请先看我做的里的最后一段话,要想更深入一些了解可继续看上的推算部分以及下面的一些说明。
粒子的自旋是粒子固有的角动量,是其内禀的属性,每种粒子都有其固定的大小不会改变。在数值上,粒子的自旋角动量S=[s(s+1)]^(1/2)h'(其中s是自旋量子数,电子质子中子的s=1/2,光子的s=1,介子的s=0;h'=h/(2π),h是普朗克常数)。s是整数还是半整数对粒子的统计性影响很大,著名的泡利不相容原理本质上就是s为半整数的粒子遵循费米-狄拉克统计。 粒子自旋通常都会使它带有磁矩,这样它就像一块小磁铁,在有梯度的磁场中它就会受力偏转(打到接收屏上后一般都明显地分为上下两条曲线,不是连续的一片)。这应该属于间接测自旋吧。自旋不仅在大小上是固定不变的,它在空间的任意方向上的投影的大小也只能取两个固定的数值——±sh'。这两点都与宏观物体的旋转大不相同,后者的角动量不论是总的大小还是它在某方向上投影的大小都是连续可变的,而粒子则是固定的或量子化的。由于粒子没有“形状”和“大小”,其“自转线速度”和“自转角速度”都是没有意义的。 粒子的自旋是除了它的三维外部空间的自由度以外的内部空间的第四个自由度,这个自由度上只有±sh'这两个分立的取值。不像空间坐标那样可以连续取值。最初是实验逼得人们认识到这一点的,后来狄拉克构建了著名的狄拉克方程,这是一个关于自由带电粒子的满足狭义相对论要求——在洛仑兹变换下不变的波动方程,它自动给出了电子的自旋及其分量的分立取值。 量子力学给出的诸多结论连同量子力学本身都是匪夷所思的。玻尔曾说:“如果谁没被量子力学搞得头晕,那他就一定是不理解量子力学。”爱因斯坦说:“我思考量子力学的时间百倍于广义相对论,但依然不明白。”费曼说:“我们知道它如何计算,但不知道它为何要这样去计算,但只有这样去计算才能得出既有趣又有意义的结果。”(原话可能有出入,大意如此) 来看看数学上是怎样描述自旋的!尽管看完之后仍不免糊涂,但我想那会是有一些启发作用的,若还能从中体会到数学的奇妙就更好了。 量子力学认为物理系统的一切信息都已包含在确知的波函数Ψ中,为了提取其中的有用信息,量子力学把所有在它看来是有意义的物理量都“重塑”为相应的算符——一系列四则运算复数运算微分运算矩阵运算等运算规则的序列,然后将算符F作用在Ψ上,找到适当的Ψ(这样的Ψ一般都不只一个)使得:FΨ=fΨ(F是相同的情况下,满足上述关系的Ψ可有多个,每个Ψ可对应着不同的实数f;这样的Ψ称为本征函数,f称为本征值),那么,f就是F所对应的物理量在测量时可能测得的数值,测得f的概率可由与f对应的Ψ算出。(自旋的计算事例见,其中有涉及到“自旋为1/2的粒子是怎么能转两圈才能和不转一样”的问题。)
absolute uncertainty:绝对不确定性
relative uncertainty:相对不确定性
不确定性原理
不确定性原理(Uncertainty principle,又称测不准原理)由海森堡于1927年提出,这个理论是说,你不可能同时知道一个粒子的位置和它的速度,粒子位置的不确定性,必然大于或等于普朗克斯常数除于4π(ΔxΔp≥h/4π),这表明微观世界的粒子行为与宏观物质很不一样。此外,不确定原理涉及很多深刻的哲学问题,用海森堡自己的话说:“在因果律的陈述中,即‘若确切地知道现在,就能预见未来’,所错误的并不是结论,而是前提。我们不能知道现在的所有细节,是一种原则性的事情。”
表达式
ΔxΔp≥h/4π
提出者
维尔纳·海森堡(Werner Heisenberg)
提出时间
1927年
应用学科
物理
适用领域范围
量子力学
测不准原理
德国物理学家海森堡1927年提出的不确定性原理是量子力学的产物[1] 。这项原则陈述了精确确定一个粒子,例如原子周围的电子的位置和动量是有限制[1] 。这个不确定性来自两个因素,首先测量某东西的行为将会不可避免地扰乱那个事物,从而改变它的状态;其次,因为量子世界不是具体的,但基于概率,精确确定一个粒子状态存在更深刻更根本的限制[1] 。
海森堡测不准原理是通过一些实验来论证的。设想用一个γ射线显微镜来观察一个电子的坐标,因为γ射线显微镜的分辨本领受到波长λ的限制,所用光的波长λ越短,显微镜的分辨率越高,从而测定电子坐标不确定的程度△q就越小,所以△q∝λ。但另一方面,光照射到电子,可以看成是光量子和电子的碰撞,波长λ越短,光量子的动量就越大,所以有△p∝1/λ。
再比如,用将光照到一个粒子上的方式来测量一个粒子的位置和速度,一部分光波被此粒子散射开来,由此指明其位置。但人们不可能将粒子的位置确定到比光的两个波峰之间的距离更小的程度,所以为了精确测定粒子的位置,必须用短波长的光。
但普朗克的量子假设,人们不能用任意小量的光:人们至少要用一个光量子。这量子会扰动粒子,并以一种不能预见的方式改变粒子的速度。
所以,简单来说,就是如果要想测定一个量子的精确位置的话,那么就需要用波长尽量短的波,这样的话,对这个量子的扰动也会越大,对它的速度测量也会越不精确;如果想要精确测量一个量子的速度,那就要用波长较长的波,那就不能精确测定它的位置[2] 。
于是,经过一番推理计算,海森堡得出:△q△p≥ħ/4π。海森堡写道:“在位置被测定的一瞬,即当光子正被电子偏转时,电子的动量发生一个不连续的变化,因此,在确知电子位置的瞬间,关于它的动量我们就只能知道相应于其不连续变化的大小的程度。于是,位置测定得越准确,动量的测定就越不准确,反之亦然。”[2]
海森堡还通过对确定原子磁矩的斯特恩-盖拉赫实验的分析证明,原子穿过偏转所费的时间△T越长,能量测量中的不确定性△E就越小。再加上德布罗意关系λ=h/p,海森伯得到△E△T≥h/4π,并且作出结论:“能量的准确测定如何,只有靠相应的对时间的测不准量才能得到。”
简介
在量子力学里,不确定性原理(Uncertainty principle)表明,粒子的位置与动量不可同时被确定,位置的不确定性与动量的不确定性遵守不等式ΔxΔp≥h/4π
其中,是约化普朗克常数。
维尔纳·海森堡于1927年发表论文给出这原理的原本启发式论述,因此这原理又称为“海森堡不确定性原理”。根据海森堡的表述,测量这动作不可避免的搅扰了被测量粒子的运动状态,因此产生不确定性。同年稍后,厄尔·肯纳德(Earl Kennard)给出另一种表述。隔年,赫尔曼·外尔也独立获得这结果。按照肯纳德的表述,位置的不确定性与动量的不确定性是粒子的秉性,无法同时压抑至低于某极限关系式,与测量的动作无关。这样,对于不确定性原理,有两种完全不同的表述。追根究柢,这两种表述等价,可以从其中任意一种表述推导出另一种表述。[3]
长久以来,不确定性原理与另一种类似的物理效应(称为观察者效应)时常会被混淆在一起。观察者效应指出,对于系统的测量不可避免地会影响到这系统。为了解释量子不确定性,海森堡的表述所援用的是量子层级的观察者效应。之后,物理学者渐渐发觉,肯纳德的表述所涉及的不确定性原理是所有类波系统的内秉性质,它之所以会出现于量子力学完全是因为量子物体的波粒二象性,它实际表现出量子系统的基础性质,而不是对于当今科技实验观测能力的定量评估。在这里特别强调,测量不是只有实验观察者参与的过程,而是经典物体与量子物体之间的相互作用,不论是否有任何观察者参与这过程。
类似的不确定性关系式也存在于能量和时间、角动量和角度等物理量之间。由于不确定性原理是量子力学的重要结果,很多一般实验都时常会涉及到关于它的一些问题。有些实验会特别检验这原理或类似的原理。例如,检验发生于超导系统或量子光学系统的“数字-相位不确定性原理”。对于不确定性原理的相关研究可以用来发展引力波干涉仪所需要的低噪声科技。
因为银原子中电子自旋的原因:除了有轨道角动量L外,还有电子的自旋角动量S。两者合成即为总角动量J。J的方向与B的方向有夹角,在空间上mj对B有两个取向(一正一负绝对值相等),且朗德g因子gj=2(银是单电子)根据分裂宽度公式Z当然对称了。
物理学发展的三个时期
物理学是随着人类社会实践的发展而产生、形成和发展起来的,它经历了漫长的发展过程。纵观物理学的发展史,根据它不同阶段的特点,大致可以分为物理学萌芽时期、经典物理学时期和现代物理学时期三个发展阶段。
(一)物理学萌芽时期
在古代,由于生产水平的低下,人们对自然界的认识主要依靠不充分的观察,和在此基础上进行的直觉的、思辨性猜测,来把握自然现象的一般性质,因而自然科学的知识基本上是属于现象的描述、经验的总结和思辨的猜测。那时,物理学知识是包括在统一的自然哲学之中的。
在这个时期,首先得到较大发展的是与生产实践密切相关的力学,如静力学中的简单机械、杠杆原理、浮力定律等。在《墨经》中,有力的概念(“力,形之所以奋也”)的记述;光学方面,积累了关于光的直进、折射、反射、小孔成像、凹凸面镜等的知识。《墨经》上关于光学知识的记载就有八条。在古希腊的欧几里德(公元前450-380)等的著作中也有光的直线传播和反射定律的论述,并且对光的折射现象也作了一定的研究。电磁学方面,发现了摩擦起电、磁石吸铁等现象,并在此基础上发明了指南针。声学方面,由于音乐的发展和乐器的创造,积累了不少乐律、共鸣方面的知识。物质结构和相互作用方面,提出了原子论、元气论、阴阳五行说、以太等假设。
在这个时期,观察和思辨虽然是人们认识自然的主要手段和方法,但也出现了一些类似于用实验来研究物理现象的方法。例如,我国宋代沈括在《梦溪笔谈》中的声共振实验和利用天然磁石进行人工磁化的实验,以及赵友钦在《革象新书》中的大型光学实验等就是典型的事例。
总之,从远古直到中世纪(欧洲通常把五世纪到十五世纪叫做中世纪)末,由于生产的发展,虽然积累了不少物理知识,也为实验科学的产生准备了一些条件并做了一些实验,但是这些都还称不上系统的自然科学研究。在这个时期,物理学尚处在萌芽阶段。
(二)经典物理学时期
十五世纪末叶,资本主义生产关系的产生,促进了生产和技术的大发展;席卷西欧的文艺复兴运动,解放了人们的思想,激发起人们的探索精神。近代自然科学就在这种物质的和思想的历史条件下诞生了。系统的观察实验和严密的数学演绎相结合的研究方法被引进物理学中,导致了十七世纪主要在天文学和力学领域中的“科学革命”。牛顿力学体系的建立,标志着近代物理学的诞生。整个十八世纪,物理学处在消化、积累、准备的渐进阶段。新的科学思想、方法和理论,得到了传播、完善和扩展。牛顿力学完成了解析化工作,建立了分析力学;光学、热学和静电学也完成了奠基性工作,成为物理学的几门基础学科。人们以力学的模型去认识各种物理现象,使机械论的自然观成为十八世纪物理学的统治思想。到了十九世纪,物理学获得了迅速和重要的发展,各个自然领域之间的联系和转化被普遍发现,新数学方法被广泛引进物理学,相继建立了波动光学、热力学和分子运动论、经典电磁场理论等完整的、解析式的理论体系,使经典物理学臻于完善。由物理学的巨大成就所深刻揭示的自然界的统一性,为辨证唯物主义的自然观提供了重要的科学依据。
(三)现代物理学时期
十九世纪末叶物理学上一系列重大发现,使经典物理学理论体系本身遇到了不可克服的危机,从而引起了现代物理学革命。由于生产技术的发展,精密、大型仪器的创制以及物理学思想的变革,这一时期的物理学理论呈现出高速发展的状况。研究对象由低速到高速,由宏观到微观,深入到广垠的宇宙深处和物质结构的内部,对宏观世界的结构、运动规律和微观物质的运动规律的认识,产生了重大的变革。相对论的量子力学的建立,克服了经典物理学的危机,完成了从经典物理学到现代物理学的转变,使物理学的理论基础发生了质的飞跃,改变了人们的物理世界图景。1927年以后,量子场论、原子核物理学、粒子物理学、天体物理学和现代宇宙学,得到了迅速的发展。物理学向其它学科领域的推进,产生了一系列物理学的新部门和边缘学科,并为现代科学技术提供了新思路和新方法。现代物理学的发展,引起了人们对物质、运动、空间、时间、因果律乃至生命现象的认识的重大变化,对物理学理论的性质的认识也发生了重大变化。现在越来越多的事实表明,物理学在揭开微观和宏观深处的奥秘方面,正酝酿着新的重大突破。现代物理学的理论成果应用于实践,出现了象原子能、半导体、计算机、激光、宇航等许多新技术科学。这些新兴技术正有力地推动着新的科学技术革命,促进生产的发展。而随着生产和新技术的发展,又反过来有力地促进物理学的发展。这就是物理学的发展与生产发展的辨证关系。
发展史
经典物理与近代物理
第一,立足于牛顿力学的经典物理学和经典自然科学在很在程度上是关于自然事物,自然属性,自然过程和自然界规律性的知识,但它往往没有对这些事物,属性,过程和规律性的机制(道理)从因果性上作出解释;近代自然科学所能做到的或应当做到的,则是依据于对微观过程的了解,解决这些"为什么"的问题
第二,经典自然科学有它的普遍性和整体性,但就对整个自然事物的反映看,经典理论基本上是关于特殊的,局部的自然领域的知识;近代自然科学则具有更高程度的普遍性和更大范围的全局性
第一章 发展中的物理学
1 相对论
相对论是现代物理学的重要基石它的建立20世纪自然科学最伟大的发现之一,对物理学,天文学乃至哲学思想都有深远的影响相对论是科学技术发展到一定阶段的必然产物,是电磁理论合乎逻辑的继续和发展,是物理学各有关分支又一次综合的结果相对论经迈克耳逊,莫雷实验,洛伦兹及爱因斯坦等 人发展而建立
2 量子力学
1900年普朗克为了克服经典理论解释黑体辐射规律的困难,引入了能量了概念,为量子理论奠定了基石随后爱因斯坦针对光电效应实验与经典理论的矛盾,提出了光量子假说,并在固体比热问题上成功地运用了能量子概念,为量子理论的发展打开了局面1913年,玻尔在卢瑟福有核模型的基础上运用了量子化概念,对氢光谱作出了满意的解释,使量子论取得了初步的胜利之后经过玻尔,索末菲海森堡,薛定谔,狄拉克等人开创性的工作,终于在1925年-1928年开成了完整的量子力学理论
3 原子核及基本粒子
原子核物理学起源于放射性的研究,是19世纪末兴起的崭新课题在这以前,人类对这年领域毫开所知从事这项研究的物理学家,他们通过作新创制的简陋仪器进行各种实验和观察,从中收集数据,总结经验,寻找规律,探索不断开拓新的领域 1933年以后,原子核物理理论才逐渐形成
4 固体物理学
20世纪初,固体物理学就开始深入到微观领域,人们开始利用微观规律来计算实验观测量量子力学首先应用于简谐振子及简单的原子上,并显示了其正确性,其次又在化学键的问题上取得了效果二十世纪20年代后,固体物理学作为一门学科在物理学领域中诞生
5 物理学与技术
物理学的发展为新技术提供了基础,与此相反的关系也完全存在假如不采用电子技术的各式各样的机器,今天的物理学,甚至整个科学研究都可能连一天也存在不下去要建造超高能物理学所不可缺少的巨大加速器,必须要动员当前最先进的精密机械技术和电子学技术才行同时由于对技术进步的不断要求,作为这些技术基础的物理学的研究也正在日益加强可以说,没有上述各方面的条件,就不可能存在今天这种大规模,多方面的物理学研究
6 科学的体制化
近代物理学的基础工程学科化这种趋势,当然是由围绕科学的新的社会状况的出现所形成和促进的
7 物理学在地理上的扩大
物理学的变迁,同时也伴有物理学在地理上扩大俄国(苏联),美国,日本,中国及欧洲,亚洲,非洲物理学在地理上的扩大,必将会进一步扩大在进行尖端物理学研究,所以,没有理由认为这些国家将来不会产生真正的物理学研究
8 研究技术化
可以把这一趋势同由物理学所支撑着的各种各样新技术所持有的可能性相结合,看作是社会进步的一个标志
第二章节近代物理学的序幕
一 电子的发现
背景: 电子的发现起源于对阴极射线的研究阴极射线是低压气体放电过程中的一种奇特现象这一观点得到赫兹等人的支持,赞成以太说的大多是德国人英国物理学家克鲁克斯以及舒斯特根据各自的实验及解释都认为阴极射线是由粒子组成的德国学派主张以太学说,英国学派主张带电微粒说
JJ汤姆生对电子研究
⒈定性研究:JJ汤姆生还改进了赫兹的静电场偏转实验,他进一步提高了真空度,并且减小极间电压,以防止气体电离,终于获得了稳定的静电偏转
⒉定量研究 :一种方法是用静电场偏转管在管子两侧各加一通电线圈以产生垂直于电场方向的磁场,然后根据电场和磁场分别造成的偏转,计算出阴极射线的荷质比e/m,另一种方法是测量阴极的温升因为阴极射线撞击到阴极,会引起阴极的温度升高JJ汤姆生把热电偶接到阴极,测量它的温度变化,两种不同的方法得到的结果相近,荷质比
⒊普遍性证明
二 X射线的研究
1895年,德国的维尔茨堡大学,伦琴教授 阴极射线研究 发现了X射线
三,放射性的发现
对阴极射线研究引起了放射性物质的发现 1896年5月18日,贝克勒尔发现了放射性
贝克勒尔发现放射性虽然没有伦琴发现X射线那样轰动一时,意义却更为深远因为这是人类第一次接触到核现象,为后来居里夫妇,卢瑟福等对放射性研究发展开辟了道路
第三章 相对论的建立
相对论的研究起源于"以太漂移"的探索以及光行差的观测1678年惠更斯把光振动类比于声振动,看成是以太中的弹性脉冲但是后来由于光的微粒说占了上风,以太理论受到压抑,牛顿就认为不需要以太,他主张超距作用1800年以后,由于波动说成功地解释了干涉,衍射和偏振等现象,以太学说重新抬头在波动说的支持者看来,光既然是一种波,就一定要有一种载体,这就是以太他们把以太看成是无所不在,绝对静止,极其稀薄的刚性"物质"
机械波的波动方程与电磁波的波动方程
机械振动只有在弹性介质中传播才形成机械波,在弹性介质中应用牛顿定律和胡克定律,即可建立机械波的波动方程,一维横波的波动方程为
机械波的波动方程和波速这些性质是否也适用于电磁波(包括光波)呢 电磁波有类似于机械波的波动方程,那么,电磁波的波动方程是相对于什么样的参考系建立的 真空中速度是相对于什么参考系的
1861年,英国物理学家麦克斯韦总结前人的实验规律基础上,推导真空中电磁波的波动方程,其一维形式的真空波动方程为:
3迈克耳逊―莫雷实验
波动理论假定了真空中充满以太,光相对于以太的速度C传播,地球上的观察者所测到真空中光速的数值将是多大呢 如果认为地球运动时以太完全没有被带动,地球上测到的真空光速应该是光对以太的速度与地球相对于以太速度的矢量差,为了能够显示出光相对于地球的传播速度不同于C,迈克耳逊设计了一个十分巧妙的实验
在迈克耳逊最初装置中,采用地球公转速度可得004个条纹,这是一个很小的效应,但他的仪器装置观察到的只是002个条纹的变动,即使进一步改进,结果都没有观察到条纹的移动
4洛伦兹等人的贡献
斐兹杰惹于1889年,洛伦兹于1892年先后独立地提出了著名的洛伦兹―斐兹杰惹收缩假定他们都承认以太的存在,在以太中静止的一个长为L的物体,当它沿长度方向相对于以太速率V运动时,将缩短到
5 爱因斯坦与狭义相对论
将相对性原理应用于电磁理论,如果认为电磁场的麦克斯韦方程组是正确的(方程组中真空中光速C的普适常数出现)则必须同时承认真空中光速C对所有惯性系相同,与波源的运动无关然而,这却是于牛顿力学不相等的在牛顿力学中,速度总是相对于一定的参考系,不允许在动力学方程中出现普适的速度
6广义相对论的建立
狭义相对论建立之后,爱因斯坦并没有止步,他认为狭义相对论还有许多问题没有解决,例如:为什么惯性质量随能量变化 为什么一切物体在引力场中下落都具有同样的加速度 1916年,爱因斯坦发表了《广义相对论的基础》,对广义相对论的研究作了全面的总结在论文中,爱因斯坦证明了牛顿理论可以作为相对论引力理论的第一级近似,并且组给出了谱线红移,光线弯曲,行星轨道近日点进动的理论预言
7爱因斯坦的成功分析
1兼收并蓄
2敢于创新,突破常规精神
3哲学修养
美发射探测卫星 验证88年前爱因斯坦的预言
第四章 量子力学的发展
一 黑体辐射的研究
1859年 基尔霍夫物体热辐射的发射本领e(v,T)和吸收本领a(v,T)的比值都相等,并等于该温度下黑体对同一波长的辐射度
1879年 斯特潘根据实验总结出黑体辐射总能量与黑体温度四次方成正比的关系
1893年 维恩经验式子
1900年 瑞利
为了解决上述困难,普朗克利用内插法,将适用于短波的维恩公式和适用于长波的瑞利―金斯公式衔接起来在1900年提出了一个新的公式
普朗克与统一思想的波动
普朗克对量子论的研究工作中犹豫徘徊,畏缩不前的主要原因是物理学的统一性问题,即如何对量子论的解释
玻尔理论的形成
光谱
卢瑟福
量子理论
玻尔理论
1913年《原子构造和分子构造》 提出了两条基本假设:定态,跃迁
1914年,夫兰克和G赫兹以能量分立的指导思想,进行电子与原子的碰撞实验设计他们利用慢电子与稀薄水银蒸气碰撞方法,来确定银原子的激发电位或电离电位从而证实原子只能处在一定的分立能量状态当中由此突破了"自然无飞跃"能量连续性的经典物理观点这个实验成为玻尔原子理论的一个重要证据之一,
1918年,玻尔为了解释谱线强度这一当时原子理论无法解决的难题,提出了协调经典物理理论与微观量子理论之间相互关系的对应原理
玻尔的直觉与创新研究方法
玻尔的科研思想与他的直觉相联系在一起,他从不畏缩不前,也不遵循所谓严格的逻辑道路的方法玻尔灵活的思维特点与思想方法在今天已成为越来越多的人所理解和赏识
量子力学的建立
1924年泡利提出不相容原理这个原理促使乌伦贝克和高斯密特,在1925年提出电子自旋的设想从而使长期得不到解释的光谱精细结构,反常塞曼效应和斯特恩―盖拉赫实验等难题迎刃而解同年,海森伯创立了阵矩力学,使量子理论登上了一个新的台阶1923年德布罗意提出物质波假设,导致了薛定谔在1926年以波动方程的形式建立了新的量子理论不久薛定谔证明,这两种量子理论是完全等价的,只不过形式不同罢了1928年狄拉克提出电子的相对论性运动方程――狄拉克方程,奠定了相对论性量子力学的基础
第五章中国物理学者在近代物理学发展中贡献
一 出国留学
中国学者出国留学可追溯到,在19世纪中叶,清朝赴欧留学得就达一百多人清朝洋务活动的"求强","求富"过程中,为训练新式陆海军和创办近代军事工业和民安企业,曾陆续派出许多学生到各国求学在1862―1900年间,有几百人,以官费,自费出国游学,但主要是学习语言,驾驶,架线,电工,炮术,造船,铸造,采矿,机织等实用技术和军事技术,当时不可能也没有眼光派学生去学习数理化基础学科
二 物理学教育的发展
在1895年和1897年分别创办了天津西学堂和上海南洋公学中西学堂分设头等学堂,二等学堂,前者相当于大学
1898年创办的京师在大学堂,
三 研究机构的建立
1928年3月在上海成立国立理化实业研究所,同年6月中央研究院创立,同年11月理化实业研究所之一部分改名为物理学研究所,隶属中央研究院
1929年9月在北平建立了北平研究院
20世纪20年代末,国家批准有条件大学设立研究部,在教学同时开展科学研究
四 中国物理学会
中国物理学会成立于1932年,它是中国物理学教学,研究发展的必然结果,截止1932年左右,物理学工作者约300人左右
中国物理学报于1933年创刊在1933―1935年出版了第一卷共三期,至1950年共出版了七卷该学报以外文(主要为英文,个别为法文,德文)发表,附以中文摘要它在国内外学术交流中起到了很好的作用
五 国外物理学家对我国近代物理学发展得作用
1 国外物理学家对我国物理学者得培养与帮助我国许多物理学家都得到了国外著名物理学者的培养
2 国外物理学家来华讲学极大地促进了我国物理学的发展1921年蔡元培和夏元0访问爱因斯坦,并邀请他来中国讲学 朗之万于1931年底来华讲学1937年5月31日至6月4日,玻尔来华进行了讲学
六 我国物理学者在近代物理学中得主要贡献
吴有训在美国研究Compton效应著称,他的关于Compton效应中变线与不变线的能量分布比率的两篇实验论文,确凿地证明了Compton效应的存在,丰富的和发展了Compton工作,并加速国际学术界对Compton效应的认识吴有训回国后,或独自或带领研究生继续从事有关的研究
赵忠尧在研究硬射线的吸收系数及其散射的实验中,最早观察到正负电子对的产生和湮没现象
萨本栋在30年代关于三相电路并矢代数的研究,是属于数学,物理和电机的三角地带,被美国电气工程师学会评为1937年度"理论和研究最佳文章荣获"40年代萨本栋从事交流电机研究,以标么值系统分析交流电机问题他根据在厦门大学和美国讲课的素材编写的《交流电机基础》一书,被英国,美各国高等院采作教材开创了中国科学家编写的教材被国外采用的先例
1949年,张文裕在吸收介子的云室研究中,发现了子和子辐射现象,开拓了奇异原子物理研究的新领域国际上曾称此二发现为"张辐射"和"张原子"
黄昆在1947年发现了后来被称为"黄散射",即固体中杂质缺陷导致X光漫散射,它直接有效地成为研究晶体微观缺陷的手段1950年,黄昆和(李爱扶)共同提出了多声子辐射和无辐射跃迁的量子理论,在国际上被称为黄理论1947-1951年间,黄昆与合著《晶格动力学》一书,它成为该领域的一本基本理论著作而在国际上享有盛名
谢玉铭于1932-1934年间在美国与WVHouston合作研究氢原子光谱Balmer系的精细结构,发现了在40年代后期才得以肯定的"Lamb"移位,并提出了40年代后期有关重整化理论的发展方向相同的大胆建议WELamb于1947-1948年间所作的类似实验及发现而获得1995年诺贝尔物理学奖
宇宙起源及超导体材料的研究
量子力学中的,量子密码学,量子计算机,等等和量子有关的分学科
往更小和更大的方面发展。
更小---了解物质的构成,看看夸克是否可以再分。
更大---了解宇宙了!宇宙物理学
外星人的存在与否
斯特恩早年的研究是在理论物理领域,在统计热力学与量子理论方面有一些重要论文;从1919年他开始转向实验物理,由他研发和使用的分子束方法成为研究分子、原子、原子核性质的有力工具,该方法最初的意图是为了证明气体速率分布的麦克斯韦定律 。1922年他同瓦尔特·盖拉赫合作,做了磁场对磁矩的作用力使原子发生偏转的斯特恩-盖拉赫实验,而后又测量了包括质子在内的亚原子粒子的磁矩;1929年的氢、氦射线衍射实验是对原子和分子的波性质的精彩演示 。
欢迎分享,转载请注明来源:品搜搜测评网