人类历史上第一张黑洞照片在什么时候问世?

人类历史上第一张黑洞照片在什么时候问世?,第1张

第一张黑洞照片是在2019年4月10日21点整召开的全球新闻发布会上发布的。

这张黑洞照片是由事件视界望远镜拍摄的距离地球5500万光年的M87黑洞的照片,这个黑洞的质量是太阳质量的70亿倍。

“事件视界望远镜”就是为观测黑洞的“事件视界”而设计的。它由分布在全球多地的射电望远镜组成,相当于一台口径为地球直径的超级望远镜。2017年4月,“事件视界望远镜”启动对黑洞拍照,“冲洗”用了约两年时间。包括中国科学院上海天文台在内的一些国内机构参与了此次国际合作。

下面的就是这张照片。

黑洞,对地球上所有最顶尖的科学家,以及对浩瀚宇宙心怀敬畏的普通民众而言,都是一个永恒的、美丽而又残酷的未解之谜。人类对黑洞的研究已达百年,而2019年4月10日这一天,则必将在研究的历程中留名,今天,人类第一张黑洞照片发布,现在就让星座知识为你带来有关这一天文现象的最新消息。

北京时间4月10日21点整,比利时布鲁塞尔、智利圣地亚哥、中国上海和台北、日本东京、美国华盛顿等全球六地将同步召开全球新闻发布会,事件视界望远镜(EHT)发布了人类首张黑洞照片。

该黑洞图像揭示了室女座星系团中超大质量星系Messier87中心的黑洞。该黑洞距离地球5500万光年,质量为太阳的65亿倍。它的核心区域存在一个阴影,周围环绕一个新月状光环。

据悉,世界第一张黑洞由分布在世界各地的射电望远镜组成的虚拟望远镜拍摄,望远镜口径相当于地球直径。照片“冲洗”过程长达两年。拍摄这张照片的宇宙观测团队里包括来自我国的科学家。

来自8个观测点的天文望远镜,将观测到的电磁波集中“反馈”,利用对这些电磁波信号的分析,科学家们可以获得和黑洞附近高温物质分布相关的一些物理量。再结合多年来不断完善的黑洞理论模型,将模拟量和观测量比对,得到黑洞成像。

在此之前,人类只能间接证明黑洞存在。百余年前,爱因斯坦的广义相对论率先对黑洞作出预言,从此成为许多科幻**的灵感源泉。科学家陆续通过一些间接证据证实了黑洞的存在,但人类始终没有真正“看到”过黑洞。

而今天发布的人类首张黑洞照片,是由200多名科研人员历时10余年、从四大洲8个观测点“捕获”的视觉证据,有望证实爱因斯坦广义相对论在极端条件下仍然成立。

相关阅读:“捕获”黑洞影像的“事件视界望远镜”(EHT)质量极其巨大的黑洞,是宇宙中的神秘存在。近一个世纪以前,爱因斯坦的广义相对论推测,黑洞不仅存在,而且实际上是宇宙中一些最极端的现象。

自此,天体物理学就一直想直接观察黑洞的直接环境,但这对望远镜的角分辨率要求非常高,它必须与黑洞的边缘地带(专业术语称之为事件视界)相当。于是科学家们展开了一场跨国合作,他们希望将地球上的射电望远镜们连接起来创建成一个巨大的望远镜。

而“事件视界望远镜”(EHT),就是这么一项全球性的努力,它不是某个望远镜,而是一个由多个射电望远镜共同构建的观测项目。该项目旨在构建一个地球大小的虚拟望远镜阵列,并使它能够给地球附近的超大质量黑洞拍照。2017年4月,它才首次全面运行。

由于需要极高的灵敏度,组成全球网络的8个射电望远镜分布在多个高海拔地区,包括夏威夷和墨西哥的火山、西班牙的内华达山脉、智利的阿塔卡马沙漠、南极点等。

通过分布全球的观测点组成的口径如地球大小的虚拟望远镜——黑洞事件视界望远镜,地球科学家们顺利实现在13毫米波长的观测,并经过长期的数据分析,成功“捕获”黑洞的影像,从而获得了人类首张黑洞。

目前,全世界范围内众多研究机构皆有参与EHT项目,并且已经建成了巨大的观测网络,我国的上海天文台、新疆天文台都是其参与者。其中,上海天文台的上海65米射电望远镜更是全球综合性能名列前茅的射电望远镜。

据悉,在未来几年,国际EHT团队将努力提高望远镜们的分辨率和灵敏度,并继续开展黑洞观察活动。

相关文章推荐:木星合月象征着什么天象寓意主何吉凶怎么形成的原理十二星座符号图案12星座的标志2019年有几次水逆2019年水逆时间表蛇夫座是几月几号出生为什么不存在了金星伴月天象预兆着什么金星合月寓意不祥吗

奇点星座网,很多女生都会关注的星座知识百科。八字姻缘、八字事业、婚姻运势、财神灵签、情感合盘、看另一半、八字测算、姓名速配、一生运势、复合机会,您还可以在底部在线咨询奇点星座网。

1970年,美国的“自由”号人造卫星发现了与其他射线源不同的天鹅座X-1,位于天鹅座X-1上的是一个比太阳重30多倍的巨大蓝色星球,该星球被一个重约10个太阳的看不见的物体牵引着。天文学家一致认为这个物体就是黑洞,它就是人类发现的第一个黑洞。

1928年,萨拉玛尼安·钱德拉塞卡到英国剑桥跟英国天文学家阿瑟·爱丁顿爵士(一位广义相对论家)学习。钱德拉塞卡意识到,不相容原理所能提供的排斥力有一个极限。恒星中的粒子的最大速度差被相对论限制为光速。这意味着,恒星变得足够紧致之时,由不相容原理引起的排斥力就会比引力的作用小。钱德拉塞卡计算出;一个大约为太阳质量一倍半的冷的恒星不能支持自身以抵抗自己的引力。(这质量称为钱德拉塞卡极限)前苏联科学家列夫·达维多维奇·兰道几乎在同时也发现了类似的结论。

如果一颗恒星的质量比钱德拉塞卡极限小,它最后会停止收缩并终于变成一颗半径为几千英里和密度为每立方英寸几百吨的“白矮星”。白矮星是它物质中电子之间的不相容原理排斥力所支持的。第一颗被观察到的是绕着夜空中最亮的恒星——天狼星转动的那一颗。

兰道指出,对于恒星还存在另一可能的终态。其极限质量大约也为太阳质量的一倍或二倍,但是其体积甚至比白矮星还小得多。这些恒星是由中子和质子之间,而不是电子之间的不相容原理排斥力所支持。所以它们被叫做中子星。它们的半径只有10英里左右,密度为每立方英寸几亿吨。在中子星被第一次预言时,并没有任何方法去观察它,很久以后它们才被观察到。

另一方面,质量比钱德拉塞卡极限还大的恒星在耗尽其燃料时,会出现一个很大的问题:在某种情形下,它们会爆炸或抛出足够的物质,使自己的质量减少到极限之下,以避免灾难性的引力坍缩,不管恒星有多大,这总会发生。爱丁顿拒绝相信钱德拉塞卡的结果。爱丁顿认为,一颗恒星不可能坍缩成一点。这是大多数科学家的观点:爱因斯坦自己写了一篇论文,宣布恒星的体积不会收缩为零。其他科学家,尤其是他以前的老师、恒星结构的主要权威——爱丁顿的敌意使钱德拉塞卡抛弃了这方面的工作,转去研究诸如恒星团运动等其他天文学问题。然而,他获得1983年诺贝尔奖,至少部分原因在于他早年所做的关于冷恒星的质量极限的工作。

钱德拉塞卡指出,不相容原理不能够阻止质量大于钱德拉塞卡极限的恒星发生坍缩。但是,根据广义相对论,这样的恒星会发生什么情况呢。这个问题被一位年轻的美国人罗伯特·奥本海默于1939年首次解决。然而,他所获得的结果表明,用当时的望远镜去观察不会再有任何结果。以后,因第二次世界大战的干扰,奥本海默卷入到原子弹计划中去。战后,由于大部分科学家被吸引到原子和原子核尺度的物理中去,因而引力坍缩的问题被大部分人忘记了。

1967年,剑桥的一位研究生约瑟琳·贝尔发现了天空发射出无线电波的规则脉冲的物体,这对黑洞的存在的预言带来了进一步的鼓舞。起初贝尔和她的导师安东尼·赫维许以为,他们可能和我们星系中的外星文明进行了接触。在宣布他们发现的讨论会上,他们将这四个最早发现的源称为LGM1-4,LGM表示“小绿人”(“Little Green Man”)的意思。最终他们和所有其他人的结论是这些被称为脉冲星的物体,事实上是旋转的中子星,这些中子星由于在黑洞这个概念刚被提出的时候,共有两种光理论:一种是牛顿赞成的光的微粒说;另一种是光的波动说。由于量子力学的波粒二象性,光既可认为是波,也可认为是粒子。在光的波动说中,不清楚光对引力如何响应。但是如果光是由粒子组成的,人们可以预料,它们正如同炮弹、火箭和行星那样受引力的影响。起先人们以为,光粒子无限快地运动,所以引力不可能使之慢下来,但是罗麦关于光速度有限的发现表明引力对之可有重要效应。

1783年,剑桥的学监约翰·米歇尔在这个假定的基础上,在《伦敦皇家学会哲学学报》上发表了一篇文章。他指出,一个质量足够大并足够紧致的恒星会有如此强大的引力场,以致于连光线都不能逃逸——任何从恒星表面发出的光,还没到达远处即会被恒星的引力吸引回来。米歇尔暗示,可能存在大量这样的恒星,虽然会由于从它们那里发出的光不会到达我们这儿而使我们不能看到它们,但我们仍然可以感到它们的引力的吸引作用。这正是我们称为黑洞的物体。

事实上,因为光速是固定的,所以,在牛顿引力论中将光类似炮弹那样处理不严谨。(从地面发射上天的炮弹由于引力而减速,最后停止上升并折回地面;然而,一个光子必须以不变的速度继续向上,那么牛顿引力对于光如何发生影响。)在1915年爱因斯坦提出广义相对论之前,一直没有关于引力如何影响光的协调的理论,之后这个理论对大质量恒星的含意才被理解。

观察一个恒星坍缩并形成黑洞时,因为在相对论中没有绝对时间,所以每个观测者都有自己的时间测量。由于恒星的引力场,在恒星上某人的时间将和在远处某人的时间不同。假定在坍缩星表面有一无畏的航天员和恒星一起向内坍缩,按照他的表,每一秒钟发一信号到一个绕着该恒星转动的空间飞船上去。在他的表的某一时刻,譬如11点钟,恒星刚好收缩到它的临界半径,此时引力场强到没有任何东西可以逃逸出去,他的信号再也不能传到空间飞船了。当11点到达时,他在空间飞船中的伙伴发现,航天员发来的一串信号的时间间隔越变越长。但是这个效应在10点59分59秒之前是非常微小的。在收到10点59分58秒和10点59分59秒发出的两个信号之间,他们只需等待比一秒钟稍长一点的时间,然而他们必须为11点发出的信号等待无限长的时间。按照航天员的手表,光波是在10点59分59秒和11点之间由恒星表面发出;从空间飞船上看,那光波被散开到无限长的时间间隔里。在空间飞船上收到这一串光波的时间间隔变得越来越长,所以恒星来的光显得越来越红、越来越淡,最后,该恒星变得如此之朦胧,以至于从空间飞船上再也看不见它,所余下的只是空间中的一个黑洞。然而,此恒星继续以同样的引力作用到空间飞船上,使飞船继续绕着所形成的黑洞旋转。

但是由于以下的问题,使得上述情景不是完全现实的。离开恒星越远则引力越弱,所以作用在这位无畏的航天员脚上的引力总比作用到他头上的大。在恒星还未收缩到临界半径而形成事件视界之前,这力的差就已经将航天员拉成意大利面条那样,甚至将他撕裂!然而,在宇宙中存在质量大得多的天体,譬如星系的中心区域,它们遭受到引力坍缩而产生黑洞;一位在这样的物体上面的航天员在黑洞形成之前不会被撕开。事实上,当他到达临界半径时,不会有任何异样的感觉,甚至在通过永不回返的那一点时,都没注意到。但是,随着这区域继续坍缩,只要在几个钟头之内,作用到他头上和脚上的引力之差会变得如此之大,以至于再将其撕裂。

罗杰·彭罗斯在1965年和1970年之间的研究指出,根据广义相对论,在黑洞中必然存在无限大密度和空间——时间曲率的奇点。这和时间开端时的大爆炸相当类似,只不过它是一个坍缩物体和航天员的时间终点而已。在此奇点,科学定律和预言将来的能力都失效了。然而,任何留在黑洞之外的观察者,将不会受到可预见性失效的影响,因为从奇点出发的不管是光还是任何其他信号都不能到达。这令人惊奇的事实导致罗杰·彭罗斯提出了宇宙监督猜测,它可以被意译为:“上帝憎恶裸奇点。”换言之,由引力坍缩所产生的奇点只能发生在像黑洞这样的地方,在那儿它被事件视界体面地遮住而不被外界看见。严格地讲,这是所谓弱的宇宙监督猜测:它使留在黑洞外面的观察者不致受到发生在奇点处的可预见性失效的影响,但它对那位不幸落到黑洞里的可怜的航天员却是爱莫能助。

广义相对论相关

广义相对论方程存在一些解,这些解使得我们的航天员可能看到裸奇点。他也许能避免撞到奇点上去,而穿过一个“虫洞”来到宇宙的另一区域。看来这给空间——时间内的旅行提供了巨大的可能性。但是不幸的是,所有这些解似乎都是非常不稳定的;最小的干扰,譬如一个航天员的存在就会使之改变,以至于他还没能看到此奇点,就撞上去而结束了他的时间。换言之,奇点总是发生在他的将来,而从不会在过去。强的宇宙监督猜测是说,在一个现实的解里,奇点总是或者整个存在于将来(如引力坍缩的奇点),或者整个存在于过去(如大爆炸)。因为在接近裸奇点处可能旅行到过去,所以宇宙监督猜测的某种形式的成立是大有希望的。

事件视界,也就是空间——时间中不可逃逸区域的边界,正如同围绕着黑洞的单向膜:物体,譬如不谨慎的航天员,能通过事件视界落到黑洞里去,但是没有任何东西可以通过事件视界而逃离黑洞。(记住事件视界是企图逃离黑洞的光的空间——时间轨道,没有任何东西可以比光运动得更快)人们可以将诗人但丁针对地狱入口所说的话恰到好处地用于事件视界:“从这儿进去的人必须抛弃一切希望。”任何东西或任何人一旦进入事件视界,就会很快地到达无限致密的区域和时间的终点。

广义相对论预言,运动的重物会导致引力波的辐射,那是以光的速度传播的空间——时间曲率的涟漪。引力波和电磁场的涟漪光波相类似,但是要探测到它则困难得多。就像光一样,它带走了发射它们的物体的能量。因为任何运动中的能量都会被引力波的辐射所带走,所以可以预料,一个大质量物体的系统最终会趋向于一种不变的状态。(这和扔一块软木到水中的情况相当类似,起先翻上翻下折腾了好一阵,但是当涟漪将其能量带走,就使它最终平静下来。)例如,绕着太阳公转的地球即产生引力波。其能量损失的效应将改变地球的轨道,使之逐渐越来越接近太阳,最后撞到太阳上,以这种方式归于最终不变的状态。在地球和太阳的情形下能量损失率非常小——大约只能点燃一个小电热器, 这意味着要用大约1千亿亿亿年地球才会和太阳相撞,没有必要立即去为之担忧!地球轨道改变的过程极其缓慢,以至于根本观测不到。但几年以前,在称为PSR1913+16(PSR表示“脉冲星”,一种特别的发射出无线电波规则脉冲的中子星)的系统中观测到这一效应。此系统包含两个互相围绕着运动的中子星,由于引力波辐射,它们的能量损失,使之相互以螺旋线轨道靠近。

在恒星引力坍缩形成黑洞时,运动会更快得多,这样能量被带走的速率就高得多。所以不用太长的时间就会达到不变的状态。人们会以为它将依赖于形成黑洞的恒星的所有的复杂特征——不仅仅它的质量和转动速度,而且恒星不同部分的不同密度以及恒星内气体的复杂运动。如果黑洞就像坍缩形成它们的原先物体那样变化多端,一般来讲,对之作任何预言都将是非常困难的。

然而,加拿大科学家外奈·伊斯雷尔在1967年使黑洞研究发生了彻底的改变。他指出,根据广义相对论,非旋转的黑洞必须是非常简单、完美的球形;其大小只依赖于它们的质量,并且任何两个这样的同质量的黑洞必须是等同的。事实上,它们可以用爱因斯坦的特解来描述,这个解是在广义相对论发现后不久的1917年卡尔·施瓦兹席尔德找到的。一开始,许多人(其中包括伊斯雷尔自己)认为,既然黑洞必须是完美的球形,一个黑洞只能由一个完美球形物体坍缩而形成。所以,任何实际的恒星从来都不是完美的球形只会坍缩形成一个裸奇点。

然而,对于伊斯雷尔的结果,一些人,特别是罗杰·彭罗斯和约翰·惠勒提倡一种不同的解释。他们论证道,牵涉恒星坍缩的快速运动表明,其释放出来的引力波使之越来越近于球形,到它终于静态时,就变成准确的球形。按照这种观点,任何非旋转恒星,不管其形状和内部结构如何复杂,在引力坍缩之后都将终结于一个完美的球形黑洞,其大小只依赖于它的质量。这种观点得到进一步的计算支持,并且很快就为大家所接受。

伊斯雷尔的结果只处理了由非旋转物体形成的黑洞。1963年,新西兰人罗伊·克尔找到了广义相对论方程的描述旋转黑洞的一族解。这些“克尔”黑洞以恒常速度旋转,其大小与形状只依赖于它们的质量和旋转的速度。如果旋转为零,黑洞就是完美的球形,这解就和施瓦兹席尔德解一样。如果有旋转,黑洞的赤道附近就鼓出去(正如地球或太阳由于旋转而鼓出去一样),而旋转得越快则鼓得越多。由此人们猜测,如将伊斯雷尔的结果推广到包括旋转体的情形,则任何旋转物体坍缩形成黑洞后,将最后终结于由克尔解描述的一个静态。

黑洞是科学史上极为罕见的情形之一,在没有任何观测到的证据证明其理论是正确的情形下,作为数学的模型被发展到非常详尽的地步。的确,这经常是反对黑洞的主要论据:怎么能相信一个其依据只是基于令人怀疑的广义相对论的计算的对象呢然而,1963年,加利福尼亚的帕罗玛天文台的天文学家马丁·施密特测量了在称为3C273(即是剑桥射电源编目第三类的273号)射电源方向的一个黯淡的类星体的红移。他发现引力场不可能引起这么大的红移——如果它是引力红移,这类星体必须具有如此大的质量,并离地球如此之近,以至于会干扰太阳系中的行星轨道。这暗示此红移是由宇宙的膨胀引起的,进而表明此物体离地球非常远。由于在这么远的距离还能被观察到,它必须非常亮,也就是必须辐射出大量的能量。人们会想到,产生这么大量能量的唯一机制看来不仅仅是一个恒星,而是一个星系的整个中心区域的引力坍缩。人们还发现了许多其他类星体,它们都有很大的红移。但是它们都离开地球太远了,所以对之进行观察太困难,以至于不能。

发现“超大”黑洞

2015年3月1日,科学家称在一座发光类星体里发现了一片质量为太阳120亿倍的黑洞,并且该星体早在宇宙形成的早期就已经存在。科学家称,如此巨大的黑洞的形成无法用现有黑洞理论解释。

该发现对2014年之前的宇宙形成理论带出了挑战。至2015年的宇宙理论认为,黑洞及其宿主星系的发展形态基本上是亘古不变的。

德国麦克斯普兰喀天文机构的研究员布拉姆·维尼曼斯(BramVenemans)说道,最新发现的黑洞体量相当于太阳的400亿倍,比先前发现的同时期黑洞的总和还大出一倍。而在银河系的中央潜伏的黑洞比太阳大20倍-500万倍。

科学家无法解释最新发现的黑洞为何增长速度如此快。从理论上来说,它周围的气体不能使它变得如此庞大。北京大学首席研究员吴学兵说:“我们的发现对早期宇宙黑洞形成的理论提出了挑战。”他还说,“黑洞在短期内增长可能需要非常特殊的方式,或者在第一代行星和星系形成时就留有黑洞种子。但是这两种可能性都很难用当今的理论来解释”。

看清黑洞磁场

科学家认为,黑洞引擎是由磁场驱动的。借助事件视界望远镜(Event Horizon Telescope,EHT),天文学家在我们银河系中心超大黑洞事件视界的外侧探测到了磁场。发现在靠近黑洞的某些区域是混乱的,有着杂乱的磁圈和涡漩,就像搅在一起的意大利面。相反,其他区域的磁场则有序得多,可能是物质喷流产生的区域。还发现,黑洞周边的磁场在短至15分钟的时间段内都会发生明显变化。

理论修改

2015年3月,霍金对黑洞理论进行了修改,宣称黑洞实际上是“灰色的”。新“灰洞”理论称,物质和能量被黑洞困住一段时间后,又会被重新释放到宇宙中。

2016年1月,霍金同物理学家马尔科姆·佩里、安德鲁·施特罗明格提出了新理论:让信息“逃逸”的黑洞裂口由“柔软的带电毛发”组成,它们是位于视界线上的光子和引力子组成的粒子,这些能量极低甚至为零的粒子能捕获并存储落入黑洞的粒子的信息。

1969年,美国物理学家约翰 阿提 惠勒将这种贪得无厌的空间命名为“黑洞”。

著名的英国物理学家霍金在1974年证明黑洞有一个不为零的温度,有一个比其周围环境要高一些的温度。依照物理学原理,一切比其周围温度高的物体都要释放出热量,同样黑洞也不例外。一个黑洞会持续几百万万亿年散发能量,黑洞释放能量称为:霍金辐射。黑洞散尽所有能量就会消失。

一下使其它资料:(如果与上面的资料有部分雷同,我实在不是有心的,反正网上的资料就着几份)

“黑洞”很容易让人望文生义地想象成一个“大黑窟窿”,其实不然。所谓“黑洞”,就是这样一种天体:它的引力场是如此之强,就连光也不能逃脱出来。

根据广义相对论,引力场将使时空弯曲。当恒星的体积很大时,它的引力场对时空几乎没什么影响,从恒星表面上某一点发的光可以朝任何方向沿直线射出。而恒星的半径越小,它对周围的时空弯曲作用就越大,朝某些角度发出的光就将沿弯曲空间返回恒星表面。

等恒星的半径小到一特定值(天文学上叫“史瓦西半径”)时,就连垂直表面发射的光都被捕获了。到这时,恒星就变成了黑洞。说它“黑”,是指它就像宇宙中的无底洞,任何物质一旦掉进去,“似乎”就再不能逃出。实际上黑洞真正是“隐形”的,等一会儿我们会讲到。

那么,黑洞是怎样形成的呢?其实,跟白矮星和中子星一样,黑洞很可能也是由恒星演化而来的。

我们曾经比较详细地介绍了白矮星和中子星形成的过程。当一颗恒星衰老时,它的热核反应已经耗尽了中心的燃料(氢),由中心产生的能量已经不多了。这样,它再也没有足够的力量来承担起外壳巨大的重量。所以在外壳的重压之下,核心开始坍缩,直到最后形成体积小、密度大的星体,重新有能力与压力平衡。

质量小一些的恒星主要演化成白矮星,质量比较大的恒星则有可能形成中子星。而根据科学家的计算,中子星的总质量不能大于三倍太阳的质量。如果超过了这个值,那么将再没有什么力能与自身重力相抗衡了,从而引发另一次大坍缩。

这次,根据科学家的猜想,物质将不可阻挡地向着中心点进军,直至成为一个体积趋于零、密度趋向无限大的“点”。而当它的半径一旦收缩到一定程度(史瓦西半径),正象我们上面介绍的那样,巨大的引力就使得即使光也无法向外射出,从而切断了恒星与外界的一切联系——“黑洞”诞生了。

与别的天体相比,黑洞是显得太特殊了。例如,黑洞有“隐身术”,人们无法直接观察到它,连科学家都只能对它内部结构提出各种猜想。那么,黑洞是怎么把自己隐藏起来的呢?答案就是——弯曲的空间。我们都知道,光是沿直线传播的。这是一个最基本的常识。可是根据广义相对论,空间会在引力场作用下弯曲。这时候,光虽然仍然沿任意两点间的最短距离传播,但走的已经不是直线,而是曲线。形象地讲,好像光本来是要走直线的,只不过强大的引力把它拉得偏离了原来的方向。

在地球上,由于引力场作用很小,这种弯曲是微乎其微的。而在黑洞周围,空间的这种变形非常大。这样,即使是被黑洞挡着的恒星发出的光,虽然有一部分会落入黑洞中消失,可另一部分光线会通过弯曲的空间中绕过黑洞而到达地球。所以,我们可以毫不费力地观察到黑洞背面的星空,就像黑洞不存在一样,这就是黑洞的隐身术。

更有趣的是,有些恒星不仅是朝着地球发出的光能直接到达地球,它朝其它方向发射的光也可能被附近的黑洞的强引力折射而能到达地球。这样我们不仅能看见这颗恒星的“脸”,还同时看到它的侧面、甚至后背!

“黑洞”无疑是本世纪最具有挑战性、也最让人激动的天文学说之一。许多科学家正在为揭开它的神秘面纱而辛勤工作着,新的理论也不断地提出。不过,这些当代天体物理学的最新成果不是在这里三言两语能说清楚的。有兴趣的朋友可以去参考专门的论著。

黑洞

黑洞是引力极强的地方,没有任何东西能从该处逃逸,甚至光线也不例外。黑洞可从大质量恒星的“死亡”中产生,当一颗大质量恒星耗尽其内部的核燃料而抵达其演化末态时,恒星就变成不稳定的并发生引力坍缩,死亡恒星的物质的重量会猛烈地沿四面八方向内挤压,当引力大到无任何其他排斥力相对抗时,就把恒星压成一个称为“奇点”的孤立点。

有关黑洞结构的细节可用爱因斯坦解释引力使空间弯曲和时钟变慢的广义相对论来计算,奇点是黑洞的中心,在它周围引力极强,通常把黑洞的表面称为视界,或叫事件地平,或者叫做“静止球状黑洞的史瓦西半径”,它是那些能够和遥远事件相通的时空事件和那些因信号被强引力场捕获而不能传出去的时空事件之间的边界。在事件地平之下,逃逸速度大于光速。这是人类尚未观察证实的天体现象,但它被霍金等一些理论天文学家在数学模型方面研究的相当完善。

2004年7月21日,在爱尔兰首都都柏林举行的“第十七届国际广义相对论和万有引力”大会(GR17大会)上,《时间简史》的作者、英国剑桥大学富有传奇色彩的理论物理学家史蒂芬·霍金,向来自世界各地齐聚一堂的科学家和记者宣布,他解决了物理学中重要的一个问题:黑洞究竟有没有破坏被其吞噬的信息。

大会上,霍金演讲了他的最新发现,他宣告推翻了自己若干年前建立的著名黑洞理论,并重新讨论了信息守恒的问题。

“30年来,这个一直困扰着我的问题终于得到解决,这真是太好了,”霍金在演讲中这样说道。他的有关论文将在近日发表,他将在论文中进一步阐释他的新理论。

黑洞不破坏因果律,不再可能帮我们通向其它的宇宙

史蒂芬·霍金的讲话在整个物理界掀起了轩然大波。加拿大滑铁卢大学物理系主任罗伯特·曼博士,与在会的其他800名物理学家一起听取了霍金的演讲。

“听完他的讲话后,几乎无人能够理解他所说的内容,大概只有霍金自己明白这些东西。”罗伯特·曼这样评价这场天才的演讲。它让人联想到当年“全世界只有3个人理解相对论”的情形。

罗伯特·曼尽量用生动、浅显的语言来解释霍金理论的前后不同。

“40年前,人们开始认真思考黑洞,认为外人(黑洞外的观测者)能够获得黑洞仅有的信息就是质量、电荷、角动量,这意味着,如果你用任何一种物质来做成黑洞,比如压碎的听装啤酒瓶、压扁的恒星、还是其它什么,外人都无法分辨出黑洞里面到底是什么东西。”

“霍金30年前的理论认为,从量子力学的角度来考虑,黑洞能够辐射(即著名的霍金辐射)。由于量子作用,啤酒黑洞物质、恒星黑洞物质等都开始辐射,开始蒸腾、四溢。问题在于,霍金原先的计算显示了蒸腾完全属于热效应,这就意味着它不应该包含任何信息——即啤酒黑洞物质和恒星黑洞物质的辐射没有任何差别。所以,当黑洞变得越来越小,最后蒸发到没有时,就意味着已经丢失了全部信息。并且,到了变化的末端,已经无法复原那些信息。”

这种理论从诞生之初就遇到了麻烦:它同很多科学家坚持的“信息守恒定律”互为矛盾。这一度被人们称为“黑洞悖论”。

如同19世纪的科学家断定了能量守恒定律一样,20世纪的许多科学家提出了信息守恒一说——假如这个说法成立,那么“信息守恒定律”无疑将成为科学界最为重要的定律,也许比物质、能量守恒定律的意义更为深远。霍金的黑洞理论引起的激烈争执就是“信息”在黑洞中是否能够保存、守恒。

罗伯特·曼介绍说,大多数的物理学家都认为,任何信息都不能被破坏,否则将违背因果律,“出于对因果关系的深信不疑,在给出初始条件的情况下,物理学的工作就是通过过去预知未来。”这意味着,如果信息被破坏了——如同霍金30年前的理论所说,未来就根本无法通过信息来预知。

30年间霍金坚持:“信息守恒定律”在黑洞里失效。“在黑洞里,信息确实丢失了。如果它丢失了,它会进入另外一个空间,这个空间称作婴儿宇宙,顾名思义,婴儿宇宙来自我们的这个宇宙。”

但现在霍金宣布,他使用欧氏路线积分数学方法,证明出新的答案——信息进入黑洞之后并未被破坏掉,“如果你进入一个黑洞,你所承载的物质和能量将被返回我们的宇宙……它已经被撕裂,但包含了所有你的信息,只是不再被我们轻易辨识。”

“新的理论经过进一步推测还将得到另一个结论:它意味着,黑洞不再可能帮我们通向其它的宇宙,或者通向我们宇宙的其他角落——这是霍金以前提出来的说法。”罗伯特·曼说。

“我很抱歉,我让科幻爱好者们失望了。”霍金在演讲中这样说。

霍金愿赌服输,胜者兴味索然

对于霍金宣告自己原先的黑洞理论“突然死亡”一事,他在剑桥大学的同事加里·吉本斯认为,这件事的发生真是让物理学家“大跌眼镜”,“要知道霍金做学问的方式是相当戏剧化的:他会提出一条理论,并且在它被其他更好的论证推翻之前,一直坚持到底。”

洞中隐匿着巨大的引力场,这种引力大到任何东西,甚至连光,都难逃黑洞的手掌心。黑洞不让任何其边界以内的任何事物被外界看见,这就是这种物体被称为“黑洞”的缘故。我们无法通过光的反射来观察它,只能通过受其影响的周围物体来间接了解黑洞。据猜测,黑洞是死亡恒星或爆炸气团的剩余物,是在特殊的大质量超巨星坍塌收缩时产生的。

因为黑洞是不可见的,所以有人一直置疑,黑洞是否真的存在。如果真的存在,它们到底在哪里?

黑洞的产生过程类似于中子星的产生过程;恒星的核心在自身重量的作用下迅速地收缩,发生强力爆炸。当核心中所有的物质都变成中子时收缩过程立即停止,被压缩成一个密实的星球。但在黑洞情况下,由于恒星核心的质量大到使收缩过程无休止地进行下去,中子本身在挤压引力自身的吸引下被碾为粉末,剩下来的是一个密度高到难以想象的物质。任何靠近它的物体都会被它吸进去,黑洞就变得像真空吸尘器一样

为了理解黑洞的动力学和理解它们是怎样使内部的所有事物逃不出边界,我们需要讨论广义相对论。广义相对论是爱因斯坦创建的引力学说,适用于行星、恒星,也适用于黑洞。爱因斯坦在1916年提出来的这一学说,说明空间和时间是怎样因大质量物体的存在而发生畸变。简言之,广义相对论说物质弯曲了空间,而空间的弯曲又反过来影响穿越空间的物体的运动。

让我们看一看爱因斯坦的模型是怎样工作的。首先,考虑时间(空间的三维是长、宽、高)是现实世界中的第四维(虽然难于在平常的三个方向之外再画出一个方向,但我们可以尽力去想象)。其次,考虑时空是一张巨大的绷紧了的体操表演用的弹簧床的床面。

爱因斯坦的学说认为质量使时空弯曲。我们不妨在弹簧床的床面上放一块大石头来说明这一情景:石头的重量使得绷紧了的床面稍微下沉了一些,虽然弹簧床面基本上仍旧是平整的,但其中央仍稍有下凹。如果在弹簧床中央放置更多的石块,则将产生更大的效果,使床面下沉得更多。事实上,石头越多,弹簧床面弯曲得越厉害。

同样的道理,宇宙中的大质量物体会使宇宙结构发生畸变。正如10块石头比1块石头使弹簧床面弯曲得更厉害一样,质量比太阳大得多的天体比等于或小于一个太阳质量的天体使空间弯曲得厉害得多。

如果一个网球在一张绷紧了的平坦的弹簧床上滚动,它将沿直线前进。反之,如果它经过一个下凹的地方 ,则它的路径呈弧形。同理,天体穿行时空的平坦区域时继续沿直线前进,而那些穿越弯曲区域的天体将沿弯曲的轨迹前进。

现在再来看看黑洞对于其周围的时空区域的影响。设想在弹簧床面上放置一块质量非常大的石头代表密度极大的黑洞。自然,石头将大大地影响床面,不仅会使其表面弯曲下陷,还可能使床面发生断裂。类似的情形同样可以宇宙出现,若宇宙中存在黑洞,则该处的宇宙结构将被撕裂。这种时空结构的破裂叫做时空的奇异性或奇点。

现在我们来看看为什么任何东西都不能从黑洞逃逸出去。正如一个滚过弹簧床面的网球,会掉进大石头形成的深洞一样,一个经过黑洞的物体也会被其引力陷阱所捕获。而且,若要挽救运气不佳的物体需要无穷大的能量。

我们已经说过,没有任何能进入黑洞而再逃离它的东西。但科学家认为黑洞会缓慢地释放其能量。著名的英国物理学家霍金在1974年证明黑洞有一个不为零的温度,有一个比其周围环境要高一些的温度。依照物理学原理,一切比其周围温度高的物体都要释放出热量,同样黑洞也不例外。一个黑洞会持续几百万万亿年散发能量,黑洞释放能量称为:霍金辐射。黑洞散尽所有能量就会消失。

处于时间与空间之间的黑洞,使时间放慢脚步,使空间变得有弹性,同时吞进所有经过它的一切。1969年,美国物理学家约翰 阿提 惠勒将这种贪得无厌的空间命名为“黑洞”。

我们都知道因为黑洞不能反射光,所以看不见。在我们的脑海中黑洞可能是遥远而又漆黑的。但英国著名物理学家霍金认为黑洞并不如大多数人想象中那样黑。通过科学家的观测,黑洞周围存在辐射,而且很可能来自于黑洞,也就是说,黑洞可能并没有想象中那样黑。

霍金指出黑洞的放射性物质来源是一种实粒子,这些粒子在太空中成对产生,不遵从通常的物理定律。而且这些粒子发生碰撞后,有的就会消失在茫茫太空中。一般说来,可能直到这些粒子消失时,我们都未曾有机会看到它们。

霍金还指出,黑洞产生的同时,实粒子就会相应成对出现。其中一个实粒子会被吸进黑洞中,另一个则会逃逸,一束逃逸的实粒子看起来就像光子一样。对观察者而言,看到逃逸的实粒子就感觉是看到来自黑洞中的射线一样。

所以,引用霍金的话就是“黑洞并没有想象中的那样黑”,它实际上还发散出大量的光子。

根据爱因斯坦的能量与质量守恒定律。当物体失去能量时,同时也会失去质量。黑洞同样遵从能量与质量守恒定律,当黑洞失去能量时,黑洞也就不存在了。霍金预言,黑洞消失的一瞬间会产生剧烈的爆炸,释放出的能量相当于数百万颗氢弹的能量。

但你不要满怀期望地抬起头,以为会看到一场烟花表演。事实上,黑洞爆炸后,释放的能量非常大,很有可能对身体是有害的。而且,能量释放的时间也非常长,有的会超过100亿至200亿年,比我们宇宙的历史还长,而彻底散尽能量则需要数万亿年的时间

近日国际天文学家通过美国宇航局斯皮策太空望远镜的一项最新观测结果,在宇宙中某一狭窄区域范围内,首次同时发现了多达21处却一直深度隐藏着的宇宙“类星体”黑洞群。

这一重大发现第一次从正面证实了多年来天文学领域有关宇宙中有数目众多的隐身黑洞广泛存在的推测。充分的证据使人们相信,在浩瀚的宇宙中,的确充满着各种各样未被发

现的巨大引力源泉--"类星体"黑洞群体。有关该项最新发现的详细内容,研究人员已撰文正式刊登在了2005年8月4日出版的《自然》杂志中。

“深藏不露”的类星体

我们知道在现实中的宇宙黑洞,由于其巨大的引力作用,连光线都被紧密吸引束缚,因而无法被人们直接观测发现。为确定黑洞天体存在的证据,天文学家通过研究发现,在黑洞周围的物质行为具有其特定行为:在黑洞周围的宇宙空间中,气体物质具有超高的温度,并且在被黑洞强大引力场吸引剧烈加速后,这些物质在彻底消失之前均会被提升到接近光速。而当气体物质被黑洞彻底吞噬后,整个过程都会释放出大量的X-射线。通常正是这些逃逸出来的X-射线,显示出此处有黑洞确实存在的迹象。这便是以往人们发现黑洞的最直接证据。

而另一方面,在一些格外活跃的超大型宇宙黑洞周围,由于其对周边物质剧烈的吸引和吞噬行为,还会在黑洞星体外围产生一层厚重的宇宙气体和尘埃云层,这便进一步增大了对黑洞体附近区域的观测难度,阻碍了天文学家对这些超大黑洞存在的发现工作。天文学上将这些极度活跃的黑洞定义为"类星体"。普通情况下,一个类星体平均一年总共吞噬的物质质量,相当于1000个中等恒星质量的总和。一般情况下,这些类星体距离太阳系都非常遥远,当我们观测到他们时已经是亿万年以后的现在,这说明此类黑洞的活动出现在宇宙诞生初期。科学家推定,这种黑洞正是在成长壮大中的宇宙星系前身,所以将其命名为"类星体"。

到目前为止,只有为数不多的几个"类星体"黑洞被发现,在浩瀚的宇宙深处,是否还有数量众多的其它类星体存在,仍有待人们进一步去发现,而天文学家在该领域的研究工作则完全依靠对宇宙内部X-射线的全面观测研究来予以证实。

“充满”了黑洞的宇宙

近日,来自英国牛津大学的阿里耶-马丁内兹-圣辛格教授在介绍其首次对宇宙间隐藏黑洞的发现时说,"从以往对宇宙X-射线的观察研究中,本希望能找到宇宙中大量隐藏类星体存在的证据,但结果确都不尽如人意,令人失望。"而近日根据美国宇航局NASA的斯皮策太空望远镜(Spitzer Space Telescope)的最新观察结果,天文学家则成功穿透了遮蔽类星体黑洞的外围宇宙尘埃云层,捕捉到了其中一直暗藏不露的内部黑洞体。由于斯皮策太空望远镜能够有效收集能穿透宇宙尘埃层的红外光线,使得研究人员顺利地在一个非常狭窄的宇宙空间区域内,同时发现了数量多达21个早已存在却又"隐藏不露"的类星体黑洞群。

来自美国加州理工大学斯皮策科学中心的研究小组成员马克-雷斯在接受媒体访问时同时也表示,“如果我们抛开此次发现的21个宇宙类星体黑洞,放眼宇宙中的其它任何区域,我们完全可以大胆预测,必将有数量众多隐藏着的黑洞将会被陆续发现。这意味着,一如我们原先推测的那样,在不为人知的宇宙深处,一定有数量众多、质量超大的黑洞巨无霸,正借助着星际尘埃的隐蔽,在暗地里不断发展壮大着。”

欢迎分享,转载请注明来源:品搜搜测评网

原文地址:https://pinsoso.cn/meirong/1922558.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-10-27
下一篇2023-10-27

随机推荐

  • 有没有好的平价补水的套盒呀推荐一下呀?

    皮肤补水是每天不可缺少的一步,尤其在换季阶段,皮肤经常会出现脱皮等现象,这种情况就很尴尬。在这方面我也做了很多功课,从以往使用的礼盒中挑选了五款平价补水的套盒,在效果方面真的好用,推荐给大家~1、佰草集御五行抗衰套盒它的功效正如名字一样,从

    2024-04-15
    50700
  • 妮维雅和欧莱雅哪个好?妮维雅是哪国的品牌?

    妮维雅这个品牌大家都比较熟悉,很多人都会想到它们家的洗面奶,还经常被拿来和其他的护肤品牌做比较,比如说欧莱雅这个品牌,因为欧莱雅的护肤产和妮维雅一样也是有男士和女士的,那妮维雅和欧莱雅哪个好?妮维雅是哪国的品牌?1、妮维雅和欧莱雅哪个好妮维

    2024-04-15
    47000
  • 妈妈用的护肤品|后天气丹

    针对妈妈们用的护肤品做了个推荐,价位大概是200-600左右,这段时间有好多小仙女私信咨询我,不同肤质以及不同价位的后-津率享套盒后-津率享套盒:抗皱首选,这个系列有淡淡的人参味,滋润不油腻,清爽不干燥,适合30岁以上的干性混干肌肤,改善

    2024-04-15
    48500
  • 伊思芙洗发水怎么样

    很好。根据查询齐家网显示:伊思芙是一家专业的洗发水品牌,洗发水主要是以植物精华为主要原料,不含硅油,SLS,SLES等有害物质,有较好的洗发效果,且对头皮和头发比较温和,适合各种发质使用。这款贵妇膏很好。根据伊思芙官网资料显示,熊宝伊思芙贵

    2024-04-15
    43800
  • 发之萃这个品牌的防脱育发套盒怎么样?

    效果因人而异。产品特点:发之萃防脱育发套盒选取本草精华,何首乌、侧伯叶、川穹、当归等,采用高能活性萃取工艺精制而成,其活性成分能快速改善毛囊生态环境,改善头皮状况,激活毛囊,具有头发防脱、促进毛发生长、促进毛发的作用,长期用会使头发乌黑柔顺

    2024-04-15
    43600
  • 为什么用了妮维雅深层洁净洗颜泥是去油脂和卸妆的洗颜泥,会有刺痛感?我是男的,不知道可不可以用这种...

    如果使用过后,皮肤没有红肿、搔痒、灼痛感,这款产品对你来说就是安全的。刺痛感可能是收缩毛孔或者补水效果造成的。你所说的凸起的深红色的包,其实就是痘痘的前身,属于皮肤深层的痤疮。它生长一段时间之后,有的会发展成新的痘痘,有的可能被皮肤吸收掉痊

    2024-04-15
    26200
  • 妮维雅630和玉兰油多效修护面霜哪个好

    妮维雅630。1、吸收性。妮维雅630适合任何肤质,且温和不刺激,日夜也都适用,玉兰油多效修护面霜吸收性不如妮维雅630。2、成分。玉兰油多效修护面霜美白效果太快太明显说明添加化学成分多,妮维雅630与之相比好些没那么多化学成分。妮维雅面霜

    2024-04-15
    35700

发表评论

登录后才能评论
保存