2流式细胞技术应用
3流式细胞技术发展
流式细胞技术特点:
流式细胞仪构成:流体部分,光学部分,电子部分。
流式信号:散射光信号(体积+颗粒度) 荧光信号(标记物)
前向散射光FSC(反映体积大小): 0度
侧向散射光SSC(反映细胞颗粒度):90度
荧光信号:(CDS FITC,CD16+56PE,CD45PerCP,CD8PE-Cy7,CD19APC,CD4APC-Cy7) 流体聚焦:流动室
光信号产生:信号脉冲
阈值(threshold):阈值设置
线性坐标和对数坐标:
线性坐标信号范围:(2-10级)DNA标记染色
对数坐标信号范围:(>100级)抗体染色
图的类型:直方图、散点图、密度图、等高线图
门类型:设门:
二分门:区分阴性和阳性。四分门,多边形门,等分门,曲线四分门,偏移四分门,蜘蛛门,方形门、椭圆形门
技术应用:细胞凋亡、细胞周期、细胞免疫表型、报告基因检测、细胞内基因检测、细胞外基因检测:液相芯片:液相芯片,又称悬浮阵列、流式荧光技术,是基于美国Luminex 公司研制的多功能流式点阵仪 (Luminex 100TM)开发的多功能生物芯片平台,通常用于免疫分析、核酸研究、酶学分析、受体和配体识别分析等研究。蛋白磷酸化、单细胞水平RNA检测、淋巴细胞亚群分析、强直性脊柱炎、白血病/淋巴瘤、造血干细胞、CD4+绝对计数、精子计数/封闭抗体 技术发展:1固态温控激光器 2固定光路 3防堵设计
1免调电压 2一键操作 3多种补偿 4智能软件
高分辨率:灵敏度:FITC35000evens/s
低CV值:CV=d/m100% d:分布标准误差 m:分布平均值
Novecyte:CV
高精度绝对计数、多色分析、灵活配置、自由升级。
会。根据查询百科网显示,骨髓细胞的单细胞悬液,会堵塞流式细胞仪。流式细胞仪是对细胞进行自动分析和分选的装置,可以快速测量、存贮、显示悬浮在液体中的分散细胞的一系列重要的生物物理、生物化学方面的特征参量。
最近在看单细胞方面的文献(例如 The bone marrow microenvironment at single-cell resolution )时,总是时不时的出现流式细胞仪细胞术(FCM)的图,而在google搜索single cell的时候也总是出现流式细胞仪相关的介绍。那么流式细胞仪细胞术到底是什么?它对于我们做单细胞方面的研究到底有哪些帮助呢?我们到底怎样解读流式细胞仪的结果呢?这一切的答案都要求我们对流式细胞仪有一个基本的了解。
流式细胞仪的作用简单来说就是分选细胞(如下图):
流式细胞术(FCM)是70年代发展起来的一种利用流式细胞仪快速精确对细胞等生物粒子的理化及生物学特性(细胞大小、DNA/RNA含量、细胞表面抗原表达等)进行定量分析和分选的新技术。
FCM在细胞生物学、肿瘤学、免疫学的单细胞水平的研究中其中重要的作用。那么我们先看看
免疫表型分析的应用
1检测淋巴细胞亚群,监测细胞免疫状态
例如仅仅根据fsc/ssc就可以区分外周血中的淋巴细胞,单核细胞,中性粒细胞
免疫发生异常时,就能导致机体免疫紊乱并产生病理变化。FCM可以同时检测一种或几种淋巴细胞表面抗原,将不同的淋巴细胞亚群区分开来,并计算出它们相互间的比例,通过对病人淋巴细胞各亚群数量的测定来监控病人的免疫状态,并指导治疗)。
例如,通过对淋巴细胞流式检测,可以检测在不同条件下,各种类型细胞比例的变化。
比如 用流式检测细胞凋亡 ~~~
流式细胞术的特点是:
1检测对象:单细胞悬浮液或生物颗粒
2检测参数:多参数
3检测特点:单细胞水平
4检测速度:高速(上万个细胞/s)
5检测结果:精度高,准确性好
知道了流式的特点,那么 流式细胞仪检测细胞参数的原理 都有哪些呢?
流式细胞仪根据细胞的特性,将光信号转变为电信号,最终转换为数字信号(如下图)
而光信号的核心在于,
前向散射光FSC和侧向散射光SSC ,实验中常常采用FSC和SSC来区分细胞群体,并去除碎片,死细胞,粘连细胞的干扰。
那么再做流式或者看到文献中流式的结果时,坐标轴的意义是什么?我们如何解读?
FCM结果的显示通常有一维直方图、二维点图、等高线图、密度图等几种。由数据还可以做出标准曲线进行定量分析。
首先二维图:
在二维图的中,横坐标 / 纵坐标都表示荧光信号或散射光信号相对强度的值,可以是线形(line)或者对数(log)。双参数图可以将样品细胞群分开,从而方便对感兴趣的细胞进行分析。
其次单参数直方图
每一个细胞单参数的测量数据可以整理成统计分布,以直方图的方式来显示。在图中,横坐标表示荧光信号或散射光信号相对强度的值,其单位是道数(channel),可以是线形(line)或者对数(log)。纵坐标一般是相对细胞 / 粒子数(count)。
哈哈哈哈,写到这里,我已经对流式有了初步的认知,下次再看10X文献的时候,反正这块是不愁了
MTT、CCK8法
技术原理: MTT是3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyl tetrazolium bromide的简称,商品名为噻唑蓝。活细胞线粒体中的琥珀酸脱氢酶能使外源性MTT还原为水不溶性的蓝紫色结晶甲瓒(Formazan)并沉积在细胞中,而死细胞无此功能。然后采用二甲基亚砜(DMSO)溶解细胞中的甲瓒,用酶标仪在570 nm波长处测定其光吸收值,反映活细胞数量。在一定细胞数范围内,MTT结晶形成的量与细胞数成正比。
CCK8法原理是WST-8四唑盐(2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium)能被活细胞内的脱氢酶还原成橙色甲臜染料,然后测定450 nm下的吸光值,生成的甲臜的量与活细胞数量成正比。CCK8法可以做6天左右的生长曲线,1-6天每天收取细胞样本检测。也可以类似MTT法,在相同时间比较不同处理组。
BrdU、EdU法
技术原理: BrdU是一种胸腺嘧啶核苷类似物,可以代替胸腺嘧啶核苷插入复制的DNA双链中,这种置换可以稳定存在,并传递到子细胞中。细胞经固定和变性处理后,可以用免疫学方法检测DNA中的BrdU的含量,从而判断细胞的增殖能力。
EdU也是一种胸腺嘧啶核苷类似物,能够在细胞增殖过程中代替胸腺嘧啶插入正在复制的DNA中。EdU与荧光染料可以特异性地反应检测DNA的复制。
CFSE检测
技术原理: 羟基荧光素二醋酸盐琥珀酰亚胺酯(CFSE)是一种可以穿透细胞膜的荧光染料,具有与细胞特异性结合的琥珀酰亚胺酯基团和具有非酶促水解作用的羟基荧光素二醋酸盐基团。CFSE被细胞吸收后,不可逆地与细胞内的氨基结合偶联到蛋白质上。随着细胞增殖分裂,细胞内CFSE的含量被平均分配到两个子细胞中,子细胞荧光强度减半。随着细胞的增殖,CFSE不断被稀释,使用流式细胞仪对CFSE进行检测,可以对细胞的增殖进行分析。
免疫组化检测
技术原理: 使用免疫组化的方法对细胞增殖相关抗原-Ki-67、PCNA进行检测。这类标志物只表达在增殖细胞中,常用于反映体内肿瘤细胞的增殖能力。
细胞克隆形成
技术原理: 细胞克隆形成实验是用来检测细胞增殖能力、侵袭性、对杀伤因素敏感性等的重要技术方法。当单个细胞在体外增殖6代以上,其后代所组成的细胞群体,成为集落或克隆。每个克隆含有50以上的细胞,大小在03-10 mm之间。集落形成率表示细胞的独立生存能力。各种理化因素可能导致细胞的克隆形成能力发生改变。通过一定的实验方法可以对细胞的克隆形成能力进行检测,细胞克隆形成率即细胞接种存活率,表示接种细胞后贴壁的细胞成活并形成克隆的数量。贴壁后的细胞不一定每个都能增殖和形成克隆,而形成克隆的细胞必为贴壁和有增殖活力的细胞。克隆形成率反映细胞群体依赖性和增殖能力两个重要性状。
细胞迁移
Transwell检测
技术原理: 细胞迁移是指细胞在接收到迁移信号或感受到某些物质的梯度后而产生的移动。细胞迁移为细胞头部伪足的延伸、新的黏附建立、细胞体尾部收缩在时空上的交替过程。细胞迁移是正常细胞的基本功能之一,是机体正常生长发育的生理过程,也是活细胞普遍存在的一种运动形式。
Transwell的基本原理是将transwell小室放入培养板中,小室内称为上室,培养板内称为下室,上下层培养液以聚碳酸酯膜相隔,上室内添加上层培养液,下室内添加下层培养液。将细胞种在上室内,由于膜有通透性,下层培养液中的成分可以影响到上室内的细胞,从而可以研究下层培养液中的成分对细胞生长、运动等的影响。
细胞侵袭
Transwell检测
技术原理: 细胞侵袭是指细胞向局部侵犯,细胞侵袭实验可用来研究细胞和胞外基质之间的相互作用。胞外基质不仅为细胞提供了结构支架,同时也包含了许多细胞生存及生长过程中生物功能因子。细胞可以分泌酶,用于降解胞外基质中特定的组分,从而使细胞可以在细胞间质中移动。胞外基质胶模仿体内细胞外基质胞外基质环境,包含了支撑细胞结构的最基本的组分。转移性肿瘤细胞由于其高迁移和/或降解胞外基质的酶活从而表现出较强的侵袭性。
铺有 Matrigel 胶的 Transwell 小室可用于检测细胞侵袭能力。Transwell的基本原理是将transwell小室放入培养板中,小室内称为上室,培养板内称为下室,上下层培养液以铺有 Matrigel 胶聚碳酸酯膜相隔,Matrigel 是从小鼠EHS肉瘤中提取的基质成分,含有LN、IV型胶原、接触蛋白和肝素硫酸多糖,铺在无聚乙烯吡硌烷酮的聚碳酸酯滤膜上,能在DMEM培养基中重建形成膜结构,这种膜结构与天然基质膜结构极为相似。滤膜孔径一般为8 μm,而且膜孔都被Matrigel覆盖,细胞不能自由穿过,必须分泌水解酶,并通过变形运动才能穿过这种铺有Martrigel的滤膜,这与体内情况较为相似。铺有Martrigel的滤膜放在以细胞小室上下室之间,铺有Martrigel面朝向上室,在下室中加有趋化剂,上室加入重悬的瘤细胞,具有侵袭能力的细胞在趋化剂诱导下开始穿膜运动。肿瘤细胞穿过重建基质膜的能力与它的体内侵袭转移能力表现出较好的相关性,可以用重建基质膜模型初筛抗侵袭药物。
细胞凋亡
Annexin V-PI双染色流式检测
技术原理: 在正常细胞中,磷脂酰丝氨酸(PS)只分布在细胞膜脂质双层的内侧,而在细胞凋亡早期,细胞膜中的磷脂酰丝氨酸(PS)由脂膜内侧翻向外侧。AnnexinV是一种Ca2+依赖性磷脂结合蛋白,与磷脂酰丝氨酸(PS)有高度亲和力,故可通过细胞外侧暴露的PS与凋亡早期细胞的胞膜结合。碘化丙啶(Propidium Iodide, PI)是一种核酸染料,它不能透过完整的细胞膜,但对凋亡中晚期的细胞和死细胞,PI能够透过细胞膜而使细胞核染红。因此将Annexin V与PI匹配使用,通过流式细胞仪检测可以将处于不同凋亡时期的细胞区分开来。
Caspase3活性检测
技术原理: Caspase3是细胞凋亡最重要的执行蛋白之一,对其功能/活性的检测可以反映细胞的凋亡情况。可以使用Western Blot检测细胞中Caspase3蛋白的表达水平或者使用流式细胞仪检测细胞群体中Caspase3阳性细胞的比例。
细胞周期
PI(碘化丙啶)染色
技术原理: 细胞周期分为间期与分裂期两个阶段。间期又分为三期:即 DNA 合成前期 ( G1 期 )、DNA 合成期 ( S 期 ) 与 DNA 合成后期 ( G2 期 )。某些细胞在分裂结束后暂时离开细胞周期,停止细胞分裂,执行一定生物学功能 ( G0 期 )。由于细胞周期各时相的 DNA 含量不同,通常正常细胞的 G1 / G0 期具有二倍体细胞的 DNA 含量 ( 2N ),而 G2 / M 期具有四倍体细胞的 DNA 含量 (4N),而 S 期的 DNA 含量介于二倍体和四倍体之间。PI可以与 DNA 结合,其荧光强度直接反映了细胞内 DNA含量。因此,通过流式细胞仪 PI 染色法对细胞内 DNA 含量进行检测时,可以将细胞周期各时相区分为 G1 / G0 期,S 期和 G2 / M期,获得的流式直方图对应的各细胞周期可通过特殊软件计算各时相的细胞百分率。
欢迎分享,转载请注明来源:品搜搜测评网