三种方法各有优缺点。第二相融合法多用于烧蚀与耐火材料。第二材料的性质限制了材料的应用。自融合碳化硅中常含有残留的硅粉,在温度高于1400°C时会熔融流出。用火焰或真空处理可除去这些游离硅。自融合时如果使用过量的碳就会避免硅的残留。自融合碳化硅比烧结产物抗氧化能力强。烧结碳化硅只能在非氧化场合使用。由于产物中含硼与游离碳,抗氧化能力较差。
碳化硅的膜、涂层与渗透加工产物不是用碳化硅粉末制造的,而是用化学气相沉积(CVD)或化学气相渗透(CVI)法制造的。
表5-6 碳化物的性能
碳化物 密度/
Mg/m3
熔点/
°C
韧性/
(MPa·m1/2)
模量/
GPa
拉伸强度/
MPa
导热系数/
W/m·K
硬度/
kg/mm2
B4C
251
2450
445
155
28
2900-3100
SiC
31
2972
30
410
300
836
2800
TiC
494
3017
2500
ZrC
656
3532
WC
157
2800
2050-2150
TaC
145
3800
1750
533 氮化物
与金属相比,氮化物陶瓷的主要优势是耐高温性能,在1000°C以上仍能保持高强度;以及抗氧化与抗腐蚀性能。
氮化物家族中最主要的成员是氮化硅。氮化硅的粉末通过硅粉与氮气在1250-1400°C的温度下反应制得。氮化硅在陶瓷材料中的优势是抗热冲击性能,其导热系数几乎为Al2O3·TiC的两倍,热胀系数却只有Al2O3的一半,是制造陶瓷发动机的有力竞争材料。使用氮化硅的主要问题是烧结比较困难。纯氮化硅在高温下不能发生有效的体积扩散,即粒子之间很难互相粘合在一起。欲得到密实的氮化硅材料,必须使用烧结助剂。氮化硅的性能,尤其是高温性能,主要取决于烧结助剂。氮化硅最有效的烧结助剂是Al2O3、氮化铝(AlN)与二氧化硅。氮化硅材料基本上都是氮化硅与其它材料的合金,而不用纯粹的氮化硅。氮化硅材料可以用许多不同的方法加工,根据加工方法的不同分为以下几类:反应融合氮化硅、热压氮化硅、烧结(无压)氮化硅、烧结反应融合氮化硅、均匀热压氮化硅等。不同加工方法的氮化硅性能不同,见表5-7。
表5-7不同方法加工的氮化硅的性能
反应融合
热压
无压烧结
反应烧结
均匀热压
杨氏模量/GPa
120-250
310-330
260-320
280-300
310-330
挠曲强度/MPa
150-350
450-1000
600-1200
500-800
600-1200
断裂韧性/
(MPa·m1/2)
15-28
42-70
50-85
50-55
42-70
相对密度/%
77-88
99-100
95-99
93-99
99-100
热胀系数/(10-6/K)
30
32-33
28-35
30-35
30-35
导热系数/(W/m·°C)
14-3
5-10
4-5
--
22
由于在氮化硅的烧结过程中要加入Al2O3、AlN或SiO2等助剂,铝原子可能取代部分硅原子的位置,氧原子可能取代部分氮原子的位置,这样的结合体就形成了一类特殊的陶瓷—硅铝氧氮陶瓷。这种陶瓷具有Si6-zAlzOzN8-z的通式,晶格与b-Si6N8相似。这种氮化物的烧结要容易得多,但烧结过程中会有部分玻璃相形成。玻璃相限制了高温下的使用,但在较低温度下的优异性能仍使此类陶瓷有广泛的应用。
氧氮化硅从氮化硅和二氧化硅的混合物中合成。在Al2O3存在的情况下,具有一定的固体溶解性。可以用无压或压力烧结加工。氧氮化硅的性能略低于氮化硅,但由于其杨氏模量较低,热胀系数较高,在热机械方面有应用的潜力。
氮化铝具有较高的导热系数,在微电子工业中用作绝缘基板。用氮化铝粉末与密化助剂和CaO或Y2O3在1650-1800°C下在氮气氛中烧结而成。用Y2O3作烧结助剂时,会有钇铝化合物在颗粒边界形成。氮化铝的导热系数随Y2O3的含量迅速增加。这是由于当Y2O3含量很低时(<08wt%),钇铝化合物会在氮化铝颗粒外形成一层连续的外壳,阻止了氮化铝(导热系数50-90W/m·K)颗粒间的热传导。当钇的含量增加时,钇铝全结成较大的瘤(可达15m),氮化铝颗粒之间能够直接接触。钇含量达到 42wt%时,导热系数可达160W/m·K。氮化铝的机械性能不高,且在800°C以上发生氧化,所以不能作为结构材料使用。
氮化硼的电子结构与碳相似,晶体有两种变体,一种类似于石墨(六方),一种类似于金刚石(立方)。六方氮化硼较软,具有片层结构,可以热压成型。材料具有各向异性,因为层片垂直于压力方向取向,不同方向上的导热系数与导电率大不相同。可以用化学沉积法制造坩埚一类薄壁制品。立方氮化硼的密度和硬度要高得多,用六方氮化硼在高温高压下制得,类似人造金刚石的制法。可用作磨料或切削刀具。
氮化硅基体的复合材料主要用碳化硅晶须和碎片增强,目的是提高韧性和高温强度。由于碳化硅晶须的存在,阻碍了氮化硅基体的收缩,使无压烧结更为困难。因此,氮化硅复合材料只能用热压法才能得到致密的产品。在从烧结温度冷却时,由于基体与晶须的热胀系数不匹配,材料内会产生应力。碳化硅为44´10-6/K,而氮化硅为32´10-6/K。这样,纤维会处于张力状态而基体处于压缩状态。因此使基体开裂的应力就应更高。在径向上,晶须会收缩而减弱与基体的结合,这样会使裂缝偏移并会使晶须容易拔出,也造成增韧。虽然碳化硅晶须的加入使强度略有降低,但有显著的增韧作用,报道的最高断裂韧性为10MPa·m1/2。上述各类氮化物的性能见表5-8。
表5-8氮化物陶瓷的性能
硅铝氧氮
氧氮化硅
(Si2N2O)
氮化铝
(AlN)
六方氮化硼
(平行于晶片)
六方氮化硼
(垂直于晶片)
立方氮化硼
杨氏模量/GPa
300
275-280
260-350
100
20
150
挠曲强度/MPa
750-950
450-480
235-370
低
低
高
理论密度/%
290
320
227
227
348
热胀系数/
(10-6/K)
30-37
43
44-57
2-6
1-2
--
导热系数/(W/m·K)
15-22
8-10
50-170
20
33
--
535金属陶瓷
顾名思义,金属陶瓷是金属与陶瓷的结合体,实际上是一种复合材料。其分散相是陶瓷颗粒,多为碳化物,如碳化钛、碳化钨等。基体是一种金属或几种金属的混合物,如镍、钴、铬、钼等。实际上金属仅起到粘合剂的作用,将坚硬的陶瓷粒子粘合在一起。金属陶瓷家族中最著名的成员是钴粘合的碳化钨。
图5-16金属陶瓷的制备过程
碳化钨/钴的起点原料是钨的粉末,通过碳化将钨粉转化为碳化钨。然后将碳化钨粉末与钴一起球磨,一方面减小碳化钨的粒度,一方面将钴涂到陶瓷表面。涂饰好的粉末按粒度分级,取所需粒度压成型坯。型坯在真空下或氢气氛中烧结成型。所谓烧结不过是将金属熔融,把陶瓷粒子彻底“焊”在一起。图5-16是金属陶瓷的一般制备流程。
陶瓷金属比任何工具钢都硬,耐磨性能极佳。可作切削工具,可作任何软、硬表面的磨擦件。如果单纯使用陶瓷,因为其脆性,不能用作切削工具、模具或振动强烈的机器部件。而金属陶瓷中的金属提供了韧性,陶瓷提供了硬度与强度,这种复合产生了性能上的协同效应。
金属陶瓷有下列共同的特点:
模量比钢高(413-620GPa)。
密度高于钢。
压缩强度高于大多数工程材料。
硬度高于任何钢与其它合金。
拉伸强度与合金钢相当(1380MPa)。
表5-9 各种规格的金属陶瓷
用途 代码
等级
成分
硬度
(RA)
侧向断裂强度
(MPa)
WC
TiC
TaC
Co
加工属铸铁,有色金属与非金材料
C-1
粗加工
94
-
-
6
91
2000
C-2
通用加工e
92
-
2
6
92
1550
C-3
细加工
92
-
4
4
92
1520
C-4
精加工
96
-
4
93
1400
加工碳钢,合金钢与工具钢
C-5
粗加工
75
8
7
10
91
1870
C-6
通用加工
79
8
4
9
92
1650
C-7
细加工
70
12
12
6
92
1750
C-8
精加工
77
15
3
5
93
1180
耐磨件
C-9
无振动
94
-
-
6
92
1520
C-10
轻振动
92
-
-
8
91
2000
C-11
强振动
85
-
-
15
89
2200
抗冲击件
C-12
轻度
88
-
-
12
88
2500
C-13
中度
80
-
-
20
86
2600
C-14
重度
75
-
-
15
85
2750
目前市场上已有多种规格的金属陶瓷,其碳化物的种类、含量、粒度不同,金属粘合剂的种类与含量不同。表5-9列出了各种规格的成分、性能与用途。由于碳化钽比碳化钨还硬,含碳化钽的金属陶瓷更为耐磨。金属含量越低,陶瓷粒度越细(<1mm),耐磨性能越好。所有金属陶瓷都具有室内耐腐蚀性,含有镍和铬的金属陶瓷可耐化学环境的腐蚀。表中侧向断裂强度一项是机械强度的度量,该项强度越高,冲击强度越高。但作为陶瓷,抗冲击性能毕竟是有限的,比任何金属都要低。作为最坚硬的材料之一,金属陶瓷的加工性能很差,不能车,不能锯,甚至不能钻孔,只能进行电火花加工。如果同一个部件需要两件以上,最经济的办法就是加工一个烧结模具。把加工的问题放到烧结以前解决。限制金属陶瓷应用的最大障碍是价格问题。1996年价格为$44/kg。这个价格是普通工具钢的5倍。但要考虑到作为耐磨部件和切削工具,金属陶瓷的寿命是工具钢的50倍,这个价格就应该不成为问题了。
欢迎分享,转载请注明来源:品搜搜测评网