数控机床主轴会配置打刀缸“气缸”,用来帮助上下刀柄。在上刀柄时打刀气缸通过拉缸夹紧刀头,在下刀时,通过“吹气”的方式,将刀头松开,便于便于换刀。
打刀缸是一种增力气液转换装置,压缩空气作用于气缸活塞,产生推力,推动油缸活塞,使高于压缩空气数倍的油压作用于压杆,产生推力,实现机械装置的动作。
打刀缸主要是用于加工中心机床、数控铣床刀具自动或半自动交换机构中的主轴打刀,还可作为夹具及其他机构的夹紧装置。
扩展资料:
把零件的加工工艺路线、工艺参数、刀具的运动轨迹、位移量、切削参数以及辅助功能,按照数控机床规定的指令代码及程序格式编写成加工程序单,再把这程序单中的内容记录在控制介质上,然后输入到数控机床的数控装置中,从而指挥机床加工零件。
采用步进电动机和单片机对普通车床的车削进给系统进行改造后形成的简易型数控车床。成本较低,自动化程度和功能都比较差,车削加工精度也不高,适用于要求不高的回转类零件的车削加工。
根据车削加工要求在结构上进行专门设计,配备通用数控系统而形成的数控车床。数控系统功能强,自动化程度和加工精度也比较高,适用于一般回转类零件的车削加工。这种数控车床可同时控制两个坐标轴,即x轴和z轴。
--数控车床
油缸是用来支撑的,气缸是用来提供动力的
油缸
油缸即液压缸,液压缸是输出力和活塞有效面积及其两边的压差成正比的直线运动式执行元件。它的职能是将液压能转换成机械能。液压缸的输入量是流体的流量和压力,输出的是直线运动速度和力。液压缸的活塞能完成直线往复运动,输出的直线位移是有限的。液压缸是将液压能转换为往复直线运动的机械能的能量转换装置。液压缸基本上由缸筒和缸盖、活塞和活塞杆、密封装置、缓冲装置与排气装置组成。缓冲装置与排气装置视具体应用场合而定,其他装置则必不可少。
作用
油缸主要用于需长时间支撑重物的地方,它可在除去油压时仍可支持重物,而且安全可靠。可用于水下,单作用,负载回缩,螺母自锁使负载更安全,特别在大型工程中,是易操作控制和自锁式千斤顶,设计有安全保压装置,内置卸压阀防止过载,以保护自锁式千斤顶以利于安全操作。该装置的连接,采用的是高压胶管和螺纹接头连接,具有使用快捷,并克服快速传统接头漏油缺点主要用于电力、建筑、机械制造、矿山、铁路桥梁、造船等多种行业的设备安装起顶拆卸作业。
气缸
气缸为中国大陆的称呼,而香港和台湾称为汽缸。它是指在内燃机或是外燃机中,让活塞居于其内,允许其上下往复的容器。在多汽缸引擎中,通常汽缸会并列排成一排,这称之为汽缸排(bank),好比说V型排列的引擎就由两组汽缸排呈V字形所构成。而多个或一个汽缸排则构成了汽缸本体(cylinder block)。
发展历程
气缸原理源于大炮:
气缸源于大炮?这并不是耸人听闻。你车上的气缸战士确实与大炮有关。
1680年,荷兰科学家霍因斯受到大炮原理的启发,心想如将炮弹的强大力量用来推动其它机械不是挺好吗?他一开始仍用火药作燃烧爆炸物,将炮弹改成“活塞”,把炮筒作“气缸”,并开一个单向阀。他在气缸内注入火药,当点燃火药后,火药猛烈地爆炸燃烧,推动活塞向上运动,并产生动力。同时,爆炸气巨大的压力还推开单向阀,排出废气。而后,气缸内残余废气逐渐变冷,气压变低,气缸外部的大气压又推动活塞向下运动,以准备进行下一次爆炸。当然,由于行程过长,效率太低,他最终没有取得成功。但是,正是霍因斯首先提出了“内燃机”的设想,后人在此基础上才发明了汽车用的发动机。
早期汽车使用单缸机
汽车鼻祖卡尔·奔驰和戴姆勒在当年设计制造汽车时,他们不约而同地只用了一个气缸的发动机。就像我们现在认为一辆汽车不可能使用两台或更多台发动机一样,估计当时的人们也不会想象出还会用两个气缸或更多气缸的发动机。然而现在不同了,先别说发达国家,看看国内汽车广告就会发现,不少厂家总拿发动机的气缸数目和排列形式来说事,卖微型车的极力吹鼓他的车用的是四缸机而非三缸,用v6发动机的一定要把v字弄得醒目惹眼,广告宣传确实起到了很大效果,现在不少车迷已认同了 “4缸比3缸好”、“6缸比4缸好”、“v型比直列好”、“v型发动机是高级发动机”等概念。现在国产车中已有近20种车装配了v6或v8型发动机。
单缸发动机的曲轴每转两周才能产生一次燃烧做功,这样它的声音听起来也不连续顺畅,听一听小排量摩托车的声音就知道了。最为不能让人接受的是它的运转极不平稳,转速波动较大,而且单缸发动机的外形也不适合装在汽车上。为此,现在的气车上已见不到单缸发动机上,两缸机也不好找了,最少是3缸发动机。国内生产的华利面包车、老款夏利车、吉利豪情和奥拓、福莱尔上,装的都是3缸机。
1升以下的微型车上多用3缸机,1升至2升的发动机一般采用4缸或5缸机。2升以上的发动机大多为6缸,4升以上的发动机使用8缸的占绝大多数。
在相同排量的情况下,增加气缸数可以提高发动机的转速,从而可以提高发动机的输出功率。另外,增加气缸数可以使发动机运转更平稳,使其输出扭矩和输出功率更加稳定。增加气缸数可以使气车更容易起动,加速响应性更好。为了提高气车的性能,必须增加气缸数。因此,豪华轿车、跑车、赛车等高性能气车的气缸数都在6缸以上,最多者已达到16缸。
但是,气缸数的增加不能无限制。因为随着气缸数的增加,发动机的零部件数也成比例地增加,从而使发动机结构复杂,降低发动机的可靠性,增加发动机重量,提高制造成本和使用费用,增加燃料消耗,并使发动机的体积变大。因此,气车发动机的气缸数都是根据发动机的用途和性能要求,在权衡各种利弊之后做出的合适选择。
这种卡盘分为中空中实两种,一般四英寸和五英寸选缸径80的,六英寸选缸径100的,八英寸和十英寸选125的,十二英寸选150,十五英寸到二十四英寸选200,二十四英寸以上的选250的这样选主要是保证卡盘具有足够的夹持力。另外我们要注意中空卡盘的通孔,以保证油缸和卡盘的通孔一致,以使油缸和卡盘发挥最大的效能。第三点我们要考虑到主轴的通孔和油缸的推拉螺纹不要干涉。
工作可靠,有破坏性。
1、优点:回旋气缸的原理及结构简单,易于安装维护,对于使用者的要求不高。回旋油缸液压缸结构简单,工作可靠,在机床的液压系统中得到了广泛的应用。
2、缺点:回旋气缸是铸造而成的,汽缸出厂后都要经过时效处理,使汽缸在住铸造过程中所产生的内应力完全消除。如果时效时间短,那么加工好的汽缸在以后的运行中还会变形。回旋油缸液压缸运动至行程终点时具有较大动能,如未作减速处理,液压缸活塞与缸盖将发生机械碰撞,产生冲击、噪声,有破坏性。气缸是指引导活塞在缸内进行直线往复运动的圆筒形金属机件。
优点:在原有的两缸的基础上,在滑块中间多加了一只辅助缸,更好的减少了滑块因长时间使用而发生的变形。有效的提高了加工工件的精度,是双缸折弯机以后新一代的更新设备。 尤其是在大型的折弯机加工产品上其优越性能更好的体现出来。
缺点:中间的缸是补偿缸,做起来的难点是比较多的,液压就比剪板机复杂的,还有机械构造,折弯机的要求也比剪板机的要求高许多。
机器分类
折弯机分为手动折弯机,液压折弯机和数控折弯机。
液压折弯机按同步方式又可分为:扭轴同步、机液同步,和电液同步。按油缸分为:双缸折弯机,三缸折弯机,六缸折弯机。
同兴液压总汇生产增压油缸多年,好品质,值得选择
增压油缸是结合是气缸和油缸优点而改进设计的,液压油与压缩空气严格隔离,缸内的活塞杆接触工作件后自动启程,动作速度快,且较气压传动稳定,缸体装置简单,出力调整容易,相同条件下可达到油压机之高出力,能耗低,软着陆不损模具,安装容易并且特殊增压缸可360度任意角度安装,所占用的空间小,故障少无温升之困扰,寿命长,噪声小,等核心特性。
液压机的伺服电机驱动是将传动压力机的普通电机更换为伺服电机,即为伺服液压机,又称伺服压力机、伺服压装机。伺服液压机的滑块运动曲线可以根据冲压工艺设定,行程可调。这种压力机主要是针对难成形的材料,复杂形状零件的高精度成形。大大提高了压力机的加工精度以及冲压效率,而且还取消了飞轮,离合器等部件,降低企业生产的成本,节约能源。
伺服液压机和普通液压机的区别
伺服液压机的的发展受伺服电机的影响比较重,目前采用伺服电机驱动的液压机主要是一些小吨位的压力机。为了突破伺服电机的限制,混合驱动方式是目前压力机发展的一个方向。这种混合驱动压力机的构成方式采取差动轮实现普通电机和伺服电机的混合输入,采取两自由度的杆件系统实现混闭式双点压力机。其特点有:
(1)通用性和柔性化、智能化水平高。
由于其伺服功能,滑块运动曲线不再仅仅是正弦曲线,而是可以根据工艺要求进行优化设计的任意曲线。
(2)精度高。
由于采用线性光栅尺检测滑块位置,滑块在整个压力机工作全程都具有;高的运动控制精度,尤其在下死点附近,能够保证滑块的精度在±001mm变化;从而保证了压力机的闭合高度在生产过程中的精度稳定,抑制产品毛刺出现,防止产生不良产品。
(3)生产率高。
伺服液压机由于其保留了曲柄压力机的优点,尤其是生产率远高于液压机,体现了“液压机的加工质量,机械压力机的生产效率”。不仅如此,伺服电机驱动曲柄压力机还可以根据工件的不同,调整滑块行程,在一个工循环中无须完成360度旋转,而只进行一定角度的摆动来完成冲压工作,这就进一步缩短了循环时间。最大限度的减少了无谓的行程,大大提高了生产率。
与常规交流异步电动机驱动的机械压力机相比,交流伺服压力机具有如下特点:
(1)超强的通用性和柔性化、智能化水平。
由于其伺服功能,滑块运动曲线不再仅仅是正弦曲线,而是可以根据工艺要求进行优化设计的任意曲线。例如,可以在控制器中预存适于冲裁、拉深、压印、弯曲等工艺以及不同材料的特性曲线,使用时,不同工艺、不同材料调用不同曲线。这就大大提高了压力机的加工性能,扩大了加工范围,其加工性能完全可以与液压机媲美。
(2)超高的精度。
由于采用线性光栅尺对滑块位置作全闭环控制,滑块在整个油压机工作全程都具有高的运动控制精度。尤其在下死点附近,即使存在偏载,始终能够保证滑块的精度在微米级变化,从而保证了压力机的闭合高度在生产过程中的精度稳定,抑制产品毛刺出现,防止产生不良产品输入。
伺服液压机和普通液压机的区别
伺服液压机和普通液压机的最主要的区别是动力源的不同。一个是利用液压系统里的液压油油缸产生压力,另一个则是应用压缩空气为动力源,利用压气缸来执行装置,这是它们的本质区别。
欢迎分享,转载请注明来源:品搜搜测评网