历届诺贝尔物理学奖

历届诺贝尔物理学奖,第1张

1901 WC伦琴 德国 发现伦琴射线(X射线)

1902 HA洛伦兹 荷兰 塞曼效应的发现和研究

P塞曼 荷兰

1903 HA贝克勒尔 法国 发现天然铀元素的放射性

P居里 法国 放射性物质的研究,发现放射性元素钋与镭并发现钍也有放射性

MS居里 法国

1904 L瑞利 英国 在气体密度的研究中发现氩

1905 P勒钠德 德国 阴极射线的研究

1906 JJ汤姆孙 英国 通过气体电传导性的研究,测出电子的电荷与质量的比值

1907 AA迈克耳孙 美国 创造精密的光学仪器和用以进行光谱学度量学的研究,并精确测出光速

1908 G里普曼 法国 发明应用干涉现象的天然彩色摄影技术

1909 G马可尼 意大利 发明无线电极及其对发展无线电通讯的贡献

CF布劳恩 德国

1910 JD范德瓦耳斯 荷兰 对气体和液体状态方程的研究

1911 W维恩 德国 热辐射定律的导出和研究

1912 NG达伦 瑞典 发明点燃航标灯和浮标灯的瓦斯自动调节器

1913 HK昂尼斯 荷兰 在低温下研究物质的性质并制成液态氦

1914 MV劳厄 德国 发现伦琴射线通过晶体时的衍射,既用于决定X射线的波长又证明了晶体的原子点阵结构

1915 WH布拉格 英国 用伦琴射线分析晶体结构

WL布拉格 英国

1917 CG巴克拉 英国 发现标识元素的次级伦琴辐射

1918 MV普朗克 德国 研究辐射的量子理论,发现基本量子,提出能量量子化的假设,解释了电磁辐射的经验定律

1919 J斯塔克 德国 发现阴极射线中的多普勒效应和原子光谱线在电场中的分裂

1920 CE吉洛姆 法国 发现镍钢合金的反常性以及在精密仪器中的应用

1921 A爱因斯坦 德国 对现物理方面的贡献,特别是阐明光电效应的定律

1922 N玻尔 丹麦 研究原子结构和原子辐射,提出他的原子结构模型

1923 RA密立根 美国 研究元电荷和光电效应,通过油滴实验证明电荷有最小单位

1924 KMG西格班 瑞典 伦琴射线光谱学方面的发现和研究

1925 J弗兰克 德国 发现电子撞击原子时出现的规律性

GL赫兹 德国

1926 JB佩林 法国 研究物质分裂结构,并发现沉积作用的平衡

1927 AH康普顿 美国 发现康普顿效应

CTR威尔孙 英国 发明用云雾室观察带电粒子,使带电粒子的轨迹变为可见

1928 OW里查孙 英国 热离子现象的研究,并发现里查孙定律

1929 LV德布罗意 法国 电子波动性的理论研究

1930 CV拉曼 印度 研究光的散射并发现拉曼效应

1932 W海森堡 德国 创立量子力学,并导致氢的同素异形的发现

1933 E薛定谔 奥地利 量子力学的广泛发展

PAM狄立克 英国 量子力学的广泛发展,并预言正电子的存在

1935 J查德威克 英国 发现中子

1936 VF赫斯 奥地利 发现宇宙射线

CD安德孙 美国 发现正电子

1937 JP汤姆孙 英国 通过实验发现受电子照射的晶体中的干涉现象

CJ戴维孙 美国 通过实验发现晶体对电子的衍射作用

1938 E费米 意大利 发现新放射性元素和慢中子引起的核反应

1939 FO劳伦斯 美国 研制回旋加速器以及利用它所取得的成果,特别是有关人工放射性元素的研究

1943 O斯特恩 美国 测定质子磁矩

1944 II拉比 美国 用共振方法测量原子核的磁性

1945 W泡利 奥地利 发现泡利不相容原理

1946 PW布里奇曼 美国 研制高压装置并创立了高压物理

1947 EV阿普顿 英国 发现电离层中反射无线电波的阿普顿层

1948 PMS布莱克特 英国 改进威尔孙云雾室及在核物理和宇宙线方面的发现

1949 汤川秀树 日本 用数学方法预见介子的存在

1950 CF鲍威尔 英国 研究核过程的摄影法并发现介子

1951 JD科克罗夫特 英国 首先利用人工所加速的粒子开展原子核

ETS瓦尔顿 爱尔兰 蜕变的研究

1952 EM珀塞尔 美国 核磁精密测量新方法的发展及有关的发现

F布洛赫 美国

1953 F塞尔尼克 荷兰 论证相衬法,特别是研制相差显微镜

1954 M玻恩 德国 对量子力学的基础研究,特别是量子力学中波函数的统计解释

WWG玻特 德国 符合法的提出及分析宇宙辐射

1955 P库什 美国 精密测定电子磁矩

WE拉姆 美国 发现氢光谱的精细结构

1956 W肖克莱 美国 研究半导体并发明晶体管

WH布拉顿 美国

J巴丁 美国

1957 李政道 美国 否定弱相互作用下宇称守恒定律,使基本粒子研究获重大发现

杨振宁 美国

1958 PA切连柯夫 前苏联 发现并解释切连柯夫效应(高速带电粒子在透明物质中传递时放出蓝光的现象)

IM弗兰克 前苏联

IY塔姆 前苏联

1959 E萨克雷 美国 发现反质子

O张伯伦 美国

1960 DA格拉塞尔 美国 发明气泡室

1961 R霍夫斯塔特 美国 由高能电子散射研究原子核的结构

RL穆斯堡 德国 研究r射线的无反冲共振吸收和发现穆斯堡效应

1962 LD朗道 前苏联 研究凝聚态物质的理论,特别是液氦的研究

1963 EP维格纳 美国 原子核和基本粒子理论的研究,特别是发现和应用对称性基本原理方面的贡献

MG迈耶 美国 发现原子核结构壳层模型理论,成功地解释原子核的长周期和其它幻数性质的问题

JHD詹森 德国

1964 CH汤斯 美国 在量子电子学领域中的基础研究导致了根据微波激射器和激光器的原理构成振荡器和放大器

NG巴索夫 前苏联 用于产生激光光束的振荡器和放大器的研究工作

AM普洛霍罗夫 前苏联 在量子电子学中的研究工作导致微波激射器和激光器的制作

1965 RP费曼 美国 量子电动力学的研究,包括对基本粒子物理学的意义深远的结果

JS施温格 美国

朝永振一郎 日本

1966 A卡斯特莱 法国 发现并发展光学方法以研究原子的能级的贡献

1967 HA贝特 美国 恒星能量的产生方面的理论

1968 LW阿尔瓦雷斯 美国 对基本粒子物理学的决定性的贡献,特别是通过发展氢气泡室和数据分析技术而发现许多共振态

1969 M盖尔曼 美国 关于基本粒子的分类和相互作用的发现,提出“夸克”粒子理论

1970 HOG阿尔文 瑞典 磁流体力学的基础研究和发现并在等离子体物理中找到广泛应用

LEF尼尔 法国 反铁磁性和铁氧体磁性的基本研究和发现,这在固体物理中具有重要的应用

1971 D加波 英国 全息摄影术的发明及发展

1972 J巴丁 美国 提出所谓BCS理论的超导性理论

LN库珀 美国

JR斯莱弗 美国

1973 BD约瑟夫森 英国 关于固体中隧道现象的发现,从理论上预言了超导电流能够通过隧道阻挡层(即约瑟夫森效应)

江崎岭于奈 日本 从实验上发现半导体中的隧道效应

I迦埃弗 美国 从实验上发现超导体中的隧道效应

1974 M赖尔 英国 研究射电天文学,尤其是孔径综合技术方面的创造与发展

A赫威期 英国 射电天文学方面的先驱性研究,在发现脉冲星方面起决定性角色

1975 AN玻尔 丹麦 发现原子核中集体运动与粒子运动之间的联系,并在此基础上发展了原子核结构理论

BR莫特尔孙 丹麦 原子核内部结构的研究工作

LJ雷恩瓦特 美国

1976 B里克特 美国 分别独立地发现了新粒子J/Ψ,其质量约为质子质量的三倍,寿命比共振态的寿命长上万倍

丁肇中 美国

1977 PW安德孙 美国 对晶态与非晶态固体的电子结构作了基本的理论研究,提出“固态”物理理论

JH范弗莱克 美国 对磁性与不规则系统的电子结构作了基本研究

NF莫特 英国

1978 AA彭齐亚斯 美国 3K宇宙微波背景的发现

RW威尔孙 美国

PL卡皮查 前苏联 建成液化氮的新装置,证实氮亚超流低温物理学

1979 SL格拉肖 美国 建立弱电统一理论,特别是预言弱电流的存在

S温伯格 美国

AL萨拉姆 巴基斯坦

1980 JW克罗宁 美国 CP不对称性的发现

VL菲奇 美国

1981 N布洛姆伯根 美国 激光光谱学与非线性光学的研究

AL肖洛 美国

KM瑟巴 瑞典 高分辨电子能谱的研究

1982 K威尔孙 美国 关于相变的临界现象

1983 S钱德拉塞卡尔 美国 恒星结构和演化方面的理论研究

W福勒 美国 宇宙间化学元素形成方面的核反应的理论研究和实验

1984 C鲁比亚 意大利 由于他们的努力导致了中间玻色子的发现

S范德梅尔 荷兰

1985 KV克利青 德国 量子霍耳效应

1986 E鲁斯卡 德国 电子物理领域的基础研究工作,设计出世界上第1架电子显微镜

G宾尼 瑞士 设计出扫描式隧道效应显微镜

H罗雷尔 瑞士

1987 JG柏诺兹 美国 发现新的超导材料

KA穆勒 美国

1988 LM莱德曼 美国 从事中微子波束工作及通过发现μ介子中微子从而对轻粒子对称结构进行论证

M施瓦茨 美国

J斯坦伯格 英国

1989 NF拉姆齐 美国 发明原子铯钟及提出氢微波激射技术

W保罗 德国 创造捕集原子的方法以达到能极其精确地研究一个电子或离子

HG德梅尔特 美国

1990 J杰罗姆 美国 发现夸克存在的第一个实验证明

H肯德尔 美国

R泰勒 加拿大

1991 PG德燃纳 法国 液晶基础研究

1992 J夏帕克 法国 对粒子探测器特别是多丝正比室的发明和发展

1993 J泰勒 美国 发现一对脉冲星,质量为两个太阳的质量,而直径仅10-30km,故引力场极强,为引力波的存在提供了间接证据

L赫尔斯 美国

1994 C沙尔 美国 发展中子散射技术

B布罗克豪斯 加拿大

1995 ML珀尔 美国 珀尔及其合作者发现了τ轻子 雷恩斯与C考温首次成功地观察到电子反中微子他们在轻子研究方面的先驱性工作,为建立轻子-夸克层次上的物质结构图像作出了重大贡献

F雷恩斯 美国

1996 戴维李 美国 发现氦-3中的超流动性

奥谢罗夫 美国

RC里查森 美国

1997 朱棣文 美国 激光冷却和陷俘原子

K塔诺季 法国

菲利浦斯 美国

1998 劳克林 美国 分数量子霍尔效应的发现

斯特默 美国

崔琦 美国

1999 H霍夫特 荷兰 证明组成宇宙的粒子运动方面的开拓性研究

马丁努斯-韦尔特曼 荷兰

2000 授予三位科学家和发明家,他们的工作,特别是他们所发明的快速晶体管、激光二级管和集成线路(芯片)奠定了现代信息技术的基础。这三位科学家是俄罗斯圣彼得堡约飞物理技术学院的Zhores I Alferov,美国加州圣巴巴拉加州大学的Herbert Kroemer,美国德克萨斯州达拉斯德克萨斯仪器公司的Jack S Kilby。奖金总额为900万瑞典克朗,前两位物理学家分享其中的一半。

2001年诺贝尔物理学奖:美国科学家艾里克A科纳尔、德国科学家沃尔夫冈凯特纳以及美国科学家卡尔E威依迈,三人将共同平分1千万瑞典克郎的奖金。

2002年诺贝尔物理学奖授予美国科学家雷蒙德·戴维斯、日本科学家小柴昌俊和美国科学家里卡尔多·贾科尼,称他们“在天体物理学领域做出的先驱性贡献”打开了人类观测宇宙的两个新“窗口”。

2003年诺贝尔物理学奖授予拥有俄罗斯和美国双重国籍的科学家阿列克谢·阿布里科索夫、俄罗斯科学家维塔利·金茨堡以及拥有英国和美国双重国籍的科学家安东尼·莱格特,以表彰他们在超导体和超流体理论上作出的开创性贡献。

2004年度物理学奖授予了三位美国科学家戴维·格罗斯、戴维·波利泽和弗兰克·维尔泽克。今年的诺贝尔单项大奖奖金总额为1000万瑞典克朗,约合136万美元。

瑞典皇家科学院在授予这三位科学家诺贝尔物理学奖的文告中称,他们是因在夸克粒子理论方面所取得的成就才获此奖项的。夸克是自然界中最小的基本粒子。这三位科学家对夸克的研究使科学更接近于实现它为“所有的事情构建理论”的梦想。

2005年度诺贝尔物理学奖

约翰·霍尔、特奥多尔·亨施和罗伊·格劳伯

成就:研究成果可改进GPS技术

未来手机信号更清楚

来自美国科罗拉多大学的约翰·L·霍尔、哈佛大学的罗伊·J·格劳贝尔,以及德国路德维希·马克西米利安大学(简称慕尼黑大学)的特奥多尔·亨施。

1、Sean Teale扮演MARCOS Diaz,绰号“日蚀”,具有吸收和操纵光子的超能力。

2、Jamie Chung 扮演 Clarice Fong,绰号“瞬目”,具有心灵传送的超能力。

3、Emma Dumont扮演 Lorna Dane,绰号“北极星”,具有操控电磁场的超能力。

4、Blair Redford 扮演Sam,绰号“雷鸟”,具有超级速度、超级力量和强化感觉的超能力。

《天赋异禀》是美国电视系列剧,是X战警系列继《大群》之后又一部衍生剧,改编自漫威漫画的X战警,与X战警**系列相关联,设定在一个X战警已经消失的时间线。

该剧由二十世纪福克斯电视公司与漫威电视联合出品,布莱恩·辛格,伦·怀斯曼等执导,史蒂芬·莫耶、艾米·阿克、布莱尔·雷德福、杰米·钟等主演。

《天赋异禀》百度网盘高清免费资源在线观看:

gsu2

  化 学 发 展 史

  ( 化工学院 x x x)

  摘要:从公元前1500年到公元1650年,炼丹术士和炼金术士们,在皇宫、在教堂、在自己的家里、在深山老林的烟熏火燎中,为求得长生不老的仙丹,为求得荣华富贵的黄金,开始了最早的化学实验。记载、总结炼丹术的书籍,在中国、阿拉伯、埃及、希腊都有不少。这一时期积累了许多物质间的化学变化,为化学的进一步发展准备了丰富的素材。这是化学史上令我们惊叹的雄浑的一幕。后来,炼丹术、炼金术几经盛衰,使人们更多地看到了它荒唐的一面。化学方法转而在医药和冶金方面得到了正当发挥。在欧洲文艺复兴时期,出版了一些有关化学的书籍,第一次有了“化学”这个名词。英语的chemistry起源于alchemy,即炼金术。chemist至今还保留着两个相关的含义:化学家和药剂师。这些可以说是化学脱胎于炼金术和制药业的文化遗迹了。

  关键词:燃素化学;量子论;晶体化学

  自从有了人类,化学便与人类结下了不解之缘。钻木取火,用火烧煮食物,烧制陶器,冶炼青铜器和铁器,都是化学技术的应用。正是这些应用,极大地促进了当时社会生产力的发展,成为人类进步的标志。今天,化学作为一门基础学科,在科学技术和社会生活的方方面面正起着越来越大的作用。从古至今,伴随着人类社会的进步,化学历史的发展经历了哪些时期呢?

  远古的工艺化学时期。这时人类的制陶、冶金、酿酒、染色等工艺,主要是在实践经验的直接启发下经过多少万年摸索而来的,化学知识还没有形成。这是化学的萌芽时期。

  一、化学的来由

  化学的英文词为Chemistry,法文Chimie,德文Chemie,它们都是从一个古字、即拉丁字chemia,希腊字Xηwa(Chamia),希伯莱字Chaman或Haman,阿拉伯字Chema或Kema,埃及字Chemi演化而来的.它的最早来源难以查考.从现存资料看,最早是在埃及第四世纪的记载里出现的.所以有人认为可以假定是从埃及古字Chemi来的,不过这个名字的意义很晦涩,有埃及、埃及的艺术、宗教的迷惑、隐藏、秘密或黑暗等意义。其所以有这些意义,大概因为埃及在西方是化学记载诞生的地方,也是古代化学极为发达的地方,尤其是在实用化学方面。例如,埃及在十一朝代进已有一种雕刻表示一些工人下在制造玻璃,可见至少在公元前2500年以前,埃及已知道玻璃的制造方法了。再从埃及出土的木乃伊看,可知在公元前一、二千年时已精于使用防腐剂和布帛染色等技术。所以古人用埃及或埃及的艺术来命名“化学”。至于其它几种意义,可能因为古人认为化学是一种神奇和秘密的事业以及带有宗教色彩的缘故。

  中国的化学史当然也是毫不逊色的。大约5000-11000年前,我们已会制作陶器,3000多年前的商朝已有高度精美的青铜器,造纸、磁器、火药更是化学史上的伟大发明。在十六、十七世纪时,中国算得上是世界最先进的国家。“化学”二字我国在1856年开始使用。最早出现在英国传教士韦廉臣在1856年出版的《格物探原》一书中。

  二、化学的几个发展阶段

  远古的工艺化学时期。这时人类的制陶、冶金、酿酒、染色等工艺,主要是在实践经验的直接启发下经过多少万年摸索而来的,化学知识还没有形成。这是化学的萌芽时期。

  炼丹术和医药化学时期。从公元前1500年到公元1650年,炼丹术士和炼金术士们,在皇宫、在教堂、在自己的家里、在深山老林的烟熏火燎中,为求得长生不老的仙丹,为求得荣华富贵的黄金,开始了最早的化学实验。记载、总结炼丹术的书籍,在中国、阿拉伯、埃及、希腊都有不少。这一时期积累了许多物质间的化学变化,为化学的进一步发展准备了丰富的素材。这是化学史上令我们惊叹的雄浑的一幕。后来,炼丹术、炼金术几经盛衰,使人们更多地看到了它荒唐的一面。化学方法转而在医药和冶金方面得到了正当发挥。在欧洲文艺复兴时期,出版了一些有关化学的书籍,第一次有了“化学”这个名词。。

  燃素化学时期。从1650年到1775年,随着冶金工业和实验室经验的积累,人们总结感性知识,认为可燃物能够燃烧是因为它含有燃素,燃烧的过程是可燃物中燃素放出的过程,可燃物放出燃素后成为灰烬。

  定量化学时期,既近代化学时期。1775年前后,拉瓦锡用定量化学实验阐述了燃烧的氧化学说,开创了定量化学时期。这一时期建立了不少化学基本定律,提出了原子学说,发现了元素周期律,发展了有机结构理论。所有这一切都为现代化学的发展奠定了坚实的基础。

  科学相互渗透时期,既现代化学时期。二十世纪初,量子论的发展使化学和物理学有了共同的语言,解决了化学上许多悬而未决的问题;另一方面,化学又向生物学和地质学等学科渗透,使蛋白质、酶的结构问题得到逐步的解决。

  这里主要讲述近二百多年来的化学史故事。这是化学得到快速发展的时期,是风云变幻英雄辈出的期。让我们一道去体验当年化学家所经历的艰难险阻,在近代化学史峰回路转的曲折历程中不倦跋涉,领略他们拨开重重迷雾建立新理论、发现新元素、提出新方法时的无限风光。

  三、化学学科在探索中成长

  化学的发展可以说是日新月异,尤其是它的边缘学科或者说是它的分支学科,譬如生物化学、物理化学、晶体化学等等,令人目不暇接。就眼下炒得过热的基因工程、克隆技术以及共轭电场论等,更是令人眼花缭乱。而古往今来,有多少化学家为化学的发展做出了难以估量的贡献。你想了解他们吗?化学名人风采将带您走近他们。

  燃素说的影响 。可燃物如炭和硫磺,燃烧以后只剩下很少的一点灰烬;致密的金属煅烧后得到的锻灰较多,但很疏松。这一切给人的印象是,随着火焰的升腾,什么东西被带走了。当冶金工业得到长足发展后,人们希望总结燃烧现象本质的愿望更加强烈了。

  1723年,德国哈雷大学的医学与药理学教授施塔尔出版了教科书《化学基础》。他继承并发展了他的老师贝歇尔有关燃烧现象的解释,形成了贯穿整个化学的完整、系统的理论。《化学基础》是燃素说的代表作。

  施塔尔认为燃素存在于一切可燃物中,在燃烧过程中释放出来,同时发光发热。燃烧是分解过程:

  可燃物==灰烬+燃素

  金属==锻灰+燃素

  如果将金属锻灰和木炭混合加热,锻灰就吸收木炭中的燃素,重新变为金属,同时木炭失去燃素变为灰烬。木炭、油脂、蜡都是富含燃素的物质,燃烧起来非常猛烈,而且燃烧后只剩下很少的灰烬;石头、草木灰、黄金不能燃烧,是因为它们不含燃素。酒精是燃素与水的结合物,酒精燃烧时失去燃素,便只剩下了水。

  空气是带走燃素的必需媒介物。燃素和空气结合,充塞于天地之间。植物从空气中吸收燃素,动物又从植物中获得燃素。所以动植物易燃。

  富含燃素的硫磺和白磷燃烧时,燃素逸去,变成了硫酸和磷酸。硫酸与富含燃素的松节油共煮,磷酸(当时指P2O5)与木炭密闭加热,便会重新夺得燃素生成硫磺和白磷。而金属和酸反应时,金属失去燃素生成氢气,氢气极富燃素。铁、锌等金属溶于胆矾(CuSO4·5H2O)溶液置换出铜,是燃素转移到铜中的结果。

  燃素说尽管错误,但它把大量的化学事实统一在一个概念之下,解释了冶金过程中的化学反应。燃素说流行的一百多年间,化学家为了解释各种现象,做了大量的实验,积累了丰富的感性材料。特别是燃素说认为化学反应是一种物质转移到另一种物质的过程,化学反应中物质守恒,这些观点奠定了近、现代化学思维的基础。我们现在学习的置换反应,是物质间相互交换成分的过程;氧化还原反应是电子得失的过程;而有机化学中的取代反应是有机物某一结构位置的原子或原子团被其它原子或原子团替换的过程。这些思想方法与燃素说多么相似。

  舍勒和普里斯特里发现氧气的制法 :令后人尊敬的瑞典化学家舍勒的职业是药剂师--chemist,他长期在小镇彻平的药房工作,生活贫困。白天,他在药房为病人配制各种药剂。一有时间,他就钻进他的实验室忙碌起来。有一次,后院传来一声爆鸣,店主和顾客还在惊诧之中,舍勒满脸是灰地跑来,兴奋地拉着店主去看他新合成的化合物,忘记了一切。对这样的店员,店主是又爱又气,但从来不想辞退他,因为舍勒是这个城市最好的药剂师。

  到了晚上,舍勒可以自由支配时间,他更加专心致志地投入到他的实验研究中。对于当时能见到的化学书籍里的实验,他都重做一遍。他所做的大量艰苦的实验,使他合成了许多新化合物,例如氧气、氯气、焦酒石酸、锰酸盐、高锰酸盐、尿酸、硫化氢、升汞(氯化汞)、钼酸、乳酸、乙醚等等,他研究了不少物质的性质和成分,发现了白钨矿等。至今还在使用的绿色颜料舍勒绿(Scheele’s green),就是舍勒发明的亚砷酸氢铜(CuHAsO3)。如此之多的研究成果在十八世纪是绝无仅有的,但舍勒只发表了其中的一小部分。直到1942年舍勒诞生二百周年的时候,他的全部实验记录、日记和书信才经过整理正式出版,共有八卷之多。其中舍勒与当时不少化学家的通信引人注目。通信中有十分宝贵的想法和实验过程,起到了互相交流和启发的作用。法国化学家拉瓦锡对舍勒十分推崇,使得舍勒在法国的声誉比在瑞典国内还高。

  在舍勒与大学教师甘恩的通信中,人们发现,由于舍勒发现了骨灰里有磷,启发甘恩后来证明了骨头里面含有磷。在这之前,人们只知道尿里有磷。

  1775年2月4日,33岁的舍勒当选为瑞典科学院院士。这时店主人已经去世,舍勒继承了药店,在他简陋的实验室里继续科学实验。由于经常彻夜工作,加上寒冷和有害气体的侵蚀,舍勒得了哮喘病。他依然不顾危险经常品尝各种物质的味道--他要掌握物质各方面的性质。他品尝氢氰酸的时候,还不知道氢氰酸有剧毒。1786年5月21日,为化学的进步辛劳了一生的舍勒不幸去世,终年只有44岁。舍勒发现氧气的两种制法是在1773年。第一种方法是分别将KNO3、Mg(NO3)2、Ag2CO3、HgCO3、HgO加热分解放出氧气:

  2KNO3==2KNO2+O2↑

  2Mg(NO3)2 == 2MgO+4NO2↑+O2↑↑

  2Ag2CO3==4Ag+2CO2↑+O2↑

  2HgCO3==2Hg+2CO2↑+O2↑

  2HgO==2Hg+O2↑

  第二种方法是将软锰矿(MnO2)与浓硫酸共热产生氧气:

  2MnO2+2H2SO4(浓)== 2MnSO4+2H2O+O2↑

  舍勒研究了氧气的性质,他发现可燃物在这种气体中燃烧更为剧烈,燃烧后这种气体便消失了,因而他把氧气叫做“火气”。舍勒是燃素说的信奉者,他认为燃烧是空气中的“火气”与可燃物中的燃素结合的过程,火焰是“火气”与燃素相结合形成的化合物。他将他的发现和观点写成《论空气和火的化学》。这篇论文拖延了4年直到1777年才发表。而英国化学家普里斯特里在1774年发现氧气后,很快就发表了论文。

  普里斯特里始终坚信燃素说,甚至在拉瓦锡用他们发现的氧气做实验,推翻了燃素说之后依然故我。他将氧气叫做“脱燃素气”。他写到:我把老鼠放在‘脱燃素气’里,发现它们过得非常舒服后,我自己受了好奇心的驱使,又亲自加以实验,我想读者是不会觉得惊异的。我自己实验时,是用玻璃吸管从放满这种气体的大瓶里吸取的。当时我的肺部所得的感觉,和平时吸入普通空气一样;但自从吸过这种气体以后,经过好长时间,身心一直觉得十分轻快舒畅。有谁能说这种气体将来不会变成通用品呢?不过现在只有两只老鼠和我,才有享受呼吸这种气体的权利罢了。”普里斯特里一生的大部分时间是在英国的利兹作牧师,业余爱好化学。1773年他结识了著名的美国科学家兼政治家富兰克林,他们后来成了经常书信往来的好朋友。普里斯特里受到好朋友多方的启发和鼓励。他在化学、电学、自然哲学、神学四个方面都有很多著述。

  1774年普里斯特里到欧洲大陆参观旅行。在巴黎,他与拉瓦锡交换了好多化学方面的看法。正直的普里斯特里同情法国大革命,曾在英国公开做了几次演讲。英国一批反对法国大革命的人烧毁了他的住宅和实验室。普里斯特里于1794年他六十一岁的时候不得已移居美国,在宾夕法尼亚大学任化学教授。美国化学会认为他是美国最早研究化学的学者之一。他住过的房子现在已建成纪念馆,以他的名字命名的普里斯特里奖章已成为美国化学界的最高荣誉。

  拉瓦锡和他的天平: 燃素说的推翻者,法国化学家拉瓦锡原来是学法律的。1763年,他20岁的时候就取得了法律学士学位,并且获得律师开业证书。他的父亲是一位律师,家里很富有。所以拉瓦锡不急于当律师,而是对植物学发生了兴趣。经常上山采集标本使他对气象学也产生了兴趣。后来,拉瓦锡在他的老师,地质学家葛太德的建议下,师从巴黎有名的鲁伊勒教授学习化学。拉瓦锡的第一篇化学论文是关于石膏成分的研究。他用硫酸和石灰合成了石膏。当他加热石膏时放出了水蒸气。拉瓦锡用天平仔细测定了不同温度下石膏失去水蒸气的质量。从此,他的老师鲁伊勒就开始使用“结晶水”这个名词了。这次成功使拉瓦锡开始经常使用天平,并总结出了质量守恒定律。质量守恒定律成为他的信念,成为他进行定量实验、思维和计算的基础。例如他曾经应用这一思想,把糖转变为酒精的发酵过程表示为下面的等式:

  葡萄糖 == 碳酸(CO2)+ 酒精

  这正是现代化学方程式的雏形。用等号而不用箭头表示变化过程,表明了他守恒的思想。拉瓦锡为了进一步阐明这种表达方式的深刻含义,又具体地写到:“我可以设想,把参加发酵的物质和发酵后的生成物列成一个代数式。再逐个假定方程式中的某一项是未知数,然后分别通过实验,逐个算出它们的值。这样以来,就可以用计算来检验我们的实验,再用实验来验证我们的计算。我经常卓有成效地用这种方法修正实验的初步结果,使我能通过正确的途径重新进行实验,直到获得成功。”早在拉瓦锡出生之时,多才多艺的俄罗斯科学家罗蒙诺索夫就提出了质量守恒定律,他当时称之为“物质不灭定律”,其中含有更多的哲学意蕴。但由于“物质不灭定律”缺乏丰富的实验根据,特别是当时俄罗斯的科学还很落后,西欧对沙俄的科学成果不重视,“物质不灭定律”没有得到广泛的传播。

  1772年秋天,拉瓦锡照习惯称量了一定质量的白磷使之燃烧,冷却后又称量了燃烧产物P2O5的质量,发现质量增加了!他又燃烧硫磺,同样发现燃烧产物的质量大于硫磺的质量。他想这一定是什么气体被白磷和硫磺吸收了。他于是又做了更细致的实验:将白磷放在水银面上,扣上一个钟罩,钟罩里留有一部分空气。加热水银到40℃时白磷就迅速燃烧,之后水银面上升。拉瓦锡描述道:“这表明部分空气被消耗,剩下的空气不能使白磷燃烧,并可使燃烧着的蜡烛熄灭;1盎司的白磷大约可得到27盎司的白色粉末(P2O5,应该是23盎司)。增加的重量和所消耗的1/5容积的空气重量接近相同。”燃素说认为燃烧是分解过程,燃烧产物应该比可燃物质量轻。而拉瓦锡实验的结果却是截然相反。他把实验结果写成论文交给法国科学院。从此他做了很多实验来证明燃素说的错误。在1773年2月,他在实验记录本上写到:“我所做的实验使物理和化学发生了根本的变化。”他将“新化学”命名为“反燃素化学”。

  1774年,拉瓦锡做了焙烧锡和铅的实验。他将称量后的金属分别放入大小不等的曲颈瓶中,密封后再称量金属和瓶的质量,然后充分加热。冷却后再次称量金属和瓶的质量,发现没有变化。打开瓶口,有空气进入,这一次质量增加了,显然增加量是进入的空气的质量(设为A)。他再次打开瓶口取出金属锻灰(在容积小的瓶中还有剩余的金属)称量,发现增加的质量正和进入瓶中的空气的质量相同(即也为A)。这表明锻灰是金属与空气的化合物。

  拉瓦锡进一步想,如果设法从金属锻灰中直接分离出空气来,就更能说明问题。他曾经试图分解铁锻灰(即铁锈),但实验没有成功。

  拉瓦锡制得氧气之后: 到了这年的10月,普里斯特里访问巴黎。在欢迎宴会上他谈到“从红色沉淀(HgO)和铅丹(Pb3O4)可得到‘脱燃素气’”。对于正在无奈中的拉瓦锡来说,这条信息是很直接的启发。11月,拉瓦锡加热红色的汞灰制得了氧气。在舍勒的启发下,拉瓦锡甚至制造了火车头大小的加热装置,其中心是聚光镜。平台下面是六个大轮子,以便跟着太阳随时转动。1775年,拉瓦锡的实验中心已从分解金属锻灰转移到了对氧气的研究。他发现燃烧时增加的质量恰好是氧气减少的质量。以前认为可燃物燃烧时吸收了一部分空气,其实是吸收了氧气,与氧气化合,即氧化。这就是推翻了燃素说的燃烧的氧化理论。与此同时,拉瓦锡还用动物实验,研究了呼吸作用,认为“是氧气在动物体内与碳化合,生成二氧化碳的同时放出热来。这和在实验室中燃烧有机物的情况完全一样。”这就解答了体温的来源问题。空气中既然含有1/4的氧气(数据来自原文),就应该含有其余的气体,拉瓦锡将它称为“碳气”。研究了空气的组成后,拉瓦锡总结道:“大气中不是全部空气都是可以呼吸的;金属焙烧时,与金属化合的那部分空气是合乎卫生的,最适宜呼吸的;剩下的部分是一种‘碳气’,不能维持动物的呼吸,也不能助燃。”他把燃烧与呼吸统一了起来,也结束了空气是一种纯净物质的错误见解。1777年,拉瓦锡明确地讥讽和批判了燃素说:“化学家从燃素说只能得出模糊的要素,它十分不确定,因此可以用来任意地解释各种事物。有时这一要素是有重量的,有时又没有重量;有时它是自由之火,有时又说它与土素相化合成火;有时说它能通过容器壁的微孔,有时又说它不能透过;它能同时用来解释碱性和非碱性、透明性和非透明性、有颜色和无色。它真是只变色虫,每时每刻都在改变它的面貌。” 这年的9月5日,拉瓦锡向法国科学院提交了划时代的《燃烧概论》,系统地阐述了燃烧的氧化学说,将燃素说倒立的化学正立过来。这本书后来被翻译成多国语言,逐渐扫清了燃素说的影响。化学自此切断了与古代炼丹术的联系,揭掉了神秘和臆测的面纱,代之以科学的实验和定量的研究。化学进入了定量化学(即近代化学)时期。所以我们说拉瓦锡是近代化学的奠基者。舍勒和普里斯特里先于拉瓦锡发现氧气,但由于他们思维不够广阔,更多地只是关心具体物质的性质,没有能冲破燃素说的束缚。与真理擦肩而过是很遗憾的。

  拉瓦锡对化学的另一大贡献是否定了古希腊哲学家的四元素说和三要素说,辨证地阐述了建立在科学实验基础上的化学元素的概念:“如果元素表示构成物质的最简单组分,那么目前我们可能难以判断什么是元素;如果相反,我们把元素与目前化学分析最后达到的极限概念联系起来,那么,我们现在用任何方法都不能再加以分解的一切物质,对我们来说,就算是元素了。”在1789年出版的历时四年写就的《化学概要》里,拉瓦锡列出了第一张元素一览表,元素被分为四大类:

  简单物质,普遍存在于动物、植物、矿物界,可以看作是物质元素:光、热、氧、氮、氢。简单的非金属物质,其氧化物为酸:硫、磷、碳、盐酸素、氟酸素、硼酸素。简单的金属物质,被氧化后生成可以中和酸的盐基:锑、银、铋、钴、铜、锡、铁、锰、汞、钼、镍、金、铂、铅、钨、锌。简单物质,能成盐的土质:石灰、镁土、钡土、铝土、硅土。拉瓦锡对燃素说和其它陈腐观点的讥讽和批判是无情和激烈的。这使他在创建科学勋绩的同时得罪了一大批同时代和老一辈的科学家。在《影响世界历史的一百位人物》中,在许多有关历史、科学史、化学史的书籍中,作者都对拉瓦锡总是突出自己的人格特点进行低调的描述和评价,指责他在《化学概要》里没有提起舍勒和普里斯特里对他的启示和帮助。但我们得看到,拉瓦锡确实具有非凡的科学洞察力和勇往直前的无畏精神。虽然不是他最先发现氧气的制法,但他通过制取氧气分析了空气的组成,建立了燃烧的氧化学说。氧气因此不同于其它气体,被赋予非凡的科学意义。拉瓦锡十分勤奋,每天六点起床,从六点到八点进行实验研究,八点到下午七点从事火药局长或法国科学院院士的工作,七点到晚上十点,又专心从事他的科学研究。星期天不休息,专门进行一整天的实验工作。拉瓦锡28岁结婚时,他的妻子只有14岁。他们一生没有孩子,但生活非常愉快。她帮助拉瓦锡实验,经常陪伴在他身边。在拉瓦锡的著作里,有很多插图都是他的妻子画的。1789年法国大革命爆发,三年后拉瓦锡被解除了火药局长的职务。1793年11月,国民议会下令逮捕旧王朝的包税官。拉瓦锡由于曾经担任过包税官而自首入狱。极左派马拉曾与拉瓦锡有过激烈的科学争论,心存嫉恨,便诬陷拉瓦锡与法国的敌人有来往,犯有叛国罪,于1794年5月8日把他送上了断头台。对此,当时科学界的很多人感到非常惋惜。著名的法籍意大利数学家拉格朗日痛心地说:“他们可以一瞬间把他的头割下,而他那样的头脑一百年也许长不出一个来。”这时,拉瓦锡正当壮年,是51岁。

  四、化学学科的发展前沿

  中国运动医学杂志000124 基因工程也叫遗传工程(Genetic Engineering),是20世纪70年代在分子生物学发展的基础上形成的新学科。基因工程就是在分子水平上,用人工方法提取(或合成)不同生物的遗传物质,在体外切割、拼接和重新组成,然后通过载体把重组的DNA分子引入受体细胞,使外源DNA在受体细胞中进行复制与表达。按人们的需要产生不同的产物或定向地创造生物的新性状,并使之稳定地遗传给下代[1]。基因工程技术主要包括分离基因、纯化基因和扩增基因的技术,其核心是分子克隆技术。它能帮助人们从各种复杂的生物体中分离出单一的基因,并把它纯化,再把它大量扩增,用于研究。

  20多年来,基因工程技术得到了迅速地发展,特别是限制性内切酶、DNA序列分析及DNA重组技术等三大技术的发现和应用,不仅把分子生物学提高到了基因水平,而且也把生物学与医学中的其他学科引上基因研究的道路,并取得了许多揭示生命秘密和生命过程的重大成就

欢迎分享,转载请注明来源:品搜搜测评网

原文地址:https://pinsoso.cn/meirong/4003900.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2024-04-06
下一篇2024-04-06

随机推荐

发表评论

登录后才能评论
保存