金矿的主要成分当然是以泥沙为主,因为金矿尾矿的SiO2含量最高但是不同的金矿还有各自不同的组成:金矿分为氧化矿、原生矿、混合矿、沙金、伴生金
常见的金矿:1、 黑稀金矿,2、黝铜矿
现代工业的基础是钢铁,钢铁来自于铁矿石。
(1)磁铁矿(MagnetITe)是一种氧化铁的矿石,主要成份为Fe3O4,是Fe2O3和FeO的复合物,呈黑灰色,比重大约515左右,含Fe724%,O 276%,具有磁性。在选矿(Beneficiation)时可利用磁选法,处理非常方便;但是由于其结构细密,故被还原性较差。经过长期风化作用后即变成赤铁矿。
(2)赤铁矿(Hematite)也是一种氧化铁的矿石,主要成份为Fe2O3,呈暗红色,比重大约为526,含Fe70%,O 30%,是最主要的铁矿石。由其本身结构状况的不同又可分成很多类别,如赤色赤铁矿(Red hematite)、镜铁矿(SPEcularhematite)、云母铁矿(Micaceous hematite)、粘土质赤铁(Red Ocher)等。
铁矿石行情
铁矿石的行情可以去阿里巴巴、权威钢铁网站炉料频道查询,比如联合钢铁网、我的钢等网站。
推荐铁精粉信息网 地址:wwwubuncn
(3)褐铁矿(Limonite)这是含有氢氧化铁的矿石。它是针铁矿(Goethite)HFeO2和鳞铁矿(LepidoCRocite)FeO(OH)两种不同结构矿石的统称,也有人把它主要成份的化学式写成mFe2O3.nH2O,呈现土黄或棕色,含有Fe约62%,O 27%,H2O 11%,比重约为36~40,多半是附存在其它铁矿石之中。
(4)菱铁矿(Siderite)是含有碳酸铁的矿石,主要成份为FeCO3,呈现青灰色,比重在38左右。这种矿石多半含有相当多数量的钙盐和镁盐。由于碳酸根在高温约800~900℃时会吸收大量的热而放出二氧化碳,所以我们多半先把这一类矿石加以焙烧之后再加入鼓风炉。
(5)铁的硅酸盐矿(Silicate Iron)此类矿石是一种复合盐,没有一定的化学式,成份的变化很大,一般呈现深绿色,比重为38左右,含铁成份很低,是一种较差的铁矿石。
(6)硫化铁矿(Sulphide iron)这种矿石含有FeS2,含Fe只有466%而S的含量达到534%。呈现灰**,比重大约为495~510。由于这种矿石常常含有许多其它较贵重的金属如铜(CoPPer)、镍(Nickel)、锌(Zinc)、金(Gold)、银(Silver)等,所以常被用做他种金属冶炼工业的原料;又由于它含有大量的硫,所以常被用来提制硫磺,铁反而变成了副产品,所以事实上已不能称为铁矿石矣。
为了解和掌握萨瓦亚尔顿金矿床中矿石的化学组成,我们对含矿岩石、各类型矿石和重要矿物等进行了较全面的化学分析,从而获得了一系列有关基本化学组成的信息。
一、矿石的主要化学成分
为较全面和精确地测定矿石中的化学组成,特采用中子活化分析法进行分析,获得了大量岩石、矿石和金属矿物中所含多达30余种化学元素基本含量的数据。兹将主要金属含量分别列于表519、表520和表521中。
从表519、表520中可见,萨瓦亚尔顿矿床中矿石的主要金属成分为Au、Ag、As和Sb。由于矿石中主要的金矿物为银金矿,因而虽然迄今尚未发现独立的银矿物,但金矿石的银含量仍然很高,绝大部分样品接近达到边界品位,其中不少样品可达工业品位的含量。在一些矿化破碎带中尚可以圈定出独立的银矿体。
金矿石中还普遍含As、Sb,且含量极高,Au与As、Sb之间存在明显的正相关关系,即一般As、Sb含量高的矿石,金含量亦高。因而在萨瓦亚尔顿矿区完全可以利用As、Sb的含量变化来寻找金的富矿体。我们应用X荧光测量方法亦得到了类似的结论。
表519 主要矿物中的主要金属含量(wB/10-6)
测试单位:成都理工学院核工系中子活化实验室,1998;
测试方法:中子活化法
就矿石中主要组成矿物的化学成分来看(表519),毒砂和黄铁矿中普遍含Au和Ag。但毒砂中的Au、Ag含量较黄铁矿中的Au、Ag含量高出数倍至数十倍。由此看来,毒砂显然是最重要的载金矿物。
图510、图511和图512示原生矿石、矿石中的主要矿物和容矿围岩中的Au、Ag、Sb、As含量变化情况。就Au含量与Ag含量的关系来看,无论金矿石、单矿物和容矿围岩中,两者均有很强的相关性。Au含量与Ag含量这种稳定的相关关系,显然与Au以银金矿形式产出有关。
表520 各种类型矿石的主要金属含量(wB/10-6)
测试单位:成都理工学院核工系中子活化实验室,1998;
测试方法:中子活化法
表521 各种容矿岩石中主要金属含量(wB/10-6)
测试单位:成都理工学院核工系中子活化实验室,1998;
分析方法:中子活化法
图510 各类矿石中Au与Ag、As、Sb相关图
图511 主要矿物中Au与Ag、As、Sb相关图
在上述三种赋矿介质中,以单矿物中w(Au)与w(As)的相关性最好。虽然矿石的个别样品中As含量较低,如SⅣ-97-22样为锑-金型矿石,Sb含量在矿石中所占比重很大,但因As的含量较低,因而Au的含量也相对降低,不过也显示存在一定的相关关系。
w(Sb)与w(Au)、w(Ag)之间的关系,显然与w(As)有很大的区别。在各类矿石中w(Sb)与w(Au)、w(Ag)的关系为负相关,尽管Sb在某些金矿石中的含量可能很高。Sb含量与Au含量、Ag含量的这一关系,至少说明两个问题。第一,Sb矿物不是载金矿物;第二锑与金不是同一成矿阶段的产物。只有当两者叠加时,才可能出现Au与Sb含量同时增长的情况。
图512 容矿围岩中Au与Ag、As、Sb相关图
采用最小二乘法回归线性方程,求得Au含量与As含量、Sb含量、Ag含量的相关关系如下:
(1)原生矿石
w(Au)与w(As)的相关性(单位:10-6,下同)
w(Au)=768306+191008×10-5w(As) r=013513
w(Au)与w(Sb)的相关性
w(Au)=929871-283223×10-5w(Sb) r=-027094
w(Au)与w(Ag)的相关性
w(Au)=125049+010432w(Ag) r=072615
(2)原生金属矿物
w(Au)与w(As)的相关性
w(Au)=034846+282565×10-5w(As) r=0704467
w(Au)与w(Sb)的相关性
w(Au)=1846859+34043×10-3w(Sb) r=022768
w(Au)与w(Ag)的相关性
w(Au)=-035389+0063115w(Ag) r=085917
(3)氧化矿石
w(Au)与w(As)的相关性
w(Au)=-239022+50175×10-5w(As) r=093688
w(Au)与w(Sb)的相关性
w(Au)=886520+634402×10-6w(Sb) r=003371
w(Au)与w(Ag)的相关性
w(Au)=1155632-0018134w(Ag) r=-004339
(4)容矿围岩
w(Au)与w(As)的相关性
w(Au)=0078392-5678725×10-4w(As) r=-031667
w(Au)与w(Sb)的相关性
w(Au)=0073521-6491300×10-4w(Sb) r=-029714
w(Au)与w(Ag)的相关性
w(Au)=0078308-0015129w(Ag) r=-047420
由以上相关系数可以看出,Au含量与Ag含量在原生矿石和矿物中的相关性颇佳。这一相关性如前所述是与Au与Ag结合形成以银金矿形式产出有关。但在氧化矿石中Au含量与Ag含相关,这是因为银金矿在氧化带中遭受强烈氧化和淋滤,使银金矿中的Ag淋失,即Au与Ag发生分离使然。
Au含量与As含量的关系,在原生矿石,原生金属矿物和氧化矿石中都有很好的相关性这显然与毒砂和自然砷是金的伴生矿物,而且系载金矿物有关。特别是在氧化矿石中,Au含量与As含量的相关性最强,因而可以利用As的高含量来寻找金的富集部位或金矿体。
Au含量与Sb含量的关系,两者相关性较差,特别是在原生矿石中两者呈负相关。这表明,锑矿物不是载金矿物,而且不是同一阶段的产物。
在容矿围岩中,Au含量与As含量、Sb含量、Ag含量均呈负相关关系,这可能说明,矿区内的容矿围岩并非矿质的主要提供者,成矿作用携带的矿质主体是由热液活动,通过不同阶段的热液分别由深部带入的(详见第六章)。
必须指出,虽然Au含量与As含量、Sb含量、Ag含量之间存在某种特殊关系,但由于成矿条件的复杂性和多阶段性,因而它们之间在空间上往往出现许多变化。就金而言,在矿体中的分布相当不均匀。这种不均匀性,与矿石的矿物组合类型和载金矿物的分布不均匀密切相关。在原生矿石中金含量以富含毒砂的矿石中最高,而以黄铁矿为主体的矿石中,金含量明显低于前者。在毒砂为主矿石中,又以细粒毒砂为主的矿石含金最高。在黄铁矿为主的矿石,则以含细粒黄铁矿为主的矿石含Au较好。从表519可知,细粒毒砂比粗粒毒砂含金高得多,而细粒黄铁矿比粗粒黄铁矿的含金性为佳。由此不难看出,载金矿物的种类、含量及分布情况直接控制着矿体中金的聚集状况,这是萨瓦亚尔顿金矿床中矿石物质组成与金富集规律的一大特色。
还应指出的是,许多矿石(包括原生矿石和氧化矿石)中Ag含量可以达到边界品位,特别是原生矿石中,凡是Au含量较高的矿石,Ag含量也高。这一相关关系从Au与Ag结合形成的银金矿和两者的相关系数很好地显示出来。应该指出,Ag是矿床中不容忽视的、重要的、可以综合利用的组分之一。
此外,矿石中Sb的含量普遍较高,在一些类型矿石中,Sb含量可以达到工业品位,甚至可圈定出一定规模的独立锑矿体。萨瓦亚尔顿金矿床中,Sb是另一个重要的可综合开发利用的组分。
二、矿石的稀土元素含量及其特征
将各类矿石及石英脉、石英-碳酸盐脉、深部原生矿石等的稀土元素含量经过球粒陨石标准化后的数值,分别列于表522、表523和表524中。
表522 各类矿石的稀土元素含量(wB/10-6)
表523 各类热液脉的稀土元素含量(wB/10-6)
表524 深300m附近矿石的稀土元素含量(wB/10-6)
将表522、表523和表524中的数值,分别制成图513、图514和图515。
根据以上表(表522~524)和图(图513~515)所显示出的稀土配分特征,可获得如下信息。
图513 各类矿石稀土配分模式
(样号同表522)
(1)萨瓦亚尔顿金矿床的稀土元素组成,从稀土配分模式图可看出,曲线总体显示较平缓,斜率不大。这表明矿床中轻稀土元素丰度和重稀土元素丰度比较接近。
(2)原生矿石与氧化矿石中Eu(铕)有明显的亏损,但石英脉和石英-碳酸盐脉却不存在Eu亏损现象,其中若含黄铁矿时(A-80样号),则又显现Eu亏损现象。这可能说明,矿床中金属矿物与非金属矿物的物源是不相一致的。
(3)在原生矿石中,大多数矿石类型的稀土配分曲线与容矿层的砂岩类和千枚岩(板岩)类岩石的稀土配分曲线颇相类似,但有少数样品(如Ⅳ97-23-3,SⅣ-97-23-1样)与大多数样品显著不同,表现出明显的Ce亏损。这一特征与矿区内辉绿岩脉的Ce亏损特征完全相似。由此看来,矿石中的成矿物质虽然大部分来自沉积地层,但不排除小部分矿质可能来自岩浆岩。
图514 各类热液脉体稀土配分模式
(样号同表523)
图515 深300m附近矿石稀土配分模式
(样号同表524)
(4)从图514中表现出的石英脉和石英-碳酸盐脉的稀土配分曲线中不难看出两者的差异。石英脉中的稀土元素由La至Lu,曲线向右斜倾,且较陡;石英-碳酸盐脉的曲线几乎呈一平行底边的水平线;而含黄铁矿的热液脉曲线变化则介于两者之间。这说明石英脉和石英-碳酸盐脉(尤其碳酸盐矿物),不仅是不同成矿阶段的产物,而且其物源也可能是不一致的。
常见矿物俗称及化学式常见矿物俗称及化学式常见矿物俗称及化学式常见矿物俗称及化学式
化学式,
俗称,
矿物
海波-----Na2S2O3·5H2O
磁铁矿--Fe3O4
赤铁矿------Fe2O3
焦炭---C
铁矿石---磁铁矿+赤铁矿
金红石TiO2
电石CaC2
重晶石BaSO4
芒硝NaSO4
10H2O
石膏CaSO4
2H2O
绿矾FeSO4
7H2O
胆矾CuSO4
5H2O
明矾KAl(SO4)2
12H2O
硝铵NH4NO3
食盐NaCl
保险粉连二硫酸钠
CoCl2光气
CHCl3氯仿
CH3OH木精
丙三醇,甘油
苯酚,石炭酸
酚醛树脂,电木
35%--40%甲醛溶液,福尔马林
CuCO3·Cu(OH)2------孔雀石
CuCO3·2Cu(OH)2----石青
Be3Al2[Si6O18]——祖母绿
BeAl2O4——猫眼石
NaAl[Si2O6]——翡翠
AsS——雄黄
As2S3——雌黄
Mg3[Si4O10](OH)2——滑石
Al2O3——刚玉
FeAsS——毒砂
KAlSi3O8——长石
欢迎分享,转载请注明来源:品搜搜测评网