连接AO,BO
OA=OC+CA
OA+OB+CO=0
所以OC+CA+OB+CO=0
CA+OB=0
所以|CA|=|BO|
同理|CB|=|AO|
又|AO|=|BO|=|CO|
所以△AOC和△BOC都是等边三角形
所以∠C=60°+60°=120°
底角为(180-120)/2=30°
。
首先,先把△OAC旋转60°,使AC与AB重合,则O落在O'处,易知△AOO'是边长为4的等边三角形,那么∠AOO'=60°,易证△BOO'为直角三角形(BO=3,OO'=4,BO'=5),那么∠BOO'=90°,所以∠BOC=150°
∵CD⊥AB,BE⊥AC
∴∠ADO=∠AEO=90°
∵∠1=∠2
OA=OA
∴△AOD≌△AOE(AAS)
∴OD=OE
∵∠BOD=∠COE
∠BOO=∠CEO=90°
∴△BOD≌△COE(ASA)
∴OB=OC
解答:解:由题意可知,∠1+∠2=∠3+∠2=60°,
∴∠1=∠3,
又∵OB=O′B,AB=BC,
在△BO′A和△BOC中,
|
∴△BO′A≌△BOC(SAS),
又∵∠OBO′=60°,
∴△BO′A可以由△BOC绕点B逆时针旋转60°得到,
故结论①正确;
如图①,连接OO′,
∵OB=O′B,且∠OBO′=60°,
∴△OBO′是等边三角形,
∴OO′=OB=4.
故结论②正确;
∵△BO′A≌△BOC,∴O′A=5.
在△AOO′中,三边长为3,4,5,这是一组勾股数,
∴△AOO′是直角三角形,∠AOO′=90°,
∴∠AOB=∠AOO′+∠BOO′=90°+60°=150°,
故结论③正确;
S四边形AOBO′=S△AOO′+S△OBO′=
1 |
2 |
3 |
3 |
故结论④错误;
如图②所示,将△AOB绕点A逆时针旋转60°,使得AB与AC重合,点O旋转至O″点.
易知△AOO″是边长为3的等边三角形,△COO″是边长为3、4、5的直角三角形,
则S△AOC+S△AOB=S四边形AOCO″=S△COO″+S△AOO″=
1 |
2 |
| ||
4 |
9 |
4 |
故结论⑤正确.
综上所述,正确的结论为:①②③⑤.
故答案为:①②③⑤.
欢迎分享,转载请注明来源:品搜搜测评网