经典物理学发展史
古希腊时代的阿基米德已经在流体静力学和固体的平衡方面取得辉煌成就,但当时将这些归入应用数学,并没有将他的成果特别是他的精确实验和严格的数学论证方法汲入物理学中。从希腊、罗马到漫长的中世纪,自然哲学始终是亚里士多德的一统天下。到了文艺复兴时期,哥白尼、布鲁诺、开普勒和伽利略不顾宗教的迫害,向旧传统挑战,其中伽利略把物理理论和定律建立在严格的实验和科学的论证上,因此被尊称为物理学或科学之父。
伽利略的成就是多方面的,仅就力学而言,他以物体从光滑斜面下滑将在另一斜面上升到同一高度,推论出如另一斜面的倾角极小,为达到同一高度,物体将以匀速运动趋于无限远,从而得出如无外力作用,物体将运动不息的结论 。他精确地测定不同重量的物体以同一加速度沿光滑斜面下滑,并推论出物体自由下落时的加速度及其运动方程,驳倒了亚里士多德重物下落比轻物快的结论,并综合水平方向的匀速运动和垂直地面方向的匀加速运动得出抛物线轨迹和45°的最大射程角,伽利略还分析“地常动移而人不知”,提出著名的“伽利略相对性原理”(中国的成书于1800年前的《尚书考灵曜》有类似结论)。但他对力和运动变化关系的分析仍是错误的。全面、正确地概括力和运动关系的是牛顿的三条运动定律,牛顿还把地面上的重力外推到月球和整个太阳系,建立了万有引力定律。牛顿以上述的四条定律并运用他创造的“流数法”(即今微积分初步),解决了太阳系中的二体问题,推导出开普勒三定律,从理论上解决了地球上的潮汐问题。史称牛顿是第一个综合天上和地上的机械运动并取得伟大成就的物理学家。与此同时,几何光学也有很大发展,在16世纪末或17世纪初,先后发明了显微镜和望远镜,开普勒、伽利略和牛顿都对望远镜作很大的改进。
法国在大革命的前后,人才辈出,以PSM拉普拉斯为首的法国科学家(史称拉普拉斯学派)将牛顿的力学理论发扬光大,把偏微分方程运用于天体力学,求出了太阳系内三体和多体问题的近似解,初步探讨并解决了太阳系的起源和稳定性问题,使天体力学达到相当完善的境界。在牛顿和拉普拉斯的太阳系内,主宰天体运动的已经不是造物主,而是万有引力,难怪拿破仑在听完拉普拉斯的太阳系介绍后就问 :你把上帝放在什么地位?无神论者拉普拉斯则直率地回答 :我不需要这个假设。
拉普拉斯学派还将力学规律广泛用于刚体、流体和固体,加上WR哈密顿、GG斯托克斯等的共同努力,完善了分析力学,把经典力学推进到更高阶段。该学派还将各种物理现象如热、光、电、磁甚至化学作用都归于粒子间的吸引和排斥,例如用光子受物质的排斥解释反射,光微粒受物质的吸引解释折射和衍射,用光子具有不同的外形以解释偏振,以及用热质粒子相互排斥来解释热膨胀、蒸发等等,都一度取得成功,从而使机械的唯物世界观统治了数十年。正当这学派声势煊赫、如日中天时,受到英国物理学家T杨和这个学派的后院法兰西科学院及科学界的挑战,JBV傅里叶从热传导方面,T杨、DFJ阿拉戈、A-J菲涅耳从光学方面,特别是光的波动说和粒子说(见光的二象性)的论争在物理史上是一个重大的事件。为了驳倒微粒说,年轻的土木工程师菲涅耳在阿拉戈的支持下,制成了多种后以他的姓命名的干涉和衍射设备,并将光波的干涉性引入惠更斯的波阵面在介质中传播的理论 ,形成惠更斯-菲涅耳原理,还大胆地提出光是横波的假设,并用以研究各种光的偏振及偏振光的干涉,他创造了“菲涅耳波带”法,完满地说明了球面波的衍射,并假设光是以太的机械横波解决了光在不同介质界面上反射、折射的强度和偏振问题,从而完成了经典的波动光学理论。菲涅耳还提出地球自转使表面上的部分以太漂移的假设并给出曳引系数。也在阿拉戈的支持下,JBL傅科和AHL菲佐测定光速在水中确比空气中为小,从而确定了波动说的胜利,史称这个实验为光的判决性实验。此后,光的波动说及以太论统治了19世纪的后半世纪,著名物理学家如法拉第、麦克斯韦、开尔文等都对以太论坚信不疑。另一方面,利用干涉仪内干涉条纹的移动,可以精确地测定长度、速度、曲率的极微细的变化;利用棱镜和衍射光栅产生的光谱,可以确定地上和天上的物质的成分及原子内部的变化。因此这些光学仪器已成为物理学、分析化学、物理化学和天体物理学中的重要实验手段。
蒸汽机的发明推动了热学的发展 ,18世纪60年代在 J瓦特改进蒸汽机的同时,他的挚友J布莱克区分了温度和热量,建立了比热容和潜热概念,发展了量温学和量热学,所形成的热质说和热质守恒概念统治了80多年。在此期间,尽管发现了气体定律,度量了不同物质的比热容和各类潜热 ,但对蒸汽机的改进帮助不大,蒸汽机始终以很低的效率运行。1755年法国科学院坚定地否决了永动机 。1807年T杨以“能”代替莱布尼兹的“活力” ,1826年 J V 彭赛列创造了“功”这个词。1798年和1799年,朗福德和H戴维分析了摩擦生热,向热质说挑战;JP焦耳从 19 世纪 40 年代起到1878年,花了近40年时间,用电热和机械功等各种方法精确地测定了热功当量 ;生理学家 JR迈尔和Hvon亥姆霍兹 ,更从机械能、电能、化学能、生物能和热的转换,全面地说明能量既不能产生也不会消失,确立了热力学第一定律即能量守恒定律。在此前后,1824年,S卡诺根据他对蒸汽机效率的调查,据热质说推导出理想热机效率由热源和冷却源的温度确定的定律。文章发表后并未引起注意。后经R克劳修斯和开尔文分别提出两种表述后,才确认为热力学第二定律。克劳修斯还引入新的态函数熵;以后,焓、亥姆霍兹函数、吉布斯函数 等态函数相继引入 ,开创了物理 化学 中的重要分支——热化学。热力学指明了发明新热机、提高热机效率等的方向,开创了热工学;而且在物理学、化学、机械工程、化学工程 、冶金学等方面也有广泛的指向和推动作用。这些使物理化学开创人之一W奥斯特瓦尔德曾一度否认原子和分子的存在 ,而宣扬“唯能论”,视能量为世界的最终存在 。但另一方面,JC麦克斯韦的分子速度分布率(见麦克斯韦分布)和L玻耳兹曼的能量均分定理把热学和力学综合起来,并将概率规律引入物理学,用以研究大量分子的运动,创建了气体分子动力论(现称气体动理论),确立了气体的压强、内能、比热容等的统计性质,得到了与热力学协调一致的结论。玻耳兹曼还进一步认为热力学第二定律是统计规律,把熵同状态的概率联系起来,建立了统计热力学。任何实际物理现象都不可避免地涉及能量的转换和热量的传递,热力学定律就成为综合一切物理现象的基本规律。经过20世纪的物理学革命,这些定律仍然成立。而且平衡和不平衡、可逆和不可逆、有序和无序乃至涨落和混沌等概念,已经从有关的自然科学分支中移植到社会科学中。
在19世纪20年代以前 ,电和磁始终认为 是两种不同的物质,因此,尽管1600年W吉伯发表《论磁性》,对磁和地磁现象有较深入的分析 ,1747 年B富兰克林提出电的单流质理论,阐明了正电和负电,但电学和磁学的发展是缓慢,1800年A伏打发明伏打电堆,人类才有能长期供电的电源 ,电开始用于通信 ;但要使用一个电弧灯 ,就需联接2千个伏打电池,所以电的应用并不普及。1920年HC奥斯特的电流磁效应实验,开始了电和磁的综合,电磁学就迅猛发展,几个月内 ,通过实验A-M安培建立平行电流间的安培定律 ,并提出磁分子学说 ,J-B毕奥和F萨伐尔建立载流导线对磁极的作用力(后称毕-萨-拉定律),阿拉戈发明电磁铁并发现磁阻尼效应,这些成就奠定了电磁学的基础。1831年M法拉第发现电磁感应现象,磁的变化在闭合回路中产生了电流,完成了电和磁的综合,并使人类获得新的电源。1867年Wvon 西门子发明自激发电机 ,又用变压器完成长距离输电,这些基于电磁感应的设备,改变了世界面貌,创建了新的学科——电工学和电机工程。法拉第还把场的概念引入电磁学;1864年麦克斯韦进一步把场的概念数学化,提出位移电流和有旋电场等假设,建立了麦克斯韦方程组,完善了电磁理论,并预言了存在以光速传播的电磁波。但他的成就并没有即时被理解,直到HR赫兹完成这组方程的微分形式,并用实验证明麦克斯韦预言的电磁波,具有光波的传播速度和反射 、折射干涉、衍射、偏振等一切性质,从而完成了电磁学和光学的综合,并使人类掌握了最快速的传递各种信息的工具 ,开创了电子学这门新学科。
直到19世纪后半叶 ,电荷的本质是什么 ,仍没有搞清楚,盛极一时的以太论,认为电荷不过是以太海洋中的涡元。HA洛伦兹首先把光的电磁理论与物质的分子论结合起来 ,认为分子是带电的谐振子 ,1892年起 ,他陆续发表“电子论”的文章 ,认为1859年 J普吕克尔发现的阴极射线就是电子束;1895年提出洛伦兹力公式,它和麦克斯韦方程相结合,构成了经典电动力学的基础;并用电子论解释了正常色散、反常色散(见光的色散)和塞曼效应。1897年JJ汤姆孙对不同稀薄气体、不同材料电极制成的阴极射线管施加电场和磁场,精确测定构成阴极射线的粒子有同一的荷质比 ,为电子论提供了确切的实验根据。电子就成了最先发现的亚原子粒子 。1895年WK伦琴发现X射线,延伸了电磁波谱 ,它对物质的强穿透力,使它很快就成为诊断疾病和发现金属内部缺陷的工具 。1896年A-H贝可勒尔发现铀的放射性 ,1898年居里夫妇发现了放射性更强的新元素——钋和镭,但这些发现一时尚未引起物理学界的广泛注意
20世纪的物理学 到19世纪末期 ,经典物理学已经发展到很完满的阶段,许多物理学家认为物理学已接近尽头,以后的工作只是增加有效数字的位数。开尔文在19世纪最后一个除夕夜的新年祝词中说:“物理大厦已经落成,……动力理论确定了热和光是运动的两种方式,现在它的美丽而晴朗的天空出现两朵乌云,一朵出现在光的波动理论,另一朵出现在麦克斯韦和玻耳兹曼的能量均分理论。”前者指的是以太漂移和迈克耳孙 - 莫雷测量地球对(绝对静止的)以太速度的实验,后者指用能量均分原理不能解释黑体辐射谱和低温下固体的比热。恰恰是这两个基本问题和开尔文所忽略的放射性,孕育了20世纪的物理学革命。
1905 年 A 爱因斯坦为了解决电动力学应用于动体的不对称(后称为电动力学与伽利略相对性原理的不协调),创建了狭义相对论,即适用于一切惯性参考系的相对论。他从真空光速不变性出发,即在一切惯性系中,运动光源所射出的光的速度都是同一值,推出了同时的相对性和动系中尺缩 、钟慢的结论 ,完满地解释了洛伦兹为说明迈克耳孙 -莫雷实验提出的洛伦兹变换公式,从而完成了力学和电动力学的综合。另一方面,狭义相对论还否定了绝对的空间和时间,把时间和空间结合起来,提出统一的相对的时空观构成了四度时空;并彻底否定以太的存在,从根本上动摇了经典力学和经典电磁学的哲学基础,而把伽利略的相对性原理提高到新的阶段,适用于一切动体的力学和电磁学现象。但在动体或动系的速度远小于光速时,相对论力学就和经典力学相一致了。经典力学中的质量、能量和动量在相对论中也有新的定义,所导出的质能关系为核能的释放和利用提供了理论准备。1915年,爱因斯坦又创建广义相对论,把相对论推广到非惯性系,认为引力场同具有相当加速度的非惯性系在物理上是完全等价的,而且在引力场中时空是弯曲的,其曲率取决于引力场的强度,革新了宇宙空间都是平直的欧几里得空间的旧概念。但对于范围和强度都不很大的引力场如地球引力场,可以完全不考虑空间的曲率,而对引力场较强的空间如太阳等恒星的周围和范围很大的空间如整个可观测的宇宙空间 ,就必须考虑空间曲率。因此广义相对论解释了用牛顿引力理论不能解释的一些天文现象,如水星近日点反常进动、光线的引力偏析等。以广义相对论为基础的宇宙学已成为天文学的发展最快的一个分支。
另一方面 ,1900年 M普朗克提出了符合全波长范围的黑体辐射公式,并用能量量子化假设从理论上导出,首次提出物理量的不连续性。1905年爱因斯坦发表光量子假设,以光的波粒二象性,解释了光电效应;1906年又发表固体热容的量子理论;1913年N玻尔(见玻尔父子)发表玻尔氢原子理论,用量子概念准确地地计算出氢原子光谱的巴耳末公式,并预言氢原子存在其他线光谱,后获证实。1918年玻尔又提出对应原理,建立了经典理论通向量子理论的桥梁;1924年LV德布罗意提出微观粒子具有波粒二象性的假设,预言电子束的衍射作用;1925年W泡利发表泡利不相容原理,WK海森伯在M玻恩和数学家EP约旦的帮助下创立矩阵力学 ,PAM狄拉克提出非对易代数理论 ;1926 年
E薛定谔根据波粒二象性发表波动力学的一系列论文,建立了波函数,并证明波动力学和矩阵力学是等价的,遂即统称为量子力学 。同年6月玻恩提出了波函数的统计解释 ,表明单个粒子所遵循的是统计性规律而非经典的确定性规律;1927年海森伯发表不确定性关系;1928年发表相对论电子波动方程,奠定了相对论性量子理论的基础。由于一切微观粒子的运动都遵循量子力学规律,因此它成了研究粒子物理学、原子核物理学、原子物理学、分子物理学和固体物理学的理论基础,也是研究分子结构的重要手段,从而发展了量子化学这个化学新分支。
差不多同时,研究由大量粒子组成的粒子系统的量子统计法也发展起来了 ,包括1924年建立的玻色-爱因斯坦分布和1926年建立的费米-狄拉克分布 ,它们分别适应于自旋为整数和半整数的粒子系统。稍后,量子场论也逐渐发展起来了 。1927年 ,狄拉克首先提出将电磁场作为一个具有无穷维自由度的系统进行量子化的方案,以处理原子中光的自发辐射和吸收问题。1929年海森伯和泡利建立了量子场论的普遍形式,奠定了量子电动力学的基础。通过重正化解决了发散困难,并计算各阶的辐射修正,所得的电子磁矩数值与实验值只相差25×10-10 ,其准确度在物理学中是空前的 。量子场论还正向统一场论的方向发展,即把电磁相互作用、弱相互作用、强相互作用和引力相互作用统一在一个规范理论中,已取得若干成就的有电弱统一理论、量子色动力学和大统一理论等。
“实践是真理的唯一标准”,物理学也同样遵循这一标准。一切假说都必须以实验为基础,必须经受住实验的验证。但物理学也是思辨性很强的科学,从诞生之日起就和哲学建立了不解之缘。无论是伽利略的相对性原理、牛顿运动定律、动量和能量守恒定律 、麦克斯韦方程乃至相对论、量子力学,无不带有强烈的、科学的思辨性。有些科学家例如在19世纪中主编《物理学与化学》杂志的JC波根多夫曾经想把思辨性逐出物理学,先后两次以具有思辨性内容为由,拒绝刊登迈尔和亥姆霍兹的论能量守恒的文章,终为后世所诟病。要发现隐藏在实验事实后面的规律,需要深刻的洞察力和丰富的想像力。多少物理学家关注θ-τ之谜 ,唯有华裔美国物理学家李政道和杨振宁,经过缜密的思辨,检查大量文献,发现谜后隐藏着未经实验鉴定的弱相互作用的宇称守恒的假设。而从物理学发展史来看,每一次大综合都促使物理学本身和有关学科的很大发展,而每一次综合既以建立在大量精确的观察、实验事实为基础,也有深刻的思辨内容。因此一般的物理工作者和物理教师,为了更好地应用和传授物理知识,也应从物理学的整个体系出发,理解其中的重要概念和规律。
应用 物理学是广泛应用于生产各部门的一门科学 ,有人曾经说过,优秀的工程师应是一位好物理学家。物理学某些方面的发展,确实是由生产和生活的需要推动的。在前几个世纪中,卡诺因提高蒸汽机的效率而发现热力学第二定律,阿贝为了改进显微镜而建立光学系统理论,开尔文为了更有效地使用大西洋电缆发明了许多灵敏电学仪器;在20世纪内,核物理学、电子学和半导体物理、等离子体物理乃至超声学、水声学、建筑声学、噪声研究等的迅速发展,显然和生产 、生活的需要有关。因此,大力开展应用物理学的研究是十分必要的。另一方面,许多推动社会进步,大大促进生产的物理学成就却肇始于基本理论的探求,例如:法拉第从电的磁效应得到启发而研究磁的电效应,促进电的时代的诞生;麦克斯韦为了完善电磁场理论,预言了电磁波,带来了电子学世纪;X射线、放射性乃至电子 、中子的发现 ,都来自对物质的基本结构的研究。从重视知识、重视人才考虑,尤应注重基础理论的研究。因此为使科学技术达到世界前列,基础理论研究是绝不能忽视的。
展望 21世纪的前夕 ,科学家将从本学科出发考虑百年前景。物理学是否将如前两三个世纪那样,处于领先地位,会有一番争议,但不会再有一位科学家像开尔文那样,断言物理学已接近发展的终端了。能源和矿藏的日渐匮乏,环境的日渐恶化,向物理学提出解决新能源、新的材料加工、新的测试手段的物理原理和技术。对粒子的深层次探索,解决物质的最基本的结构和相互作用,将为人类提供新的认识和改造世界的手段,这需要有新的粒子加速原理,更高能量的加速器和更灵敏、更可靠的探测器。实现受控热核聚变,需要综合等离子体物理、激光物理、超导物理、表面物理、中子物理等方面知识,以解决有关的一系列理论技术问题。总之,随着新的技术革命的深入发展,物理学也将无限延伸。
19世纪末,经典物理学的几个主要分支——力学、热力学和分子运动论、电磁学以及光学都已建立起完整的理论体系,并在理论应用上也取得了巨大成果.当时绝大多数的物理学家都认为,今后的工作只能是对已建立起的科学大厦进行修补和完善.但就在此时,出现了经典物理理论无法克服的矛盾,引起了物理学的革命.
经典物理首先遇到的难题是黑体辐射.黑体辐射理论认为:黑体辐射与周围物体处于平衡状态时,能量按频率(或波长)分布.维恩在作了特殊的假设之后,用热力学方法导出公式
他将理论计算值与实验结果相比较,发现两者虽然在高频区域符合,但在低频区域相差很大.瑞利根据经典电动力学和统计物理得到到ρ()d∝2Td,后来金斯纠正了上式的比例系数.瑞利的公式虽然能反映高温下长波辐射的情况,但当→∞时它将遇到“紫外光灾难”.上述公式都是严格按经典理论计算出来的,各代表一种极端情况,都不能全面解释黑体辐射.
普朗克在受到好友鲁木斯的忠告后,试图找出一个公式把维恩公式
年10月19日普朗克向德国物理学会报告了他的经验公式.由于他的公式与实验结果符合,促使他继续探索这个公式的理论基础、经过紧张的两个月努力,1900年底他用一个谐振子假设,也就是假定黑体以h为能量单位,不连续地吸收和发射能量,用玻尔兹曼统计方法得到黑体辐
(作用量子或离散量),h就是普朗克常量,其数值为6626×10-34J·s.
普朗克常量的引进开创了量子论,但普朗克本人并没有充分地认识到这一点,他还想回到经典物理学中用连续代替不连续.然而爱因斯坦并不这样认为,他最早明确地认识到普朗克的发现标志着物理学的新纪元,并利用普朗克常量提出了光量子的概念,成功地解释了光电效应实验,提出了光电效应方程eV=h-W.1914年密立根全面证实了爱因斯坦光电效应方程,并且第一次从光电效应中测定出普朗克常量为656×10-34J·s,与普朗克1900年从黑体辐射计算得出的结果相符合.这令人信服的事实转变了一些物理学家对量子论的怀疑态度,并发展了量子论.
在量子论的初期,固体比热是继黑体辐射和光电效应之后又一重大课题.根据麦克斯韦—玻尔兹曼能量均分原理讨论固体的热容量所得的结果,在高温和室温范围内与实验值符合,但在低温范围内与实验不符,这个问题是经典物理不能解释的.1907年爱因斯坦进一步把普朗克常量
了经典理论的又一大难题,并及时得到能斯特的验证和大力宣传,使量子论开始被人们所认识.
固体的比热问题解决后,经典理论和实验之间的另一尖锐矛盾发生在原子结构上.卢瑟福依据α粒子散射实验提出了原子有核模型.可是,当时人们从他的原子模型出发,用经典理论解释一些现象时,却得到了与实验相反的结论.根据经典的电磁理论,电子绕核做曲线运动时必然有加速度,那么就应辐射电磁波,其频率等于电子绕核做圆周运动的频率.这样,电子不断地损失能量,离核愈来愈近,电子最终将落至原子核上,发射出连续光谱,使原子变成不稳定系统.上述结论显然是不正确的.我们不能因此说原子模型有错误,因为它的正确性已被实验所证实,因此只能是经典理论不适用于原子内部结构.
为了解决上述问题,玻尔在原子模型的基础上,在好友汉森的帮助下,于1913年提出两条重要假设.第一,电子绕核做圆周运动的轨道不是任意的,必须满足量子化条件
引入轨道量子化条件的作用如玻尔在《哲学杂志》上所说的那样:“引入一个大大异于经典力学概念的量到这个定律中来,这个量就是普朗克常量,或者是经常所称的基本作用量子.引入这个量后,原子中电子稳定组态问题发生了根本的变化.”
玻尔在第二假设里认为,电子在特定轨道上运动时尽管有加速度,但不辐射能量,它们处于定态.只有电子从能量为En的初态跃迁到能量为Em的终态(En>Em),才发射出光子,光子的频率满足h=En-Em.因此可以看出普朗克常量在玻尔理论中的地位.由于玻尔理论仍没有摆脱经典轨道理论的束缚,在解释光谱线的强度、精细结沟等问题上又陷入困境.后来索末菲发展了玻尔理论,用量子论解决了上述问题.
玻尔运用在早期量子论中起指导作用的“对应原理”,推出了角动
发点处理氢原子状态问题时,得到能量和轨道半径的量子方程.玻尔的角动量量子化公式是通过假设得到的.在后期的量子论(量子力学)中,通过应用波函数的标准化条件解L2的本征方程,得到微观体系的角动量
明量子力学的结果更为正确.从上述事实可以看出普朗克常量始终伴随着量子论的发展.
电子定态跃迁时可辐射电磁波.同样,高速带电粒子与物质相撞时也可产生电磁波,不过是能量更大、波长更短的X射线.
X射线有个效应颇引人注目.高频率的X射线被轻元素的电子散射后,波长随散射角θ的增大而增大.但按经典电动力学理论,X射线会引起电子的强迫振动,振动的电子又发射次波,次波就是散射波,散射波长和入射波长应相同.因此光的波动观点不能解释康普顿散射中的波长为什么改变.康普顿把频率为的X射线看成光子流,每个光子的能量为h,根据动量和能量守恒,再考虑相对论效应,得到散射波长为
如果在散射公式中忽略h的作用,即h→0则λθ=λ0,将又到经典理论中去.爱因斯坦得知康普顿散射结果之后,多次在报刊上谈到它的重要意义,使光的波粒二象性得到广泛承认,进一步发展了量子论.
早期的量子论尽管取得了不少惊人的成果,但因它的理论基础是在经典理论的基础上加量子假设,因此是不完善的,不能解释氦原子光谱、反常塞曼效应等问题.1925年乌伦贝克和哥德斯密脱在泡利不相容原理的基础上,提出两条关于电子自旋的假设,其中一条是每个电子都具有
电子自旋的引入使长期得不到解决的反常塞曼效应等难题迎刃而解,使量子论的发展登上了一个新台阶.
量子论是反映微观粒子运动规律的理论.由于微观粒子具有波粒二象性,所以在确定微观粒子每个动力学变量所能达到的准确度方面,存在着一个基本限度.海森堡在一次与爱因斯坦谈话的启发下,于1927年提出了测不准原理,即微观粒子的坐标和动量不能同时有确定值,其测
学量的两个算符之间关系不对易,一般地说,它们不能同时具有确定值.只有在普朗克常量不起显著作用的场合,可以看成宏观现象时,才可以用经典力学的方法处理.
综上所述,可以看出普朗克常量在微观理论中所处的核心作用.不论是固体比热、电子自旋还是测不准关系,都是通过普朗克常量表征出来的.如果在处理的问题中h的作用和其它物理量相比较可以略去,那么微观规律就过渡到宏观规律.
普朗克常量是区分物理现象是宏观还是微观的判据,存在于量子系统的一切数学描述中.普朗克常量的引入具有划时代的历史作用.没有它,就不会有物理学的发展,更不会有量子论的存在
参考资料:
薛定谔猫是薛定谔在1935年提出的关于量子力学解释的一个佯谬(也译为悖论)。
猫被封在一个密室里,密室里有食物有毒药。
毒药瓶上有一个锤子,锤子由一个电子开关控制,电子开关由放射性原子控制。
如果原子核衰变,则放出阿尔法粒子,触动电子开关,锤子落下,砸碎毒药瓶,释放出里面的氰化物气体,猫必死无疑。
这个装置由薛定谔所设计,所以猫便叫做薛定谔猫。
原子核的衰变是随机事件,物理学家所能精确知道的只是半衰期——衰变一半所需要的时间。
如果一种放射性元素的半衰期是一天,则过一天,该元素就少了一半,再过一天,就少了剩下的一半。
但是,物理学家却无法知道,它在什么时候衰变,上午,还是下午。
当然,物理学家知道它在上午或下午衰变的几率——也就是猫在上午或者下午死亡的几率。
如果我们不揭开密室的盖子,根据我们在日常生活中的经验,可以认定,猫或者死,或者活,这是它的两种本征态。
但是,如果我们用薛定谔方程来描述薛定谔猫,则只能说,她处于一种活与死的叠加态。
我们只有在揭开盖子的一瞬间,才能确切地知道此猫是死是活。
但是,也就是在揭开盖子的一瞬间,描述猫的状态的波函数由叠加态立即坍塌到某一个本征态,即死态或者活态。
量子理论认为:如果没有揭开盖子,进行观察,我们永远也不知道此猫是死是活,她将永远到处于死与活的叠加态,即通常所说的半死不活。
这与我们的日常经验严重相违,要么死,要么活,怎么可能不死不活,半死半活?
测不准原理:
测不准原理也叫不确定原理,是海森伯在1927年首先提出的,它反映了微观粒子运动的基本规律,是物理学中又一条重要原理。
海森伯在创立矩阵力学时,对形象化的图象采取否定态度。
但他在表述中仍然需要“坐标”、“速度”之类的词汇,当然这些词汇已经不再等同于经典理论中的那些词汇。
可是,究竟应该怎样理解这些词汇新的物理意义呢?海森伯抓住云室实验中观察电子径迹的问题进行思考。
他试图用矩阵力学为电子径迹作出数学表述,可是没有成功。
这使海森伯陷入困境。
他反复考虑,意识到关键在于电子轨道的提法本身有问题。
人们看到的径迹并不是电子的真正轨道,而是水滴串形成的雾迹,水滴远比电子大,所以人们也许只能观察到一系列电子的不确定的位置,而不是电子的准确轨道。
因此,在量子力学中,一个电子只能以一定的不确定性处于某一位置,同时也只能以一定的不确定性具有某一速度。
可以把这些不确定性限制在最小的范围内,但不能等于零。
这就是海森伯对不确定性最初的思考。
据海森伯晚年回忆,爱因斯坦1926年的一次谈话启发了他。
爱因斯坦和海森伯讨论可不可以考虑电子轨道时,曾质问过海森伯:“难道说你是认真相信只有可观察量才应当进入物理理论吗?”对此海森伯答复说:“你处理相对论不正是这样的吗?你曾强调过绝对时间是不许可的,仅仅是因为绝对时间是不能被观察的。”爱因斯坦承认这一点,但是又说:“一个人把实际观察到的东西记在心里,会有启发性帮助的……在原则上试图单靠可观察量来建立理论,那是完全错误的。
实际上恰恰相反,是理论决定我们能够观察到的东西……只有理论,即只有关于自然规律的知识,才能使我们从感觉印象推论出基本现象。”
海森伯在1927年的论文一开头就说:“如果谁想要阐明‘一个物体的位置’(例如一个电子的位置)这个短语的意义,那么他就要描述一个能够测量‘电子位置’的实验,否则这个短语就根本没有意义。”海森伯在谈到诸如位置与动量,或能量与时间这样一些正则共轭量的不确定关系时,说:“这种不确定性正是量子力学中出现统计关系的根本原因。”
海森伯测不准原理是通过一些实验来论证的。
设想用一个γ射线显微镜来观察一个电子的坐标,因为γ射线显微镜的分辨本领受到波长λ的限制,所用光的波长λ越短,显微镜的分辨率越高,从而测定电子坐标不确定的程度△q就越小,所以△q∝λ。
但另一方面,光照射到电子,可以看成是光量子和电子的碰撞,波长λ越短,光量子的动量就越大,所以有△p∝1/λ。
经过一番推理计算,海森伯得出:△q△p=h/4π。
海森伯写道:“在位置被测定的一瞬,即当光子正被电子偏转时,电子的动量发生一个不连续的变化,因此,在确知电子位置的瞬间,关于它的动量我们就只能知道相应于其不连续变化的大小的程度。
于是,位置测定得越准确,动量的测定就越不准确,反之亦然。”
海森伯还通过对确定原子磁矩的斯特恩-盖拉赫实验的分析证明,原子穿过偏转所费的时间△T越长,能量测量中的不确定性△E就越小。
再加上德布罗意关系λ=h/p,海森伯得到△E△T<h,并且作出结论:“能量的准确测定如何,只有靠相应的对时间的测不准量才能得到。”
海森伯的测不准原理得到了玻尔的支持,但玻尔不同意他的推理方式,认为他建立测不准关系所用的基本概念有问题。
双方发生过激烈的争论。
玻尔的观点是测不准关系的基础在于波粒二象性,他说:“这才是问题的核心。”而海森伯说:“我们已经有了一个贯彻一致的数学推理方式,它把观察到的一切告诉了人们。
在自然界中没有什么东西是这个数学推理方式不能描述的。”玻尔则说:“完备的物理解释应当绝对地高于数学形式体系。”
玻尔更着重于从哲学上考虑问题。
1927年玻尔作了《量子公设和原子理论的新进展》的演讲,提出著名的互补原理。
他指出,在物理理论中,平常大家总是认为可以不必干涉所研究的对象,就可以观测该对象,但从量子理论看来却不可能,因为对原子体系的任何观测,都将涉及所观测的对象在观测过程中已经有所改变,因此不可能有单一的定义,平常所谓的因果性不复存在。
对经典理论来说是互相排斥的不同性质,在量子理论中却成了互相补充的一些侧面。
波粒二象性正是互补性的一个重要表现。
测不准原理和其它量子力学结论也可从这里得到解释。
双生子悖论:
爱因斯坦提出著名的相对论即时间可以改变的理论不久以后,就有天才用双生子悖论进行责难虽然这个悖论早已被证伪,但我们却可以一窥天才有悖于常理的思路:说假设地球上出生了一对双胞胎,一个孩子留在地球上,同时另一个孩子乘坐飞船以接近光速离开地球,当地球上的孩子长大到二十岁后飞船以相同的速度返航,当地球上的孩子四十岁的时候飞船安全的抵达到了地球现在请问:他们双生子中谁更加年轻假如认为接近光速运动时时间会变得更慢,那么大部分人一定会认为乘坐光速离开地球的孩子更加年轻,但是,当飞船以接近光速离开地球的时候,同时我们也可以认为飞船是静止不动的而地球以接近光速离开飞船那么现在大部分人一定认为是地球上的孩子更加年轻!到底谁更加年轻,当然答案很容易只要把两个孩子放在一起比较一把就可以了,千万不要告诉大家这两个孩子一样年轻!那样爱因斯坦的灵魂会不安的
麦克斯韦妖:
麦克斯韦妖是在物理学中,假象的能探测并控制单个分子运动的“类人妖”或功能相同的机制,是1871年由19世纪英国物理学家麦克斯韦为了说明违反热力学第二定律的可能性而设想的。
当时麦克斯韦意识到自然界存在着与熵增加相拮抗的能量控制机制。
但他无法清晰地说明这种机制。
他只能诙谐的假定一种“妖”,能够按照某种秩序和规则把作随机热运动的微粒分配到一定的相格里。
麦克斯韦妖是耗散结构的一个雏形
在19世纪早期,不少人沉迷于一种神秘机械——第一类永动机的制造,因为这种设想中的机械只需要一个初始的力量就可使其运转起来,之后不再需要任何动力和燃料,却能自动不断地做功。
在热力学第一定律提出之前,人们一直围绕着制造永动机的可能性问题展开激烈的讨论。
直至热力学第一定律发现后,第一类永动机的神话才不攻自破。
热力学第一定律是能量守恒和转化定律在热力学上的具体表现,它指明:热是物质运动的一种形式。
这说明外界传给物质系统的能量(热量),等于系统内能的增加和系统对外所作功的总和。
它否认了能量的无中生有,所以不需要动力和燃料就能做功的第一类永动机就成了天方夜谭式的设想。
热力学第一定律的产生是这样的:在18世纪末19世纪初,随着蒸汽机在生产中的广泛应用,人们越来越关注热和功的转化问题。
于是,热力学应运而生。
1798年,汤普生通过实验否定了热质的存在。
德国医生、物理学家迈尔在1841843年间提出了热与机械运动之间相互转化的观点,这是热力学第一定律的第一次提出。
焦耳设计了实验测定了电热当量和热功当量,用实验确定了热力学第一定律,补充了迈尔的论证。
在热力学第一定律之后,人们开始考虑热能转化为功的效率问题。
这时,又有人设计这样一种机械——它可以从一个热源无限地取热从而做功。
这被称为第二类永动机。
1824年,法国陆军工程师卡诺设想了一个既不向外做工又没有摩擦的理想热机。
通过对热和功在这个热机内两个温度不同的热源之间的简单循环(即卡诺循环)的研究,得出结论:热机必须在两个热源之间工作,热机的效率只取决与热源的温差,热机效率即使在理想状态下也不可能的达到100%。
即热量不能完全转化为功。
1850年,克劳修斯在卡诺的基础上统一了能量守恒和转化定律与卡诺原理,指出:一个自动运作的机器,不可能把热从低温物体移到高温物体而不发生任何变化,这就是热力学第二定律。
不久,开尔文又提出:不可能从单一热源取热,使之完全变为有用功而不产生其他影响;或不可能用无生命的机器把物质的任何部分冷至比周围最低温度还低,从而获得机械功。
这就是热力学第二定律的“开尔文表述”。
奥斯特瓦尔德则表述为:第二类永动机不可能制造成功。
在提出第二定律的同时,克劳修斯还提出了熵的概念S=Q/T,并将热力学第二定律表述为:在孤立系统中,实际发生的过程总是使整个系统的熵增加。
但在这之后,克劳修斯错误地把孤立体系中的熵增定律扩展到了整个宇宙中,认为在整个宇宙中热量不断地从高温转向低温,直至一个时刻不再有温差,宇宙总熵值达到极大。
这时将不再会有任何力量能够使热量发生转移,此即“热寂论”。
为了批驳“热寂论”,麦克斯韦设想了一个无影无形的精灵(麦克斯韦妖),它处在一个盒子中的一道闸门边,它允许速度快的微粒通过闸门到达盒子的一边,而允许速度慢的微粒通过闸门到达盒子的另一边。
这样,一段时间后,盒子两边产生温差。
麦克斯韦妖其实就是耗散结构的一个雏形。
1877年,玻尔兹曼发现了宏观的熵与体系的热力学几率的关系S=KlnQ,其中 K为玻尔兹曼常数。
1906年,能斯特提出当温度趋近于绝对零度 T→0 时,△S / O = 0 ,即“能斯特热原理”。
普朗克在能斯特研究的基础上,利用统计理论指出,各种物质的完美晶体,在绝对零度时,熵为零(S 0 = 0 ),这就是热力学第三定律。
热力学三定律统称为热力学基本定律,从此,热力学的基础基本得以完备追问
有简短点的吗?
从爱因斯坦缔造“奇迹年”开始,世界物理学发展已历百年,我国的近现代物理学更是经历了从无到有到发展的过程。日前,记者采访了中科院自然科学史研究所的研究员戴念祖,他饶有兴趣地向记者介绍了中国百年物理史上一些鲜为人知的“第一”和“最早”。
“物理学”名词第一次出现在中国
戴念祖说,近代物理在中国的传播,是从19世纪中期开始的,除了有称为“格致”的一些书籍外,陆续有“重学”(即力学)、电学、光学等物理学分支的中译本出现。第一本被称之为“物理学”且具有大学水平的物理学教科书,是依日文本翻译并由江南制造局于1900年出版的《物理学》。
这本书的翻译者是清末民初的物理学著作翻译家王季烈。“这个王季烈家里可是出了不少大家!”戴念祖补充介绍说:王季烈的母亲谢长达是近代著名的女教育家,王季烈同一辈中有王季同、王季点、王季绪、王季玉等科技专家、教育家,下一辈中更涌现出王守竞、王守武、王淑贞、何泽慧、何怡贞等一批我国科技界的泰斗人物。
中国第一位物理学博士
我国的第一位物理学博士叫李复几。戴念祖介绍说,李复几早年就读于长沙习武学堂和上海南洋公学。1901年获奖学金资助,于当年冬天到英国伦敦国王学院和芬斯伯里学院学习,毕业后又在伦敦机械工程师研究所实习一年。1905年赴德国波恩皇家大学继续深造,在著名物理学家、大气中氦的发现者凯瑟尔的指导下,从事光谱学研究,于1907年获该校高等物理学博士学位。
戴念祖说,李复几的博士论文题目是《关于PLenard的碱金属光谱理论的分光镜实验研究》。PLenard是1905年诺贝尔物理学奖的获得者,李复几以实验证实他的光谱理论假说的错误,对物理学的正确发展是有助益的。
然而,这样一位受到良好教育的物理学博士,回国后却没有用武之地,因为当时国内根本没有适合他专业的工作岗位。戴念祖几经周折,才查到李复几回国后在南洋劝业会从事就业指导会工作。李复几虽学得满腹的物理学知识,还是没能有所成就。
中国最早最好的物理学大师
严济慈曾经说:“夏元瑮和何育杰是中国最早和最好的物理学大师。”戴念祖重点向记者介绍了夏元瑮。夏元瑮1884年生于杭州,1904年就读于上海南洋公学。1905年,广东省招考留学生,夏元瑮即去应考,在600名考生中荣获第一。
夏元瑮第一年在美国伯克利学校补习理化实验,1906年秋进耶鲁大学攻读物理学,毕业后到德国柏林大学深造,和其老师、物理学大师普朗克结下友谊。回国后,应北京大学校长严复之聘,任该校理科学长(相当于后来的理学院院长)和物理学教授。他和何育杰在北京大学培养了第一届物理学本科毕业生,开创了中国的物理学大学教育史。夏元瑮关于理科学制、学科设置等提出了改革方案,对我国上世纪20年代的理科教学具有一定的影响。
1919年,夏元瑮重回柏林,听普朗克和鲁本斯讲课,并随爱因斯坦学习相对论。第二次回国后,夏元瑮不仅继续执教讲坛,主讲相对论和理论物理课程,而且着手将相对论介绍到中国。他仅用几个月的时间就翻译完了爱因斯坦的名著《相对论浅释》。
戴念祖说,夏元瑮热爱教学工作,喜欢研究学问,在国内多所大学担任过校长、物理系主任等职位。后来,夏元瑮辗转西南教学数年。1944年,这位中国近现代物理学教育的先驱因心脏病去世。
1921年 发明利用原子束在不均匀磁场中偏转的方法测量原子的磁矩,为量子论中空间方向量子化原理提供了证据(德国 斯特恩、盖拉赫)。 首次发现类似于铁磁现象的所谓铁电现象(美国 瓦拉塞克)。 1922年 实验第一次精确证实重力加速度和落体成分无关(德国 厄缶)。 提出液体中密度热起伏引起光散射的理论,后被用到液体声测量中(法国 布里渊)。 提出用石英压电效应调制电磁振荡的频率(美国 卡第)。 1923年 提出物质粒子的波粒二象性概念,标志着新量子论的开始(法国 德布罗意)。 提出经典统计力学中的准备态历经假说,用以代替不能成立的各态历经假说(意大利 费米)。 用旧量子论研究原子谱线的反常塞曼效应,发现角动量决定谱线分裂的g因子公式(德国 朗德)。 在X射线散射实验中发现波长改变的效应,提出自由电子散射光子的量子理论(美国 康普顿)。 提出空间周期性引起粒子动量改变的量子规则,用以解释光栅对一束辐射的衍射效应(美国 杜安)。 1924年 首次用德拜-体克耳电解质理论研究电离化气体(英国 罗斯兰德)。 发现光量子(光子)服从的统计法则,据此用统计方法推出普朗克的辐射公式(印度 玻色)。 发现服从玻色统计法则的体系在温度为绝对零度附近时,其粒子都迅速降到基态上的现象,即所谓爱因斯坦凝结(瑞士、美籍德国人 爱因斯坦)。 推出光折射率的量子论公式,即克雷默兹-海森堡色散公式(荷兰 克雷默兹,德国 海森堡)。 各自发现磁控电子管能自动发生高频电磁振荡,随着性能良好的磁控管问世,引出微波技术的发展(德国 哈邦,捷克 查契克)。 1925年 在气体放电研究中发现等离子体静电振荡,引起的电子反常散射现象(美国 兰米尔)。 提出矩阵力学,一种强调可观察量的不连续性的新量子论(德国 海森堡)。 提出电子自己有自旋角动量和磁矩的概念,用以解释光谱线的精细结构(荷兰 乌仑贝克、古兹米特)。 提出两个电子不能共处于同一量子状态上的不相容原理,用以解释光谱线在强磁场中的反常分裂(奥地利 泡里)。 发明符合计数法,用以确定宇宙射线的方向和性质,用符合计数法,证实光子电子碰撞过程中能量守恒律、动量守恒律都成立(德国 玻蒂)。 发明光电显像管,是近代电视照像术的先驱(美籍苏联人 兹渥里金)。 提出铁磁性的短程作用模型,假定影响磁化的仅是最邻近原子之间的相互作用(美国 伊兴)。 1926年 提出物质波的波动力学,一种强调物质波性的新量子论,把电子看成一团电荷分布,即所谓电子云(奥地利 薛定锷)。 提出薛定锷波动力学中波函数的统计解释(德国 玻恩)。 提出受泡里不相容原理限制的粒子所服从的统计法则(意大利 费米)。 指出电场和磁场对带电粒子运动路线的透镜聚焦作用,是电子光学研究的开始(德国 布希)。 用狭义相对论力学说明为什么电子磁矩是一个波尔磁子而不是半个(美国 托马斯)。 精确地测定了光的传播速度(美国 迈克耳逊)。 提出飞行体后湍流的尾流理论(德国 普兰特耳)。 设计并发射以液态氧和汽油为推进剂的火箭,首次携带简单仪器进行高空研究,随后提出多级火箭理论,企图射到月亮(美国 戈达德)。 1927年 根据质谱仪测量结果,揭示出同位素质量偏离整数规则的变化趋势,后人据此指出释放原子能的可能性(英国 阿斯顿)。 提出所谓“双重解理论”,作为薛定锷波动力学的决定论因果解释(法国 德布罗意)。 分别用晶面反射法、薄膜透射法观察到电子束的衍射效应,证实电子的德布罗意波性(美国 戴维森、杰默,英国 汤姆森)。 根据波粒二象性,推出测不准关系,即所谓不确定性原理(德国 海森堡)。 提出波粒两观点互相补充的并协原理,成为哥本哈根学派的基本观点(丹麦 尼·波尔)。 提出电磁辐射场的(二次)量子化理论,以及辐射的吸收和发射的初步理论,进一步体现光的波粒二象性(英国 狄拉克)。 提出空间宇称(左右对称性)守恒的概念,用以解释光谱(美籍匈牙利人 维格纳)。 发现电离层上层(150哩高处)反射无线电短波。澄清在大气电离层的等离子体中无线电波传播的理论,即“磁离子理论”(英国 阿普尔顿)。 提出固体量子论中的能带概念(德国 斯特拉特)。 发现宇宙射线的纬度效应(荷兰 克雷)。 在云雾室中发现几乎不受磁场偏转的高能量带电粒子,为数足以解释宇宙射线引起的电离作用(苏联 史考贝尔金)。 用磁粉溶液涂于纸带上,干后用作电信号记录,后即发展成磁带录音机(美国 奥尼尔)。 1928年 提出强电场下金属发射带电粒于的量子力学隧道效应理论(英国 佛勒、诺德海姆)。 发现透明物质散射的光中有频率改变的效应(印度 钱·拉曼)。 提出符合狭义相对论要求的电子的量子论,成功地得出电子的自旋和磁矩(英国 狄拉克)。 应用量子力学中粒子穿透位垒的隧道效应,解释原子核的α衰变现象,取得和盖革-纳托尔经验公式形式上的符合(美籍俄国人 伽莫夫,美国 康登、格尼)。 应用费米和狄拉克的量子统计法发展金属的自由电子理论(德国 索末菲)。 提出韦斯铁磁性理论的量子力学解释(德国 海森堡)。 提出决定一体系占有某量子状态几率的时间变化率的基本方程(奥地利 泡里)。 1929年 把电磁场看作动力学体系,提出电子和电磁场相互作用的相对论性量子力学,是量子场论的先驱(德国 海森堡,奥地利 泡里)。 提出超声波在气体中被反常吸收的理论(美籍奥地利人 赫茨菲,美国 弗·赖斯)。 首次实现彩色电视的试验(美国 伊夫斯)。 提出等离子体的高频率静电振荡理论,用以解释放电管中反常电子散射(美国 汤克斯、兰米尔)。 发明高频直线加速器,成为后来共振型加速器的先驱(挪威 维德罗)。 各自发明油扩散真空泵,可得千万分之一乇。,(10-7 毫米汞柱)的真空(英国 伯奇,美国 希克曼)。 提出极性分子理论,确定分子的偶极矩,对测定分子中原子间实际距离提供了可能,井可以预测分子的介电性能及电介质在交变电场中引起功率损耗的弛豫(荷兰 德拜)。 1930年 提出未被电子占有的负能态,其行为如带正电粒子的假说,即狄拉克空穴理论(英国 狄拉克)。 发现第二种液态氦的超流动性(荷兰 刻松、凡登安德)。 在固体能带论中提出所谓“布里渊区”概念(法国 布里渊)。 发明回旋加速器(美国 劳伦斯)。 发现相差衬托方法能观察到光通过厚薄交替的透明体后的相位效应(荷兰 泽尼凯) 本
慕尼黑白玫瑰组织主要成员
汉斯·索尔 白玫瑰组织创建者 医学院
索菲·索尔 白玫瑰组织主要成员 生物系 哲学系
库特·胡伯 白玫瑰组织主要成员 教授
安德里亚斯·阿卡曼 前汉堡市长 法学院
方达斯·阿达库斯 前立陶宛总统 自然科学专业
康拉德·阿登纳 前德国总理,德国“复兴之父” 法学院 国民经济学院
阿道夫·冯·拜耳 1905年诺贝尔化学奖 教授
西格弗里德·巴尔克 前联邦部长 教授
马丁·庞格曼 前联邦经济部长 前欧盟委员会委员 法学院
君特·贝克斯坦 前拜仁州州长 法学院
汉斯·贝特 1967年诺贝尔物理学奖 物理系毕业 讲师
库特·彼登考普夫 前萨克森州长 法学院 国民经济学院
盖特·比尼希 1986年诺贝尔物理学奖 教授
君特·布罗博 1999年诺贝尔生理或医学奖 医学院
康拉德·埃米·布洛赫 1964年诺贝尔生理或医学奖 化学系
尼克劳斯·冯·庞哈德 现任慕尼黑再保险董事会主席 法学院
海因里希·布吕宁 前帝国首相 法学院
埃杜阿德·布赫讷 1907年诺贝尔化学奖 化学系
阿道夫·布滕安特 1939年诺贝尔化学奖 教授
卡尔·卡斯滕斯 前联邦总统 法学院 政治系
维克多·约瑟夫·当迈茨 奥格斯堡主教 神学院
皮特·德拜 1936年诺贝尔化学奖 物理系
托马斯·德乐 前联邦司法部长 法学院
康斯坦蒂诺斯·德迈茨斯 前希腊总理 法学院
乌朵·迪·法比欧 现任联邦宪法法院法官 教授
汉斯·艾哈特 前拜仁州州长 法学院
奥特迈·艾明格 前德国央行主席 法学院 国民经济学院
汉斯·A·哎格哈特 前联邦司法部长 法学院
路德维希·哎哈特 前联邦总理 教授
格哈特·艾特 2007年诺贝尔化学奖 物理系毕业 教授
库特·法尔特豪森 前拜仁州财政部长 国民经济学院 政治系
汉斯·非宾格 前巴登州州长 法学院 国民经济学院
埃斯特·奥托·费舍尔 1973年诺贝尔化学奖 化学系毕业 教授
汉斯·费舍尔 1930年诺贝尔化学奖 化学与医学专业毕业 教授
海尔曼·埃米·费舍尔 1902年诺贝尔化学奖 现代生物化学创始人 化学系毕业 教授
约瑟夫·福灵斯 前科隆主教 神学院
卡尔·冯·弗里施 1973年诺贝尔生理或医学奖 教授
弗兰茨王子,前巴伐利亚王国统治者 企业经济学院
海讷·盖斯乐 前基民盟秘书长,前联邦卫生部长 法学院 哲学系
阿冯斯·高裴尔 前拜仁州州长 法学院
奥托·汉 1944年诺贝尔化学奖 化学系
特奥多·W·汉施 2005年诺贝尔物理学奖 教授
瓦尔特·霍斯坦 前欧洲经济共同体主席 法学院
古斯塔夫·海讷曼 前联邦总统 法学院 国民经济学院 历史系
维纳·海森博格 1932年诺贝尔物理学奖 物理系
古斯塔夫·赫兹 1925年诺贝尔物理学奖 物理系
罗曼·海左格 前联邦总统 法学院毕业 讲师
特奥多·怀斯 前联邦总统 艺术史专业
保尔·黑色 1910年诺贝尔文学奖 教授
海尔曼·厚谢尔 前联邦内政部长 法学院
皮特·M·胡伯 现任图林根州内政部长 联邦宪法法院第二法官 法学院 教授
理查德·库恩 1938年诺贝尔化学奖 化学系
马克思·冯·劳厄 1914年诺贝尔物理学奖 讲师
卡尔·卡迪纳·雷曼 前美因茨主教,前德国主教团主席 助教
特奥多·利普斯 “心理学至上论”主要代表人物 教授
贝特·默克 前拜仁州司法部长 法学院 政治系
哈特穆特·迈克尔 1988年诺贝尔化学奖 教师
瓦尔特·摩佩 前柏林市长 政治系 历史系 国民经济学院
格哈特·路德维希·穆勒 现任雨堡主教 教授
亨利·纳能 德国明星周刊(STERN)创办者 艺术史
海尔穆特·施莱辛格 前德国央行主席 国民经济学院
汉斯·维讷·辛 前德国信息研究院院长 教授
海森堡 物理学大师 物理系毕业 教授
欧姆 电学大师 教授
波尔茨曼 物理学大师 教授
盖拉赫 物理学大师 教授
阿诺德·索莫非 物理学大师 教授
约翰内斯·斯塔克 1919年诺贝尔物理学奖 物理系 化学系 数学系
海尔曼·斯韬丁格 1953年诺贝尔化学奖 化学系
埃德蒙得·施多伊伯 前拜仁州州长 法学院
阿德里亚斯。坲斯库勒 现任联邦宪法法院院长 法学院 助教
特奥多·外格 前联邦财政部长 法学院
马克思·韦伯 西方社会学和组织理论学奠基人 教授
海因里希·维兰特 1927年诺贝尔化学奖 教授
威廉·韦恩 1911年诺贝尔物理学奖 教授
理查德·韦尔斯泰特 1915年诺贝尔化学奖 化学系毕业 教授
刘孔中,中央研究院法律研究所研究员。
发展史
经典物理与近代物理
第一,立足于牛顿力学的经典物理学和经典自然科学在很在程度上是关于自然事物,自然属性,自然过程和自然界规律性的知识,但它往往没有对这些事物,属性,过程和规律性的机制(道理)从因果性上作出解释;近代自然科学所能做到的或应当做到的,则是依据于对微观过程的了解,解决这些"为什么"的问题
第二,经典自然科学有它的普遍性和整体性,但就对整个自然事物的反映看,经典理论基本上是关于特殊的,局部的自然领域的知识;近代自然科学则具有更高程度的普遍性和更大范围的全局性
第一章 发展中的物理学
1 相对论
相对论是现代物理学的重要基石它的建立20世纪自然科学最伟大的发现之一,对物理学,天文学乃至哲学思想都有深远的影响相对论是科学技术发展到一定阶段的必然产物,是电磁理论合乎逻辑的继续和发展,是物理学各有关分支又一次综合的结果相对论经迈克耳逊,莫雷实验,洛伦兹及爱因斯坦等 人发展而建立
2 量子力学
1900年普朗克为了克服经典理论解释黑体辐射规律的困难,引入了能量了概念,为量子理论奠定了基石随后爱因斯坦针对光电效应实验与经典理论的矛盾,提出了光量子假说,并在固体比热问题上成功地运用了能量子概念,为量子理论的发展打开了局面1913年,玻尔在卢瑟福有核模型的基础上运用了量子化概念,对氢光谱作出了满意的解释,使量子论取得了初步的胜利之后经过玻尔,索末菲海森堡,薛定谔,狄拉克等人开创性的工作,终于在1925年-1928年开成了完整的量子力学理论
3 原子核及基本粒子
原子核物理学起源于放射性的研究,是19世纪末兴起的崭新课题在这以前,人类对这年领域毫开所知从事这项研究的物理学家,他们通过作新创制的简陋仪器进行各种实验和观察,从中收集数据,总结经验,寻找规律,探索不断开拓新的领域 1933年以后,原子核物理理论才逐渐形成
4 固体物理学
20世纪初,固体物理学就开始深入到微观领域,人们开始利用微观规律来计算实验观测量量子力学首先应用于简谐振子及简单的原子上,并显示了其正确性,其次又在化学键的问题上取得了效果二十世纪20年代后,固体物理学作为一门学科在物理学领域中诞生
5 物理学与技术
物理学的发展为新技术提供了基础,与此相反的关系也完全存在假如不采用电子技术的各式各样的机器,今天的物理学,甚至整个科学研究都可能连一天也存在不下去要建造超高能物理学所不可缺少的巨大加速器,必须要动员当前最先进的精密机械技术和电子学技术才行同时由于对技术进步的不断要求,作为这些技术基础的物理学的研究也正在日益加强可以说,没有上述各方面的条件,就不可能存在今天这种大规模,多方面的物理学研究
6 科学的体制化
近代物理学的基础工程学科化这种趋势,当然是由围绕科学的新的社会状况的出现所形成和促进的
7 物理学在地理上的扩大
物理学的变迁,同时也伴有物理学在地理上扩大俄国(苏联),美国,日本,中国及欧洲,亚洲,非洲物理学在地理上的扩大,必将会进一步扩大在进行尖端物理学研究,所以,没有理由认为这些国家将来不会产生真正的物理学研究
8 研究技术化
可以把这一趋势同由物理学所支撑着的各种各样新技术所持有的可能性相结合,看作是社会进步的一个标志
第二章节近代物理学的序幕
一 电子的发现
背景: 电子的发现起源于对阴极射线的研究阴极射线是低压气体放电过程中的一种奇特现象这一观点得到赫兹等人的支持,赞成以太说的大多是德国人英国物理学家克鲁克斯以及舒斯特根据各自的实验及解释都认为阴极射线是由粒子组成的德国学派主张以太学说,英国学派主张带电微粒说
JJ汤姆生对电子研究
⒈定性研究:JJ汤姆生还改进了赫兹的静电场偏转实验,他进一步提高了真空度,并且减小极间电压,以防止气体电离,终于获得了稳定的静电偏转
⒉定量研究 :一种方法是用静电场偏转管在管子两侧各加一通电线圈以产生垂直于电场方向的磁场,然后根据电场和磁场分别造成的偏转,计算出阴极射线的荷质比e/m,另一种方法是测量阴极的温升因为阴极射线撞击到阴极,会引起阴极的温度升高JJ汤姆生把热电偶接到阴极,测量它的温度变化,两种不同的方法得到的结果相近,荷质比
⒊普遍性证明
二 X射线的研究
1895年,德国的维尔茨堡大学,伦琴教授 阴极射线研究 发现了X射线
三,放射性的发现
对阴极射线研究引起了放射性物质的发现 1896年5月18日,贝克勒尔发现了放射性
贝克勒尔发现放射性虽然没有伦琴发现X射线那样轰动一时,意义却更为深远因为这是人类第一次接触到核现象,为后来居里夫妇,卢瑟福等对放射性研究发展开辟了道路
第三章 相对论的建立
相对论的研究起源于"以太漂移"的探索以及光行差的观测1678年惠更斯把光振动类比于声振动,看成是以太中的弹性脉冲但是后来由于光的微粒说占了上风,以太理论受到压抑,牛顿就认为不需要以太,他主张超距作用1800年以后,由于波动说成功地解释了干涉,衍射和偏振等现象,以太学说重新抬头在波动说的支持者看来,光既然是一种波,就一定要有一种载体,这就是以太他们把以太看成是无所不在,绝对静止,极其稀薄的刚性"物质"
机械波的波动方程与电磁波的波动方程
机械振动只有在弹性介质中传播才形成机械波,在弹性介质中应用牛顿定律和胡克定律,即可建立机械波的波动方程,一维横波的波动方程为
机械波的波动方程和波速这些性质是否也适用于电磁波(包括光波)呢 电磁波有类似于机械波的波动方程,那么,电磁波的波动方程是相对于什么样的参考系建立的 真空中速度是相对于什么参考系的
1861年,英国物理学家麦克斯韦总结前人的实验规律基础上,推导真空中电磁波的波动方程,其一维形式的真空波动方程为:
3迈克耳逊―莫雷实验
波动理论假定了真空中充满以太,光相对于以太的速度C传播,地球上的观察者所测到真空中光速的数值将是多大呢 如果认为地球运动时以太完全没有被带动,地球上测到的真空光速应该是光对以太的速度与地球相对于以太速度的矢量差,为了能够显示出光相对于地球的传播速度不同于C,迈克耳逊设计了一个十分巧妙的实验
在迈克耳逊最初装置中,采用地球公转速度可得004个条纹,这是一个很小的效应,但他的仪器装置观察到的只是002个条纹的变动,即使进一步改进,结果都没有观察到条纹的移动
4洛伦兹等人的贡献
斐兹杰惹于1889年,洛伦兹于1892年先后独立地提出了著名的洛伦兹―斐兹杰惹收缩假定他们都承认以太的存在,在以太中静止的一个长为L的物体,当它沿长度方向相对于以太速率V运动时,将缩短到
5 爱因斯坦与狭义相对论
将相对性原理应用于电磁理论,如果认为电磁场的麦克斯韦方程组是正确的(方程组中真空中光速C的普适常数出现)则必须同时承认真空中光速C对所有惯性系相同,与波源的运动无关然而,这却是于牛顿力学不相等的在牛顿力学中,速度总是相对于一定的参考系,不允许在动力学方程中出现普适的速度
6广义相对论的建立
狭义相对论建立之后,爱因斯坦并没有止步,他认为狭义相对论还有许多问题没有解决,例如:为什么惯性质量随能量变化 为什么一切物体在引力场中下落都具有同样的加速度 1916年,爱因斯坦发表了《广义相对论的基础》,对广义相对论的研究作了全面的总结在论文中,爱因斯坦证明了牛顿理论可以作为相对论引力理论的第一级近似,并且组给出了谱线红移,光线弯曲,行星轨道近日点进动的理论预言
7爱因斯坦的成功分析
1兼收并蓄
2敢于创新,突破常规精神
3哲学修养
美发射探测卫星 验证88年前爱因斯坦的预言
第四章 量子力学的发展
一 黑体辐射的研究
1859年 基尔霍夫物体热辐射的发射本领e(v,T)和吸收本领a(v,T)的比值都相等,并等于该温度下黑体对同一波长的辐射度
1879年 斯特潘根据实验总结出黑体辐射总能量与黑体温度四次方成正比的关系
1893年 维恩经验式子
1900年 瑞利
为了解决上述困难,普朗克利用内插法,将适用于短波的维恩公式和适用于长波的瑞利―金斯公式衔接起来在1900年提出了一个新的公式
普朗克与统一思想的波动
普朗克对量子论的研究工作中犹豫徘徊,畏缩不前的主要原因是物理学的统一性问题,即如何对量子论的解释
玻尔理论的形成
光谱
卢瑟福
量子理论
玻尔理论
1913年《原子构造和分子构造》 提出了两条基本假设:定态,跃迁
1914年,夫兰克和G赫兹以能量分立的指导思想,进行电子与原子的碰撞实验设计他们利用慢电子与稀薄水银蒸气碰撞方法,来确定银原子的激发电位或电离电位从而证实原子只能处在一定的分立能量状态当中由此突破了"自然无飞跃"能量连续性的经典物理观点这个实验成为玻尔原子理论的一个重要证据之一,
1918年,玻尔为了解释谱线强度这一当时原子理论无法解决的难题,提出了协调经典物理理论与微观量子理论之间相互关系的对应原理
玻尔的直觉与创新研究方法
玻尔的科研思想与他的直觉相联系在一起,他从不畏缩不前,也不遵循所谓严格的逻辑道路的方法玻尔灵活的思维特点与思想方法在今天已成为越来越多的人所理解和赏识
量子力学的建立
1924年泡利提出不相容原理这个原理促使乌伦贝克和高斯密特,在1925年提出电子自旋的设想从而使长期得不到解释的光谱精细结构,反常塞曼效应和斯特恩―盖拉赫实验等难题迎刃而解同年,海森伯创立了阵矩力学,使量子理论登上了一个新的台阶1923年德布罗意提出物质波假设,导致了薛定谔在1926年以波动方程的形式建立了新的量子理论不久薛定谔证明,这两种量子理论是完全等价的,只不过形式不同罢了1928年狄拉克提出电子的相对论性运动方程――狄拉克方程,奠定了相对论性量子力学的基础
第五章中国物理学者在近代物理学发展中贡献
一 出国留学
中国学者出国留学可追溯到,在19世纪中叶,清朝赴欧留学得就达一百多人清朝洋务活动的"求强","求富"过程中,为训练新式陆海军和创办近代军事工业和民安企业,曾陆续派出许多学生到各国求学在1862―1900年间,有几百人,以官费,自费出国游学,但主要是学习语言,驾驶,架线,电工,炮术,造船,铸造,采矿,机织等实用技术和军事技术,当时不可能也没有眼光派学生去学习数理化基础学科
二 物理学教育的发展
在1895年和1897年分别创办了天津西学堂和上海南洋公学中西学堂分设头等学堂,二等学堂,前者相当于大学
1898年创办的京师在大学堂,
三 研究机构的建立
1928年3月在上海成立国立理化实业研究所,同年6月中央研究院创立,同年11月理化实业研究所之一部分改名为物理学研究所,隶属中央研究院
1929年9月在北平建立了北平研究院
20世纪20年代末,国家批准有条件大学设立研究部,在教学同时开展科学研究
四 中国物理学会
中国物理学会成立于1932年,它是中国物理学教学,研究发展的必然结果,截止1932年左右,物理学工作者约300人左右
中国物理学报于1933年创刊在1933―1935年出版了第一卷共三期,至1950年共出版了七卷该学报以外文(主要为英文,个别为法文,德文)发表,附以中文摘要它在国内外学术交流中起到了很好的作用
五 国外物理学家对我国近代物理学发展得作用
1 国外物理学家对我国物理学者得培养与帮助我国许多物理学家都得到了国外著名物理学者的培养
2 国外物理学家来华讲学极大地促进了我国物理学的发展1921年蔡元培和夏元0访问爱因斯坦,并邀请他来中国讲学 朗之万于1931年底来华讲学1937年5月31日至6月4日,玻尔来华进行了讲学
六 我国物理学者在近代物理学中得主要贡献
吴有训在美国研究Compton效应著称,他的关于Compton效应中变线与不变线的能量分布比率的两篇实验论文,确凿地证明了Compton效应的存在,丰富的和发展了Compton工作,并加速国际学术界对Compton效应的认识吴有训回国后,或独自或带领研究生继续从事有关的研究
赵忠尧在研究硬射线的吸收系数及其散射的实验中,最早观察到正负电子对的产生和湮没现象
萨本栋在30年代关于三相电路并矢代数的研究,是属于数学,物理和电机的三角地带,被美国电气工程师学会评为1937年度"理论和研究最佳文章荣获"40年代萨本栋从事交流电机研究,以标么值系统分析交流电机问题他根据在厦门大学和美国讲课的素材编写的《交流电机基础》一书,被英国,美各国高等院采作教材开创了中国科学家编写的教材被国外采用的先例
1949年,张文裕在吸收介子的云室研究中,发现了子和子辐射现象,开拓了奇异原子物理研究的新领域国际上曾称此二发现为"张辐射"和"张原子"
黄昆在1947年发现了后来被称为"黄散射",即固体中杂质缺陷导致X光漫散射,它直接有效地成为研究晶体微观缺陷的手段1950年,黄昆和(李爱扶)共同提出了多声子辐射和无辐射跃迁的量子理论,在国际上被称为黄理论1947-1951年间,黄昆与合著《晶格动力学》一书,它成为该领域的一本基本理论著作而在国际上享有盛名
谢玉铭于1932-1934年间在美国与WVHouston合作研究氢原子光谱Balmer系的精细结构,发现了在40年代后期才得以肯定的"Lamb"移位,并提出了40年代后期有关重整化理论的发展方向相同的大胆建议WELamb于1947-1948年间所作的类似实验及发现而获得1995年诺贝尔物理学奖
宇宙起源及超导体材料的研究
量子力学中的,量子密码学,量子计算机,等等和量子有关的分学科
往更小和更大的方面发展。
更小---了解物质的构成,看看夸克是否可以再分。
更大---了解宇宙了!宇宙物理学
外星人的存在与否
1、全球公认最美的十个地方2、世界上最美的地方都有哪些?3、世界风景最美的地方4、全球公认为最美的十大景点5、请问世界上最美的地方是哪里6、十大世界上最美的地方全球公认最美的十个地方
全球公认最美的十个地方如下:
1、冰岛的塞里雅兰瀑布。
2、日本的紫藤花隧道。
3、玻利维亚的天空之镜。
4、德国南部的阿尔卑斯山。
5、法国南部的普罗旺斯。
6、北欧地区的苏格兰。
7、约旦地区著名的死海地区。
8、尼泊尔地区的加德满都。
9、秘鲁的马丘比丘。
10、埃及的金字塔等。
全球
全球,狭义指地球的各个层圈(大气圈、水圈、岩石圈和生物圈。广义指地球上的人文环境,经济,生态自然,包括世界上的各个方面。地球(Earth是太阳系中由内及外的第三颗行星,是太阳系中直径、质量和密度最大的类地行星。
地球自西向东自转,同时围绕太阳公转,距太阳约1496亿千米。地球表面积51亿平方公里,其中71%为海洋,29%为陆地,在太空上看地球呈蓝色。地球内部有核、幔、壳结构,地球外部有水圈、大气圈以及磁场。
地球赤道半径6378137千米,极半径6356752千米,平均半径约6371千米,赤道周长大约为40076千米,呈两极稍扁、赤道略鼓的不规则的椭圆球体。新研究发现每年5000多吨外星尘埃落在地球上。
世界上最美的地方都有哪些?
世界上最美的地方都有玻利维亚·“天空之镜”、冰河国家公园、美国内华达沙漠·“飞翔的喷泉”。
1、美国内华达沙漠·“飞翔的喷泉”
美国内华达沙漠中部,有一处绝美的人间仙境——“飞翔的喷泉”(FlyGeyser。此地位于内华达州盖拉赫以北20英里(约合32公里处,1916年,一次钻井无意间为形成这处美丽的间歇泉埋下伏笔,上世纪60年代时,地底的温泉逐渐渗出地面,形成了间歇泉。
日积月累,溶解的矿物质将泉眼逐渐垫高,如今距离地面已有5米。这处间歇泉排放的水形成了30到40个水池,面积达30公顷。这些水池还形成了一个生态系统,一些小型鱼类和鸟类在这里“安居乐业”,比如天鹅和绿头鸭等。各种矿物质在水和空气中氧气的作用下,使“山体”形成各种瑰丽的颜色,随着季节的变化和水量的增减,颜色各有不同,宛如人间仙境。
2、冰河国家公园
位于蒙大拿州西北洛矶山,1818年美国与英属加拿大北纬49度与大陆分水岭之间划分国界,以南成立冰河国家公园,以北则成立瓦特顿国家公园。因两座公园唇齿相依,景观相似,美加政府自1932年起两座公园合而为一,建立了世界第一座国际和平公园,象征两国永久和平,是世界遗产之一。
冰河国家公园(GlacierNationalPark素有“洛矶山脉上的皇冠”美称,峥嵘险峻的雪峰冰河,以及美不胜收的湖光山色,的确像皇冠上珍珠一般炫丽耀目,绝不比知名的黄石国家公园或加拿大落矶山脉逊色。
世界风景最美的地方
1、新西兰米尔福德湾
新西兰的南岛拥有世界上最美丽的峡湾之一,它被称为米尔福德湾,位于新西兰岛西南海岸,这里是滑雪和户外活动胜地。
米尔福德湾是新西兰峡湾国家公园皇冠上的一颗明珠,是新西兰14个国家公园中最大的,从一处也叫米尔福德湾的小村庄开始,峡湾蜿蜒穿过一片郁郁葱葱的绿色环境,绵延大约16公里,然后进入位于澳大利亚和新西兰之间的塔斯曼海。
2、希腊圣托里尼岛
希腊费拉镇的白墙、蓝顶房屋是现代希腊许多风景如画村庄中的典型,而这些特殊建筑,以及邻近伊亚镇的房屋,都坐落在火山口山脊处,在这里可以俯瞰周围爱琴海全景。
3、苏格兰,斯凯岛
斯凯岛(SKYE在歌曲、故事、小说和诗歌方面拥有悠久的历史,斯凯岛的命名从何而来尚不清楚,但在古代书籍中可找到一些来源,例如:《苏格兰地名辞典》,声称这座岛屿的命名来自斯堪的纳维亚语“sky-a”,意思是“云岛”,可能是指经常笼罩在岛上的云雾。
4、中国华山
华山是中国五岳之一,同时,华山的道家文化源远流长,几座道观点缀在山坡和山峰上,这里有中国最早的寺庙——西峰庙,始建于公元前2世纪。
同时,华山也是旅游胜地,来自世界各地的游客冒险攀登南峰,一些人称华山之旅是“世界上最危险的徒步旅行”,危险步道仅有03米宽,被称为“空中木板路”。
5、冰岛约库萨尔洛恩冰川泻湖
作为冰岛最大的冰川泻湖,其最突出的特点是令人眼花缭乱的蓝色海水,宛如蓝色水晶,令人感到非常着迷,明亮的白色冰山,从邻近的冰川断裂,漂浮在海面上,就像天空中漂浮的白云。约库萨尔洛恩冰川泻湖是冰岛最深的湖,深度可达248米。
该泻湖面积为18平方公里,与海岸线接壤,所以在涨潮的时候,大西洋海水会流入该泻湖。同时,该泻湖的命名与“瓦特纳冰川”密不可分,瓦特纳冰川是冰岛最大的冰盖,也是欧洲第二大冰盖,仅次于塞弗尼岛冰盖。
全球公认为最美的十大景点
全球公认最美的十个地方,中国上榜一个一!
一,马尔代夫,这里是世界上最美好的地方之一,有着宛如天堂般的风景,轻柔的海风和清澈的水底世界,无疑是每个人为之神往的地方。
二,普罗旺斯,位于法国东南部,是世界闻名的薰衣草故乡,其中吕贝隆山区是著名的薰衣草观赏地,号称全法国最美丽的山谷。
三,巴厘岛,位于印度尼西亚,这里是典型的热带海岛型气候,当地信仰印度教,是著名的旅游胜地。
四,威尼斯,位于意大利东北部,是世界上最浪漫的城市之一,同时也是世界最美丽城市之一,充满特色的运河是许多**取景地。
五,香格里拉,位于我国云南省西北部,有着悠久的历史和绚丽的自然风光。这里空气新鲜,风景宜人,是世人寻觅已久的世外桃源。
六,大棱镜彩泉,位于美国国家黄石公园,是世界第三大温泉,因湖面的颜色随季节而改变,因此也被称为七彩石。
七,蓝湖是冰岛最大的温泉,同时也是世界上最著名的地热温泉之一,因水质清澈,被誉为天然美容院。
八,乌尤尼盐沼,位于玻利维亚,是世界上最大的盐沼,同时也是全球最美的十个旅游胜地之一,享有天空之境的美誉。
九,大堡礁位于澳大利亚,这里有世界上最大的珊瑚礁,并列入世界遗产名录。因景色太过美丽,被誉为全球求婚成功率最高的地方。
十,伊瓜苏瀑布归属于巴西,早在1984年就列入了世界自然遗产之中,不仅是全球公认的最美瀑布,也是世界上最宽的瀑布。
请问世界上最美的地方是哪里
1、大棱镜彩泉
大棱镜彩泉在美国黄石国家公园,有着很多的别名,例如七彩池、大虹彩温泉等等,不仅是美国最大的温泉,还是世界第三大的温泉,大棱镜彩泉是因为湖面的颜色随季节而改变,散射出蓝色、绿色、金色、红色、橙色、棕色等不同颜色。
2、威尼斯
威尼斯归属于意大利,称得上是世界最浪漫的城市之一!标志性景观在于连通的运河,以及五颜六色的建筑物,有“水城”“百岛城”的美誉,还有很多关于爱情的**都是在这里取景的。这里还是威尼斯画派的发源地,世界著名的历史文化名城。
3、冰岛蓝湖
冰岛是一个岛国,人口密度非常小,是一个很安静很舒适的国家,这里有很多美丽的景色。蓝湖是冰岛最大的温泉,还是是世界上最著名的地热温泉之一!并且还是世界上最清澈的湖泊,下雪也能泡温泉,有着“天然美容院”的美誉。
4、盖朗厄尔峡湾
盖朗厄尔峡湾归属于挪威,这里也以瀑布众多而出名,这里是热爱探索的冒险家的理想之地,峡湾里面没有人居住,非常神秘。可以乘渡船欣赏盖朗厄尔峡湾的风景,这是挪威最后欢迎的旅游地点,还被列入了世界遗产。
十大世界上最美的地方
十大世界上最美的地方如下:
1、日本。紫藤花隧道:
河内藤园是日本屈指可数的的私人紫藤花园,每年的4月下旬至5月中旬,各种紫藤花顺次绽放,将游客带进一个童话般极致浪漫的世界。据说,这里最大的一颗紫藤树已经超过100岁了。
园内共有22种、共计150株紫藤树,如野田长藤、口红藤等;在这个时节,很多游客喜欢在紫藤花下野餐,在童话般的绝美世界中享受一段悠闲的时光。
2、冰岛·塞里雅兰瀑布:
塞里雅兰瀑布为冰岛最漂亮的瀑布之一,坐落于思科阿丝瀑布和塞尔福斯之间,斯科加尔以西约30公里处的塞里雅兰河上,为爱尔兰最上镜的瀑布,曾多次出现在书籍和杂志中。塞里雅兰瀑布高60米,从悬崖上飞奔而下,白色的水流和周围的美景互相融合,成为摄影爱好者的最爱。
3、中国罗平。油莱花田:
在欧洲,人们也许不知道云南,但一定会知道罗平的油莱花田。这里是中国乃至世界上最大的花田,也是最奇特的的一个大海。
4、玻利维亚。“天空之镜”:
乌尤尼盐沼,它位于玻利维亚西南部的乌尤尼小镇附近,是世界最大的盐沼。
每年冬季,它被雨水注满,形成一个浅湖;而每年夏季,湖水则干涸,留下一层以盐为主的矿物硬壳,中部达6米厚。人们可以驾车驶越湖面。尤其是在雨后,湖面像镜子一样,反射着好似不是地球上的,美丽的令人室息的天空景色,这也就是传说中的“天空之镜"。
5、中国罗平油莱花田:
在欧洲,人们也许不知道云南,但一定会知道罗平的油菜花田。这里是中国乃至世界上最大的花田,也是最奇特的的一个大海。
6、美国·冰河国家公园:
冰河国家公园位于蒙大拿州西北洛矶山,1818年美国与英属加拿大北纬49度与大陆分水岭之间画分国界,以南成立冰河国家公园,以北则成立瓦特顿国家公园。
因两座公园唇齿相依,景观相似,美加政府自1932年起两座公园合而为一,建立了世界第一座国际和平公园,象征两国永久和平,是世界遗产之一。
7、土耳其·棉花堡:
棉花堡(Pamukkale位于土耳其Denizli市的西南部,是远近闻名的温泉度假胜地,此地不仅有上千年的天然温泉,更有这种古怪的好似棉花一样的山丘。土耳其文Pamukkale是由Pamuk(棉花和Kale(城堡两个字组成的,棉花是指其色白如棉,远看像棉花团,其实是坚硬的石灰岩地形。
8、美国内华达沙漠。“飞翔的喷泉”:
美国内华达沙漠中部,有一处绝美的人间仙境——“飞翔的喷泉"(FlyGeyser。此地位于内华达州盖拉赫以北20英里(约合32公里处,1916年,一次钻井无意间为形成这处美丽的间歇泉埋下伏笔,上世纪60年代时,地底的温泉逐渐渗出地面,形成了间歇泉。
9、乌克兰。“爱的隧道”:
位于乌克兰的Klevan,当地人称呼这条道为“通往爱的隧道”,严格意义上说,这应该不算是一条道路或隧道,但介于它无法比拟的美丽,无数人感叹,这大概是这个星球最漂亮的一条火车道了,它绿得让人室息。这条美丽的铁路是由枝墓围成的。
10、越阐·庞卡尔瀑布:
越南最大最雄伟的瀑布,位于在西南高原的丛林,Pongour瀑布是台阶式的,大量的水从30米急速下落7层,然后跌入一个巨大的游泳池,声音犹如雷鸣。
Pongour瀑布在任何时候都很美丽,但是最壮观的季节还是在雨季,大量的水会更暴力和蛮横冲下台阶,届时这些瀑布能够形成一个完整的半圆形。
欢迎分享,转载请注明来源:品搜搜测评网