heat equation的历史

heat equation的历史,第1张

数学大事年鉴(数学史)

约公元前4000年,中国西安半坡的陶器上出现数字刻符。

公元前3000~前1700年,巴比伦的泥版上出现数学记载。

公元前2700年,中国黄帝时代传说隶首做算数之说,大挠发明了甲子。

公元前2500年前,据中国战国时尸佼著《尸子》记载:“古者,陲(注:传说为黄帝或尧时人)为规、矩、准、绳,使天下仿焉”。这相当于在已有“圆,方、平、直”等形的概念。

公元前2100年,中国夏朝出现象征吉祥的河图洛书纵横图,即为“九宫算”,这被认为是现代“组合数学”最古老的发现。

美索不达米亚人已有了乘法表,其中使用着六十进位制的算法。

公元前1900~前1600,古埃及的纸草书上出现数学记载,已有基于十进制的记数法,将乘法简化为加法的算术、分数计算法。并已有三角形及圆的面积、正方角锥体、锥台体积的度量法等。

公元前1950年,巴比伦人能解二个变数的一次和二次方程,已经知道“勾股定理”。

公元前1400年,中国殷代甲骨文卜辞记录已有十进制记数,最大数字是三万。

公元前1050年,在中国的西周时期,“九数”成为“国子”的必修课程之一。

公元前六世纪,古希腊的泰勒斯发展了初等几何学,开始证明几何命题。

古希腊毕达哥拉斯学派认为数是万物的本原,宇宙的组织是数及其关系的和谐体系。证明了勾股定理,发现了无理数,引起了所谓第一次数学危机。

印度人求出sqrt(2)=14142156。

公元前462年左右,意大利的埃利亚学派的芝诺等人指出了在运动和变化中的各种矛盾,提出了飞矢不动等有关时间、空间和数的芝诺悖理(古希腊 巴门尼德、芝诺等)。

公元前五世纪,古希腊丘斯的希波克拉底研究了以直线及圆弧形所围成的平面图形的面积,指出相似弓形的面积与其弦的平方成正比。开始把几何命题按科学方式排列。

公元前四世纪,古希腊的欧多克斯把比例论推广到不可通约量上,发现了“穷竭法”。开始在数学上作出以公理为依据的演绎整理。

古希腊德谟克利特学派用“原子法”计算面积和体积,一个线段、一个面积或一个体积被设想为由很多不可分的“原子”所组成。提出圆锥曲线,得到了三次方程式的最古老的解法。

古希腊的亚里士多德等建立了亚里士多德学派,开始对数学、动物学等进行了综合的研究。

公元前400年,中国战国时期的《墨经》中记载了一些几何学的义理。

公元前380年,古希腊柏拉图学派指出数学对训练思维的作用,研究正多面体、不可公度量。

公元前350年,古希腊梅纳克莫斯发现三种圆锥曲线,并用以解立方体问题。古希腊色诺科拉底开始编写几何学的历史。古希腊的塞马力达斯开始世界简单方程组。

公元前335年,古希腊的欧德姆斯开始编写数学史。

公元前三世纪,古希腊欧几里得的《几何学原本》十三卷发表,把前人和他本人的发现系统化,确立几何学的逻辑体系,为世界上最早的公理化数学著作。

公元前三世纪,古希腊的阿基米德研究了曲线图形和曲面体所围成的面积、体积;研究了抛物面、双曲面、椭圆面,讨论了圆柱、圆锥和半球之关系,还研究了螺线。

战国时期的中国,筹算成为当时的主要计算方法;出现《庄子》、《考工记》记载中的极限概念、分数运算法、特殊角度概念及对策论的例证。

公元前230年,古希腊的埃拉托色尼提出素数概念,并发明了寻找素数的筛法。

公元前三至前二世纪,古希腊的阿波罗尼发表了八本《圆锥曲线学》,这是最早关于椭圆、抛物线和双曲线的论著。

公元前170年,湖北出现竹简算书《算数书》。

公元前150年,古希腊的希帕恰斯开始研究球面三角,奠定三角术的基础。

约公元前一世纪,中国的《周髀算经》发表。其中阐述了“盖天说”和四分历法,使用分数算法和开方法等。

公元元年 ~ 公元1000年

公元50~100年,继西汉张苍、耿寿昌删补校订之后,东汉时纂编成《九章算术》,这是中国最早的数学专著,收集了246个问题的解法。

公元75年,古希腊的海伦研究面积、体积计算方法、开方法,提出海伦公式。

一世纪左右,古希腊的梅内劳发表《球学》,其中包括球的几何学,并附有球面三角形的讨论。

古希腊的希隆写了关于几何学的、计算的和力学科目的百科全书。在其中的《度量论》中,以几何形式推算出三角形面积的“希隆公式”。

100年左右,古希腊的尼寇马克写了《算术引论》一书,此后算术开始成为独立学科。

150年左右,古希腊的托勒密著《数学汇编》,求出圆周率为314166,并提出透视投影法与球面上经纬度的讨论,这是古代坐标的示例。

三世纪时,古希腊的丢番都写成代数著作《算术》共十三卷,其中六卷保留至今,解出了许多定和不定方程式。

三世纪至四世纪,魏晋时期,中国的赵爽在《勾股圆方图注》中列出了关于直角三角形三边之间关系的命题共21条。

中国的刘徽发明“割圆术”,并算得圆周率为31416;著《海岛算经》,论述了有关测量和计算海岛的距离、高度的方法。

四世纪时,古希腊帕普斯的几何学著作《数学集成》问世,这是古希腊数学研究的手册。

约463年,中国的祖冲之算出了圆周率的近似值到第七位小数,这比西方早了一千多年。

466年~485年,中国三国时期的《张邱建算经》成书。

五世纪,印度的阿耶波多著书研究数学和天文学,其中讨论了一次不定方程式的解法、度量术和三角学等,并作正弦表。

550年,中国南北朝的甄鸾撰《五草算经》、《五经算经》、《算术记遗》。

六世纪,中国六朝时,中国的祖(日恒)提出祖氏定律:若二立体等高处的截面积相等,则二者体积相等。西方直到十七世纪才发现同一定律,称为卡瓦列利原理。

隋代《皇极历法》内,已用“内插法”来计算日、月的正确位置(中国 刘焯)。

620年,中国唐朝的王孝通著《辑古算经》,解决了大规模土方工程中提出的三次方程求正根的问题。

628年,印度的婆罗摩笈多研究了定方程和不定方程、四边形、圆周率、梯形和序列。给出了方程ax+by=c(a,b,c是整数)的第一个一般解。

656年,中国唐代李淳风等奉旨著《“十部算经”注释》,作为国子监算学馆的课本。“十部算经”指:《周髀》《九章算术》《海岛算经》《张邱建算经》《五经算术》等。

727年,中国唐朝开元年间,僧一行编成《大衍历》,建立了不等距的内插公式。

820年,阿拉伯的阿尔·花刺子模发表了《印度计数算法》,使西欧熟悉了十进位制。

850年,印度的摩珂毗罗提出岭的运算法则。

约920年,阿拉伯的阿尔·巴塔尼提出正切和余切概念,造出从0º到90º的余切表,用sine标记正弦,证明了正弦定理。

公元1000年 ~ 1700年

1000~1019年,中国北宋的刘益著《议古根源》,提出了“正负开方术”。

1050年,中国宋朝的贾宪在《黄帝九章算术细草》中,创造了开任意高次幂的“增乘开方法”,并列出了二项式定理系数表,这是现代“组合数学”的早期发现。后人所称的“杨辉三角”即指此法。

1086~1093年,中国宋朝的沈括在《梦溪笔谈》中提出“隙积术”和“会圆术”,开始高阶等差级数的研究。

1079年,阿拉伯的卡牙姆完成了一部系统研究三次方程的书《代数学》,用圆锥曲线解三次方程。

十一世纪,阿拉伯的阿尔·卡尔希第一次解出了二次方程的根。

十一世纪,埃及的阿尔·海赛姆解决了“海赛姆”问题,即要在圆的平面上两点作两条线相交于圆周上一点,并与在该点的法线成等角。

十二世纪,印度的拜斯迦罗著《立刺瓦提》一书,这是东方算术和计算方面的重要著作。

1202年,意大利的裴波那契发表《计算之书》,把印度—阿拉伯记数法介绍到西方。

1220年,意大利的裴波那契发表《几何学实习》一书,介绍了许多阿拉伯资料中没有的示例。

1247年,中国宋朝的秦九韶著《数书九章》共十八卷,推广了“增乘开方法”。书中提出的联立一次同余式的解法,比西方早五百七十余年。

1248年,中国宋朝的李治著《测圆海镜》十二卷,这是第一部系统论述“天元术”的著作。

1261年,中国宋朝的杨辉著《详解九章算法》,用“垛积术”求出几类高阶等差级数之和。

1274年,中国宋朝的杨辉发表《乘除通变本末》,叙述“九归”捷法,介绍了筹算乘除的各种运算法。

1280年,元朝《授时历》用招差法编制日月的方位表(中国 王恂、郭守敬等)。

十四世纪中叶前,中国开始应用珠算盘,并逐渐代替了筹算。

1303年,中国元朝的朱世杰著《四元玉鉴》三卷,把“天元术”推广为“四元术”。

1464年,德国的约·米勒在《论各种三角形》(1533年出版)中,系统地总结了三角学。

1489年,德国的魏德曼用“+”、“-”表示正负。

1494年,意大利的帕奇欧里发表《算术集成》,反映了当时所知道的关于算术、代数和三角学的知识。

1514年,荷兰的贺伊克用“+”、“-”作为加减运算的符号。

1535年,意大利的塔塔利亚发现三次方程的解法。

1540年,英国的雷科德用“=”表示相等。

1545年,意大利的卡尔达诺、费尔诺在《大法》中发表了求三次方程一般代数解的公式。

1550~1572年,意大利的邦别利出版《代数学》,其中引入了虚数,完全解决了三次方程的代数解问题。

1585年,荷兰的斯蒂文提出分数指数概念与符号;系统导入了十进制分数与十进制小数的意义、计算法及表示法。

1591年左右,德国的韦达在《美妙的代数》中首次使用字母表示数字系数的一般符号,推进了代数问题的一般讨论。

1596年,德国的雷蒂卡斯从直角三角形的边角关系上定义了6个三角函数。

1596~1613年,德国的奥脱、皮提斯库斯完成了六个三角函数的每间隔10秒的十五位小数表。

1614年,英国的耐普尔制定了对数,做出第一张对数表,只做出圆形计算尺、计算棒。

1615年,德国的开卜勒发表《酒桶的立体几何学》,研究了圆锥曲线旋转体的体积。

1635年,意大利的卡瓦列利发表《不可分连续量的几何学》,书中避免无穷小量,用不可分量制定了一种简单形式的微积分。

1637年,法国的笛卡尔出版《几何学》,提出了解析几何,把变量引进数学,成为“数学中的转折点”。

1638年,法国的费尔玛开始用微分法求极大、极小问题。

意大利的伽里略发表《关于两种新科学的数学证明的论说》,研究距离、速度和加速度之间的关系,提出了无穷集合的概念,这本书被认为是伽里略重要的科学成就。

1639年,法国的迪沙格发表了《企图研究圆锥和平面的相交所发生的事的草案》,这是近世射影几何学的早期工作。

1641年,法国的帕斯卡发现关于圆锥内接六边形的“帕斯卡定理”。

1649年,法国的帕斯卡制成帕斯卡计算器,它是近代计算机的先驱。

1654年,法国的帕斯卡、费尔玛研究了概率论的基础。

1655年,英国的瓦里斯出版《无穷算术》一书,第一次把代数学扩展到分析学。

1657年,荷兰的惠更斯发表了关于概率论的早期论文《论机会游戏的演算》。

1658年,法国的帕斯卡出版《摆线通论》,对“摆线”进行了充分的研究。

1665~1676年,牛顿(1665~1666年)先于莱布尼茨 (1673~1676年)制定了微积分,莱布尼茨(1684~1686年)早于牛顿(1704~1736年)发表了微积分。

1669年,英国的牛顿、雷夫逊发明解非线性方程的牛顿—雷夫逊方法。

1670年,法国的费尔玛提出“费尔玛大定理”。

1673年,荷兰的惠更斯发表了《摆动的时钟》,其中研究了平面曲线的渐屈线和渐伸线。

1684年,德国的莱布尼茨发表了关于微分法的著作《关于极大极小以及切线的新方法》。

1686年,德国的莱布尼茨发表了关于积分法的著作。

1691年,瑞士的约·贝努利出版《微分学初步》,这促进了微积分在物理学和力学上的应用及研究。

1696年,法国的洛比达发明求不定式极限的“洛比达法则”。

1697年,瑞士的约·贝努利解决了一些变分问题,发现最速下降线和测地线。

公元1701 ~ 1800年

1704年,英国的牛顿发表《三次曲线枚举》《利用无穷级数求曲线的面积和长度》《流数法》。

1711年,英国的牛顿发表《使用级数、流数等等的分析》。

1713年,瑞士的雅·贝努利出版了概率论的第一本著作《猜度术》。

1715年,英国的布·泰勒发表《增量方法及其他》。

1731年,法国的克雷洛出版《关于双重曲率的曲线的研究》,这是研究空间解析几何和微分几何的最初尝试。

1733年,英国的德·勒哈佛尔发现正态概率曲线。

1734年,英国的贝克莱发表《分析学者》,副标题是《致不信神的数学家》,攻击牛顿的《流数法》,引起所谓第二次数学危机。

1736年,英国的牛顿发表《流数法和无穷级数》。

1736年,瑞士的欧拉出版《力学、或解析地叙述运动的理论》,这是用分析方法发展牛顿的质点动力学的第一本著作。

1742年,英国的麦克劳林引进了函数的幂级数展开法。

1744年,瑞士的欧拉导出了变分法的欧拉方程,发现某些极小曲面。

1747年,法国的达朗贝尔等由弦振动的研究而开创偏微分方程论。

1748年,瑞士的欧拉出版了系统研究分析数学的《无穷分析概要》,这是欧拉的主要著作之一。

1755~1774年,瑞士的欧拉出版了《微分学》和《积分学》三卷。书中包括微分方程论和一些特殊的函数。

1760~1761年,法国的拉格朗日系统地研究了变分法及其在力学上的应用。

1767年,法国的拉格朗日发现分离代数方程实根的方法和求其近似值的方法。

1770~1771年,法国的拉格朗日把置换群用于代数方程式求解,这是群论的开始。

1772年,法国的拉格朗日给出三体问题最初的特解。

1788年,法国的拉格朗日出版了《解析力学》,把新发展的解析法应用于质点、刚体力学。

1794年,法国的勒让德出版流传很广的初等几何学课本《几何学概要》。

德国的高斯从研究测量误差,提出最小二乘法,于1809年发表。

1797年,法国的拉格朗日发表《解析函数论》,不用极限的概念而用代数方法建立微分学。

1799年,法国的蒙日创立画法几何学,在工程技术中应用颇多。

德国的高斯证明了代数学的一个基本定理:实系数代数方程必有根。

公元1800 ~ 1899年

1801年,德国的高斯出版《算术研究》,开创近代数论。

1809年,法国的蒙日出版了微分几何学的第一本书《分析在几何学上的应用》。

1812年,法国的拉普拉斯出版《分析概率论》一书,这是近代概率论的先驱。

1816年,德国的高斯发现非欧几何,但未发表。

1821年,法国的柯西出版《分析教程》,用极限严格地定义了函数的连续、导数和积分,研究了无穷级数的收敛性等。

1822年,法国的彭色列系统研究了几何图形在投影变换下的不变性质,建立了射影几何学。

法国的傅立叶研究了热传导问题,发明用傅立叶级数求解偏微分方程的边值问题,在理论和应用上都有重大影响。

1824年,挪威的阿贝尔证明用根式求解五次方程的不可能性。

1826年,挪威的阿贝尔发现连续函数的级数之和并非连续函数。

俄国的罗巴切夫斯基和匈牙利的波约改变欧几里得几何学中的平行公理,提出非欧几何学的理论。

1827~1829年,德国的雅可比、挪威的阿贝尔和法国的勒阿德尔共同确立了椭圆积分与椭圆函数的理论,在物理、力学中都有应用。

1827年,德国的高斯建立了微分几何中关于曲面的系统理论。

德国的莫比乌斯出版《重心演算》,第一次引进齐次坐标。

1830年,捷克的波尔查诺给出一个连续而没有导数的所谓“病态”函数的例子。

法国的伽罗华在代数方程可否用根式求解的研究中建立群论。

1831年,法国的柯西发现解析函数的幂级数收敛定理。

德国的高斯建立了复数的代数学,用平面上的点来表示复数,破除了复数的神秘性。

1835年,法国的斯特姆提出确定代数方程式实根位置的方法。

1836年,法国的柯西证明解析系数微分方程解的存在性。

瑞士的史坦纳证明具有已知周长的一切封闭曲线中包围最大面积的图形一定是圆。

1837年,德国的狄利克莱第一次给出了三角级数的一个收敛性定理。

1840年,德国的狄利克莱把解析函数用于数论,并且引入了“狄利克莱”级数。

1841年,德国的雅可比建立了行列式的系统理论。

1844年,德国的格拉斯曼研究多个变元的代数系统,首次提出多维空间的概念。

1846年,德国的雅克比提出求实对称矩阵特征值的雅可比方法。

1847年,英国的布尔创立了布尔代数,在后来的电子计算机设计有重要应用。

1848年,德国的库莫尔研究各种数域中的因子分解问题,引进了理想数。

英国的斯托克斯发现函数极限的一个重要概念——一致收敛,但未能严格表述。

1850年,德国的黎曼给出了“黎曼积分”的定义,提出函数可积的概念。

1851年,德国的黎曼提出共形映照的原理,在力学、工程技术中应用颇多,但未给出证明。

1854年,德国的黎曼建立了更广泛的一类非欧几何学——黎曼几何学,并提出多维拓扑流形的概念。

俄国的车比雪夫开始建立函数逼近论,利用初等函数来逼近复杂的函数。二十世纪以来,由于电子计算机的应用,使函数逼近论有很大的发展。

1856年,德国的维尔斯特拉斯确立极限理论中的一致收敛性的概念。

1857年,德国的黎曼详细地讨论了黎曼面,把多值函数看成黎曼面上的单值函数。

1868年,德国的普吕克在解析几何中引进一些新的概念,提出可以用直线、平面等作为基本的空间元素。

1870年,挪威的李发现李群,并用以讨论微分方程的求积问题。

德国的克朗尼格给出了群论的公理结构,这是后来研究抽象群的出发点。

1872年,数学分析的“算术化”,即以有理数的集合来定义实数(德国 戴特金、康托尔、维尔斯特拉斯)。

德国的克莱茵发表了“埃尔朗根纲领”,把每一种几何学都看成是一种特殊变换群的不变量论。

1873年,法国的埃尔米特证明了e是超越数。

1876年,德国的维尔斯特拉斯出版《解析函数论》,把复变函数论建立在了幂级数的基础上。

1881~1884年,美国的吉布斯制定了向量分析。

1881~1886年,法国的彭加勒连续发表《微分方程所确定的积分曲线》的论文,开创微分方程定性理论。

1882年,德国的林德曼证明了圆周率是超越数。

英国的亥维赛制定运算微积,这是求解某些微分方程的简便方法,工程上常有应用。

1883年,德国的康托尔建立了集合论,发展了超穷基数的理论。

1884年,德国的弗莱格出版《数论的基础》,这是数理逻辑中量词理论的发端。

1887~1896年,德国的达布尔出版了四卷《曲面的一般理论的讲义》,总结了一个世纪来关于曲线和曲面的微分几何学的成就。

1892年,俄国的李雅普诺夫建立运动稳定性理论,这是微分方程定性理论研究的重要方面。

1892~1899年,法国的彭加勒创立自守函数论。

1895年,法国的彭加勒提出同调的概念,开创代数拓扑学。

1899年,德国希尔伯特的《几何学基础》出版,提出欧几里得几何学的严格公理系统,对数学的公理化思潮有很大影响。

瑞利等人最早提出基于统计概念的计算方法——蒙特卡诺方法的思想。二十世纪二十年代柯朗(德)、冯·诺伊曼(美)等人发展了这个方法,后在电子计算机上获得广泛应用。

公元1900年 ~ 1960年

1900年

德国数学家希尔伯特,提出数学尚未解决的23个问题,引起了20世纪许多数学家的关注。

1901年

德国数学家希尔伯特,严格证明了狄利克莱原理,开创了变分学的直接方法,在工程技术的级拴问题中有很多应用。

德国数学家舒尔、弗洛伯纽斯,首先提出群的表示理论。此后,各种群的表示理论得到大量研究。

意大利数学家里齐、齐维塔,基本上完成张量分析,又名绝对微分学。确立了研究黎曼几何和相对论的分析工具。

法国数学家勒贝格,提出勒贝格测度和勒贝格积分,推广了长度、面积积分的概念。

1903年

英国数学家贝·罗素,发现集合论中的罗素悖论,引发第三次数学危机。

瑞典数学家弗列特荷姆,建立线性积分方程的基本理论,是解决数学物理问题的数学工具,并为建立泛函分析作出了准备。

1906年

意大利数学家赛维里,总结了古典代数几何学的研究。

法国数学家弗勒锡、匈牙利数学家里斯,把由函数组成的无限集合作为研究对象,引入函数空间的概念,并开始形成希尔伯特空间。这是泛函分析的发源。

德国数学家哈尔托格斯,开始系统研究多个自变量的复变函数理论。

俄国数学家马尔可夫,首次提出“马尔可夫链”的数学模型。

1907年

德国数学家寇贝,证明复变函数论的一个基本原理——黎曼共形映照定理。

美籍荷兰数学家布劳威尔,反对在数学中使用排中律,提出直观主义数学。

1908年

德国数学家金弗里斯,建立点集拓扑学。

德国数学家策麦罗,提出集合论的公理化系统。

1909年

德国数学家希尔伯特,解决了数论中著名的华林问题。

1910年

德国数学家施坦尼茨,总结了19世纪末20世纪初的各种代数系统,如群、代数、域等的研究,开创了现代抽象代数。

美籍荷兰数学家路·布劳威尔,发现不动点原理,后来又发现了维数定理、单纯形逼近法、使代数拓扑成为系统理论。

英国数学家背·罗素、卡·施瓦兹西德,出版《数学原理》三卷,企图把数学归纳到形式逻辑中去,是现代逻辑主义的代表著作。

1913年

法国的厄·加当和德国的韦耳完成了半单纯李代数有限维表示理论,奠定了李群表示理论的基础。这在量子力学和基本粒子理论中有重要应用。

德国的韦耳研究黎曼面,初步产生了复流形的概念。

1914年

德国的豪斯道夫提出拓扑空间的公理系统,为一般拓扑学建立了基础。

1915年

瑞士美籍德国人爱因斯坦和德国的卡·施瓦茨西德把黎曼几何用于广义相对论,解出球对称的场方程,从而可以计算水星近日点的移动等问题。

1918年

英国的哈台、立笃武特应用复变函数论方法来研究数论,建立解析数论。

丹麦的爱尔兰为改进自动电话交换台的设计,提出排队论的数学理论。

希尔伯特空间理论的形成(匈牙利 里斯)。

1919年

德国的亨赛尔建立P-adic数论,这在代数数论和代数几何中有重要用。

1922年

德国的希尔伯特提出数学要彻底形式化的主张,创立数学基础中的形式主义体系和证明论。

1923年

法国的厄·加当提出一般联络的微分几何学,将克莱因和黎曼的几何学观点统一起来,是纤维丛概念的发端。

法国的阿达玛提出偏微分方程适定性,解决二阶双曲型方程的柯西问题()。

波兰的巴拿哈提出更广泛的一类函数空间——巴拿哈空间的理论()。

美国的诺·维纳提出无限维空间的一种测度——维纳测度,这对概率论和泛函分析有一定作用。

1925年

丹麦的哈·波尔创立概周期函数。

英国的费希尔以生物、医学试验为背景,开创了“试验设计”(数理统计的一个分支),也确立了统计推断的基本方法。

1926年

德国的纳脱大体上完成对近世代数有重大影响的理想理论。

1927年

美国的毕尔霍夫建立动力系统的系统理论,这是微分方程定性理论的一个重要方面。

1928年

美籍德国人 理·柯朗提出解偏微分方程的差分方法。

美国的哈特莱首次提出通信中的信息量概念。

德国的格罗许、芬兰的阿尔福斯、苏联的拉甫连捷夫提出拟似共形映照理论,这在工程技术上有一定应用。

1930年

美国的毕尔霍夫建立格论,这是代数学的重要分支,对射影几何、点集论及泛函分析都有应用。

美籍匈牙利人冯·诺伊曼提出自伴算子谱分析理论并应用于量子力学。

1931年

瑞士的德拉姆发现多维流形上的微分型和流形的上同调性质的关系,给拓扑学以分析工具。

奥地利的哥德尔证明了公理化数学体系的不完备性。

苏联的柯尔莫哥洛夫和美国的费勒发展了马尔可夫过程理论。

1932年

法国的亨·嘉当解决多

公元前16世纪公元前4世纪~前2世纪 中国已有植物、动物和昆虫方面的物候知识(见《夏小正》)。

希腊学者亚里士多德(Asistotle,公元前384~322)描述了500多种动物,并对其中的一些作过解剖和胚胎发育观察。著有《动物志》、《动物之构造》、《动物之运动》、《动物之行进》,《动物之生殖》等,是最早的动物学文献。他的学生狄奥弗拉斯特(Theophrastus,约公元前371~前287),对数百种植物进行了描述和分类,著有《植物志》和《植物的本源》等书。

出现于战国(公元前476~前222)晚期的《黄帝内经》,对人体内脏器官的部位、大小及功能已有较深的认识;对男女的生长发育过程及生理特点也有较切实的描写。成书于战国末期的《尔雅》,将植物大别为“草”和“木”两大类,并将相似的物种排在一起,以示同类;将动物分为虫、鱼、鸟、兽4大类,亦将其中相似的物种排在一起,以示同类。

公元前2世纪~公元3世纪 草创于西汉(公元前206年~公元8年)而成书于东汉(公元25~220)的《神农本草经》是世界上最早的本草书,共记述植物药252种,动物药67种。

罗马学者普林尼(Plinius the Elder, 23~79)著《博物志》37卷,记述了当时所知的有关自然(包括生物)的知识。罗马医生盖伦(CGalen,约129~200)集古代医学之大成,在比较解剖和实验生理的研究上有重要贡献。

公元4世纪 晋人嵇含著《南方草木状》,记述了80种热带、亚热带植物,并首次记载了广东人利用黄猄蚁(Oecophylla smaragdina)防治柑桔害虫的生物防治法。

公元5世纪 晋末至南朝(宋)戴凯之著《竹谱》(约成书于5世纪中后期),用4字一句的韵文记述了我国南方竹类70多种,是中国现存最早的植物专著。

公元6世纪 北魏贾思勰著《齐民要术》(成书于533~540年间),总结了秦汉以来中国黄河中下游农业生产的经验,含有丰富的生物学知识,如植物的遗传性和变异性,某些作物的性别以及人工选择等。

公元7世纪 唐代苏敬等著《新修本草》(659年),有药图25卷,图经7卷,是中国现存最早的动、植物图谱。

公元8~10世纪 唐代段成式著《西阳杂俎》、段公路著《北户录》、刘恂著《岭表录异》等书,载有大量动物形态、习性、生态和生活史方面的知识。

公元11世纪 宋代沈括(1031~1095)著《梦溪笔谈》,全书共609条,其中有关生物的记述数十条,涉及生物的形态、分类、分布、生态和化石等方面的知识。

公元12世纪 宋代出现了《洛阳牡丹记》(欧阳修)、《荔枝谱》(蔡襄)、《扬州芍药谱》(王观)、《菊谱》(刘蒙)、《蚕书》(秦少游)、《橘录》(韩彦直)等多种动、植物的专著。

公元13世纪 德国学者大阿尔伯特(AlbertusMagnus,约1200~1280)研究了古希腊的生物学知识,补充了一些新的观察结果,著有《论动物》和《论植物》等书。

1247 南宋医学家宋慈(1186~1249)著《洗冤集录》4卷,是世界上最早的一部法医学著作,其中记有不少人体解剖的知识。

公元15~16世纪 明朱橚著《救荒本草》(1406)、王磐著《野菜谱》(1524),皆为当时的地方植物志。

意大利学者达·芬奇(Leonardo da Vinci,1452~1519)研究人体解剖,并绘画出精确的人体解剖图。

1543 比利时医生维萨里(AVesalius,1514~1564)出版了《人体的构造》一书,纠正了盖伦的一些错误,奠定了近代解剖学的基础。

1553 西班牙人塞尔维特(MServetus,1511~1553)发现了肺循环。

1578 明 代医学家李时珍(1518~1593)写成《本草纲目》,书中共收药物1892种,图1110幅。该书有丰富的动、植物知识。

1583 意大利学者塞萨平诺(ACesalpino,1519~1603)根据植物的习性、形态、花和营养器官的性状进行分类。在《植物》(1583)一书中对约1500种植物作出描述与分类。

1609 意大利学者伽利略(Gallileo Galilei,1564~1642)制造了一台复合显微镜,并用以观察了昆虫的复眼。

1864 英国解剖学家欧文(ROwen,1804~1892)描述了1861年在德国巴伐利亚索伦霍芬(Solnhofen)侏罗纪地层中发现的始祖鸟化石。

1865 德国学者萨克斯(JvonSachs,1832~1897)发表《植物实验生理学手册》,对植物生理学的发展有重要影响。

1866 奥地利遗传学家孟德尔(GMendel,1822~1884)发表《植物杂交试验》,报道了关于豌豆杂交试验的结果,发现了两个基本的遗传规律。但当时并未引起注意。

德国海克尔(EHHaeckel,1834~1919)出版《普通形态学》,提出生物发生律,为进化论提供了证据。

1868 瑞士生理化学家米歇尔(JFMiescher,1844~1895)通过水解脓细胞,首次分离出“核质”(即核酸)。

1871 达尔文的《人类起源及性选择》一书出版,推动了人类起源的研究。

约1875 德国植物学家斯特拉斯伯格(EStrasburger,1844~1912)阐述了植物细胞的有丝分裂。

1875 德国动物学家赫特维希(OHertwig,1849~1922)根据显微镜观察,认为受精过程是雄性原核与雌性原核的融合。

1876 德国微生物学家科赫(RKoch,1843~1910)通过炭疽杆菌的研究,证明特定的微生物会引起特定的疾病,同时建立了细菌的培养技术。

1877 德国植物学家佩弗(WPfeffer,1845~1902)发表了他多年工作的成果——《渗透作用的研究》。

1882 德国细胞学家弗莱明(WFlemming,1843~1905)阐述了动物细胞的有丝分裂过程。

德国微生物学家柯赫(RKoch,1843~1910)发现了结核菌及其传染性;1896年发明诊断结核病的结核菌素。1905年获诺贝尔生理学或医学奖。

1883 英国学者高尔顿(FGalton,1822~1911)创用“优生学”(engenics)一词,定义为改善人类遗传素质的学问。

比利时胚胎学家贝内登(Evan Beneden,1846~1910)研究马蛔虫(Ascaris megalocephala,2n=4)卵的成熟分裂,证明配子只含有半数染色体(即n=2),通过受精,又恢复为2n=4。

俄国微生物学家梅契尼科夫(ИИMeчников,1845~1916)发现细胞吞噬现象,首次提出细胞免疫理论——细胞吞噬学说;德国免疫学家艾利希(PEhrlich,1854~1915)首次提出体液免疫理论——“侧链说”。1908年他们共获诺贝尔生理学或医学奖。

1886~1888 德国微生物学家赫尔利盖(HHellriegel,1831~1895)与维尔法思(HWilfarth)证明豆科植物有固氮的能力。

1887~1915 德国植物学家恩格勒(HGAEngier,1844~1930)与柏兰特(KAEPrantl)合作出版《植物自然分科志》一书,其基本的分类系统至今仍为世界不少学者所采用。

1888 荷兰微生物学家别依耶林克(MWBeijerinck,1851~1931)从豆科植物中分离出根瘤菌,证明了根瘤菌与固氮有关。

德国解剖学家瓦尔德耶尔(WWaldeyer,1836~1921)把细胞分裂时中央出现的棒状结构定名为染色体(chromosome)。

1890 德国细胞学家鲍维里(TBoveri,1862~1915)确认性细胞染色体减数的普遍性。提出各个染色体有不同的特性。

1891 德国动物学家亨金(HHenking,1858~1942)阐明生殖细胞成熟过程中染色体数目减少一半的减数分裂过程。

1892 俄国微生物学家伊凡诺夫斯基(ДИИвановский,1864~1920),发现了第一个植物病毒——烟草花叶病毒。

德国生物学家魏斯曼(AWeismann,1834~1914)提出种质连续说;认为后天获得性状不能遗传;强调自然选择是进化的唯一机制。

1897 德国化学家布希纳(EBuchner,1860~1917)发现用无细胞的酵母提取物仍能进行发酵,证明离开了活细胞的酶仍有活性。

德国细菌学家勒夫莱尔(FLoeffler,1852~1915)等证明,口蹄疫病是由过滤性病毒引起的;还发现病毒只能在活细胞内繁殖。

1898 俄国植物学家纳瓦申(CГHавашин,1857~1930)发现被子植物双受精现象。在以后的几年间被证明,这是被子植物中的一种普遍现象。

意大利细胞学家高尔基(CGolgi,1843~1926)发明了神经细胞染色法,并在神经细胞中发现了高尔基体。

1899 美国生物学家洛伊布(JLoeb,1859~1924)通过刺激海胆卵实现了人工单性生殖。

1900 荷兰德弗里斯(HdeVries,1848~1933)、德国科伦斯(CCorrens,1864~1933)和奥地利切尔马克(ESeysenegg-Tschermak,1872~1962)三位遗传学家,通过各自的实验证实了孟德尔规律的科学价值。此后,孟德尔就被公认为现代遗传学的奠基人。

1901 美籍奥地利人兰德茨泰纳(KLandsteiner,1868~1943)发现了人的A、B、O血型。为此,1930年获诺贝尔生理学或医学奖。

1902 英国生理学家贝利斯(WMBayliss,1860~1924)和斯塔林(EHStarling,1866~1927)从小肠粘膜提取液中,发现了能促进胰腺分泌的“肠促胰液肽”。根据这种物质的生物活性,将其命名为激素。

德国化学家费舍尔(EFischer,1852~1919)和霍夫迈斯特(FHofmeister,1850~1922)分别提出蛋白质原子结构的肽键理论。

美国细胞学家麦克朗(CEMcClung,1870~1946)发现性染色体。

俄国生理学家巴甫洛夫(ИППaвлов,1849~1936)多年来以慢性实验代替急性实验,研究了活体动物消化腺的正常活动。1904年获诺贝尔生理学或医学奖。

1902~1903 美德国细胞学家鲍维里(TBoveri,1862~1915)和美国细胞学家萨顿(WSutton,1877~1916)发现雌、雄配子的形成和受精过程中染色体的行为与孟德尔遗传因子的行为是平行的。认为染色体是遗传因子的载体。遗传学上的分离定律和独立分配定律因而得到了合理的解释。

德国化学家科塞尔(AKossel,1853~1927)经过25年的努力,在阐明核酸的成分、结构、及其生理功能上作出重大贡献。1910年获诺贝尔生理学或医学奖。

1902~1909 英国遗传学家贝特森(WBateson,1861~1926)先后创用了“遗传学”、“等位基因”、“纯合体”、“杂合体”、F1、F2,以及“上位基因”等名词术语。

1903 西班牙组织解剖学家卡哈尔(SRYCajal,1852~1934)改进了高尔基的染色法,并系统地观察了中枢和周围神经,提出了神经元学说。1906年高尔基和卡哈尔共获诺贝尔生理学或医学奖。

1905 美国细胞学家威尔逊(EBWilson,1856~1939)和斯特蒂文特(AHSturtevant,1891~1971)以细胞学的事实,确定了染色体同性别的关系,并提出XX为雌性,XY为雄性。

1906 英国生理学家谢灵顿(CSSherrington,1857~1952)出版《神经系统的整合作用》,提出神经元和突触活动的概念。1932年与英国学者艾德里安(EDAdrian,1889~1977)共获诺贝尔生理学或医学奖。

1907 美国生理学家哈里森(RHarrison,1870~1959)建立用悬滴法的组织培养技术,推动了实验生物学的发展。

1908 法国医生卡雷尔(ACarrel,1873~1944)将血管缝合、器官移植和组织培养方法应用于生物学研究。1912年获诺贝尔生理学或医学奖。

英国数学家哈迪(GHHardy,1877~1949)和德国医生温伯格(WWeinbery,1862~1937)分别运用数学论证了遗传平衡定律(即哈迪-温伯格定律),为群体遗传学的研究奠定了基础。

1909 丹麦遗传学家约翰森(WJohannsen,1857~1927)创立“纯系学说”,在《遗传学原理》一书中提出了“基因”、“基因型”、“表现型”等遗传学概念。

英国医生加罗德(AEGarrod,1857~1936)出版了《代谢的先天缺陷》一书,表明代谢途径亦受孟德尔遗传因子的控制。

1910 美国遗传学家摩尔根(THMorgan,1866~1945)发现果蝇白眼性状的遗传总是与性别相联,指出白眼基因位在X染色体上,而Y染色体不含有它的等位基因,从而发现了伴性遗传现象。以后用果蝇进行实验,又发现了连锁与互换规律。1926年出版了《基因论》。1933年获诺贝尔生理学或医学奖。

1911 美国生物化学家芬克(CFunk,1884~1967)从米糠中分离提纯出有活性的维生素B结晶。

1912 英国生物化学家霍普金斯(FGHopkins,1861~1947)用实验肯定了维生素的存在,并提出“营养缺乏症”的概念。荷兰学者艾伊克曼(CEijkman,1858~1930)用试验证实糙米含维生素B1,有治疗多发性神经炎的作用。为此,霍普金斯与艾伊克曼1929年共获诺贝尔生理学或医学奖。

德国生物化学家瓦尔堡(OHWarburg,1883~1970)设计了可以精确测定组织耗氧速度的测压计,揭示出正铁血红素在生物氧化呼吸链中起着呼吸酶的作用。他的工作为研究生物氧化奠定了基础。1931年获诺贝尔生理学或医学奖。

1914 美国生物化学家肯德尔(ECKendall,1886~1972)提取并获得了甲状腺素结晶。

1915 英国微生物学家特沃尔特(FWTwort,1877~1950)和法国学者德荷雷莱(FHD′Herelle,1873~1949)发现了噬菌体。

20世纪初 德国化学家维尔斯塔特(RMWillstätter,1872~1942)发现叶绿素分子中镁离子同4个氮原子相连。1915年获诺贝尔化学奖。

1915 美国营养学家麦克勒姆(EVMc Collum,1879~1967)发现了维生素A。1922年又发现了维生素D,并证明它与软骨症有关。

1918 德国胚胎学家施佩曼(HSpemann,1869~1941)发现在胚胎生长过程中的组织诱导效应,开创了实验胚胎学的研究。1935年获诺贝尔生理学或医学奖。

1922 英国生物化学家希尔(AVHill,1886~1977)和德国生化学家迈耶霍夫(OMeyerhof,1884~1951)分别研究了肌肉收缩中的化学过程。为此共获1922年诺贝尔生理学或医学奖。

加拿大生理学家班廷(FGBanting,1891~1941)及其助手贝斯特(CHBest)在麦克劳德(JJRMacleod,1876~1935)的指导下,分离提纯出胰岛素,并成功地应用于治疗糖尿病。1923年班廷与麦克劳德共获诺贝尔生理学、医学奖。

1923 瑞典物理化学家斯维德伯格(TSvedberg,1884~1976)发明了超速离心机,推动了生物化学和分子生物学的研究。

1924 德国组织化学家孚尔根(RFeulgen,1884~1955)和罗森贝克(HRossenbeck,1895~)发明了专染核酸的“孚尔根染色法,”一直沿用至今。

苏联生物化学家奥巴林(AИOnaрин,1894~1980)出版了《生命起源》,提出生命起源的化学进化假说。

1925 德国生物化学家迈耶霍夫(OMeyerhof,1884~1951)发现,从肌肉中提取出来的一组酶可使肌糖原转变为乳酸。

英国生物化学家凯林(DKeilin,1887~1963)发现细胞色素在细胞呼吸中起氧化还原作用。

1926 英国生理学家、药学家戴尔(HHDale,1875~1968)证明引起神经冲动的乙酰胆碱是广泛存在于神经末端的化合物。德国生理学家洛维(OLoewi,1873~1961)用实验证明迷走神经受刺激,可产生一种使心脏跳动减速的物质,并证明此物质的性质类似乙酰胆碱。1936年他们共获诺贝尔生理学或医学奖。

1927 美国遗传学家马勒(HJMuller,1890~1967)报告了X射线对果蝇的人工诱变试验,为辐射遗传学的研究奠定了基础。1946年获诺贝尔生理学或医学奖。

苏联学者维尔纳斯基(BИBернaдскии,1863~1945)作了题为《生物圈》的演讲,引起了人们对“生态危机”的重视。

1928 英国微生物学家弗莱明(AFleming,1881~1955)发现青霉素对细菌的抑制作用。弗洛里(HLFlorey,1898~1968)和钱恩(EBChain,1906~1979)提纯了青霉素,并在实验和临床上证实了青霉素的疗效。1945年,他们3人共获诺贝尔生理学或医学奖。

1929 德国生物化学家费斯克(CHFiske,1890~?)、萨巴罗(YSubbaRow,1896~1948)和罗曼(KLohmann,1898~?),分别独立地从肌肉提取液中分离出ATP。后来罗曼又阐明了ATP的化学结构。

美国生物化学家科里夫妇(CFCori,1896~?; GTCori,1896~1957)发现了肌糖原、血乳酸、肝糖原及血糖之间转化的循环过程。阿根廷豪赛(BAHoussay,1887~1971)发现脑下垂体前叶对糖代谢的影响是通过控制胰岛素的生成而实现的。1947年,他们3人共获诺贝尔生理学或医学奖。

德国化学家布特南特(AButenandt,1903~)提取出雄性激素结晶。

荷兰微生物学家范·尼尔(CBvan Niel,1897~?)发现细菌光合作用与绿色植物光合作用的区别在于供氢体不是水,而是硫代硫酸盐、硫化氢、氢气或还原性有机物。这一发现扩大了光合作用的概念。

中国人类学家斐文中(1904~1983)在北京西南房山县周口店发现北京猿人第一个完整的头盖骨化石。

美籍苏联化学家列文(DALevene,1869~1940)发现核酸可分为核糖核酸和脱氧核糖核酸。

1930 英国统计学家、遗传学家费希尔(RAFisher,1890~1962)的《自然选择的遗传原理》出版,首次以数学形式论证了遗传与自然选择学说的关系。

1932 德国物理学家克诺尔(MKnoll,1897~1969)和鲁卡斯(ERuska,1906~)发明电子显微镜。

德国生物化学家克雷布斯(HAKrebs,1900~1981)与亨斯莱特(KHenslelt,1908~1973)共同发现尿素合成的鸟氨酸循环。后来,克雷布斯又提出代谢的公共途径“柠檬酸循环”假说,并得到了证实。他与美国生物化学家李普曼(FALipmann,1899~1986)共同阐明了糖有氧氧化的三个阶段。为此,他们两人共获1953年诺贝尔生理学或医学奖。

1933 英国豪沃思(NHoworth,1883~1950)首次合成维生素C。

匈牙利学者冯森特-齐尔吉(Avon Szent-Gyorgyi, 1893~?)发现苹果酸、琥珀酸和延胡索酸在组织氧化过程中的作用。

美国遗传学家佩因特(TPainter,1889~1969)发现果蝇幼虫唾腺细胞的巨染色体,并用作实验材料,推动了细胞遗传学的研究。

1934 挪威生物化学家弗林(JAFolling,1888~1973)发现患苯丙酮尿症的病人智力低下,是由于缺少苯丙氨酸羟化酶所致。

1935 美国生化学家斯坦利(WMStanley,1904~1971)等首次提纯出烟草花叶病毒的结晶体,确认病毒能在细胞中“再生”。1946年,斯坦利与萨姆纳(JBSumner)、诺索普(JHNorthrop)共获诺贝尔化学奖。

德国生物化学家迈耶霍夫·埃姆登(GEmbden,1874~1933)和帕纳斯(JKParnas,1884~1949)等人阐明了糖酵解过程的全部12个步骤。因此,糖酵解过程又称为迈耶霍夫-埃姆登-帕纳斯途径。

英国植物生态学家坦斯利(AGTansley,1871~1955)首先使用“生态系统”(ecosystem)一词,强调应把生物与其环境统一起来考虑。

匈牙利放射化学家赫韦希(GDHevesy,1885~1966)制得人工放射性磷P32,并用于生物化学研究。1943年获诺贝尔化学奖。

太多了,贴不完了。自己去看吧。

分拿来。

欢迎分享,转载请注明来源:品搜搜测评网

原文地址:https://pinsoso.cn/meirong/4038961.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2024-04-08
下一篇2024-04-08

随机推荐

  • 妮维雅止汗露 喷雾与走珠 哪个效果更好?

    我觉得两种应该都是差不多的效果,仅仅是在使用方法上有所不同。如果你光用在腋下可以只用走珠,如果你既要用在腋下,又要用在其他部位就可以用喷雾!!!妮维雅的我觉得持续的时间都是比较短的,需要每天都用。止汗露我觉得还是不要天天用哦!!推荐我最近买

    2024-04-15
    50500
  • 姐妹们,婷美抗皱眼部套盒好用吗?

    用完妮维雅男士洁面泥,感觉脸特别凉,凉到刺痛,但一会儿就好了。这种情况可能是因为你对某些成分过敏导致的。虽然我不能确定你是否真的过敏,但你描述的症状和体验与过敏反应相似。妮维雅男士洁面泥是一款受到非常多消费者喜欢和好评的产品,但并不代表每个

    2024-04-15
    49400
  • 欧美妮维雅vs泰国妮维雅哪个好用

    欧美妮维雅vs泰国妮维雅,泰国妮维雅好用。泰国妮维雅是妮维雅原产地公司,产品质量正品有保障,妮维雅是面部身体滋润保湿乳,长期使用可以是肌肤白嫩光滑,欧美妮维雅产品相比较泰国妮维雅产品,价格高,泰国妮维雅价格亲民,性价比更高。1、包装印刷:由

    2024-04-15
    47100
  • 从香港买回来的妮维雅怎么看生产日期呢?

    妮维雅是国外的产品,要是你朋友是在香港SASA、卓悦、龙城一些上市商场买的绝大多数是正品水货。因为香港是免税的,有很多产品是没有经过海关出售的,所以没有中文说明,不过有很多商品是快过期甚至是已经过期的。最好找一个懂得看批号的人看清了再使用。

    2024-04-15
    30600
  • 花御颜彩妆套盒怎么样

    好。1、花御颜是国内的一个中低端档次的化妆品和护肤品品牌,价格比较便宜,性价比高整体来说属于中端品牌,在2021年推出花御颜彩妆套盒,该套盒根据查询相关资料显示,包装的很好,外型很精美,质地手感很好,性价比最高,工艺非常好。是正品。京东七小

    2024-04-15
    25700
  • sk2清莹露怎么用

          sk2清莹露是属于清洁水,就是洗完脸,第一个用的,是给皮肤一个再次清洁的作用。sk2清莹露用在神仙水之前,洁面后第一步是SK-I      sk2清莹露是SK-II品牌出品的明星产品之一,一般sk2清莹露和sk2神仙水搭配使用,

    2024-04-15
    26900
  • sk2清莹露和神仙水有什么区别

    sk2清莹露和神仙水的区别有:质地不同:skll神仙水是精华水,水状质地,不粘稠,适合油性和混油型肌肤,可以淡化黑斑。清莹露属于清洁水,水润质地,能够补水和清洁皮肤。成分不同:神仙水以半乳糖酵母菌发酵物滤液为核心成分,添加丁二醇等保湿成分外

    2024-04-15
    29800

发表评论

登录后才能评论
保存