脂肪的成分

脂肪的成分,第1张

名称 饱和脂肪% 单不饱和脂肪酸% 多不饱和脂肪酸% 豆油 14 23 58 花生油 17 46 32 橄榄油 13 74 8 玉米油 13 24 59 棉籽油 26 18 50 葵花籽油 13 24 59 红花油(safflower oil) 9 12 75 改良菜籽油(canola oil) 7 55 33 椰子油 86 6 2 棕榈油(核) 81 11 2 棕榈油 49 37 9 葡萄籽油 11 16 68 核桃油 9 16 70 奶油 62 29 4 牛脂 50 42 4 羊油 47 42 4 猪油 40 45 11 鸡油 30 45 21

(3)脂肪无罪

脂肪,一种我们耳熟能详却又不甚了解的物质,可说不清从什么时候开始,它的“社会形象”开始变得负面起来,一听到“脂肪”这个词,人们马上联想到臃肿的身材、不健康的饮食、某些慢性疾病的幕后黑手。脂肪果真如此糟糕?它和人们避之不及的肥胖到底有啥关系?

脂肪,俗称油脂,由碳、氢和氧元素组成。它既是人体组织的重要构成部分,又是提供热量的主要物质之一。食物中的脂肪在肠胃中消化,吸收后大部分又再度转变为脂肪。它主要分布在人体皮下组织、大网膜、肠系膜和肾脏周围等处。体内脂肪的含量常随营养状况、能量消耗等因素而变动。

脂肪:生命运转必需品。

过多的脂肪确实可以让我们行动不便,而且血液中过高的血脂,很可能是诱发高血压和心脏病的主要因素。不过,脂肪实际上对生命极其重要,它的功能众多几乎不可能一一列举。要知道,正是脂肪这样的物质在远古海洋中化分出界限,使细胞有了存在的基础,依赖于脂类物质构成的细胞膜,将细胞与它周围的环境分隔开。使生命得以从原始的浓汤中脱颖而出,获得了向更加复杂的形式演化的可能。因此毫不夸张地说,没有脂肪这样的物质存在,就没有生命可言。

法国人谢弗勒首先发现,脂肪是由脂肪酸和甘油结合而成。因此可以把脂肪看作机体储存脂肪酸的一种形式,从营养学的角度看,某些脂肪酸对我们的大脑、免疫系统乃至生殖系统的正常运作来说十分重要,但它们都是人体自身不能合成的,我们必须从膳食中摄取,大量摄入这些被称为多不饱和脂肪酸的分子,有助于健康和长寿。同时一些非常重要的维生素需要膳食中脂肪的帮助我们才能吸收,如维生素 A、D、E、K等。

另外,由于脂肪不溶于水,这就允许细胞在储备脂肪的时候,不需同时储存大量的水,相同重量的脂肪比糖分解时释放的能量多得多。这就意味着,储存脂肪比储存糖划算。如果在保持总储能不变的情况下,将我们的脂肪换成糖,那么体重很可能至少会翻番,这取决于你的肥胖程度。我们的脊椎动物祖先,显然看中了脂肪作为超高能燃料的巨大好处,为此进化出了独特的脂肪细胞以及由此而来的脂肪组织,也埋下了今日我们肥胖的祸根。 虽然人们早就知道,成年人体重的增加源于储脂增多。但美国洛克菲勒大学的Jules Hirsch教授是第一个深入研究脂肪含量变化规律的专家。Hirsch找到了估算体内脂肪细胞总数的方法。由此他发现,肥胖症患者的脂肪细胞数量,是普通人的10倍,达到2500亿之多,并且体积也要大4倍。

人在不同时期,储存脂肪的方式也有所不同:年少时,我们优先增加脂肪细胞的数量;成年后,则先把已有的脂肪细胞装满。如果这类细胞的数量过多,显然很难保持苗条。而吸脂手术后体重的迅速反弹,似乎在暗示,我们的身体能记住脂肪细胞的数量。

1953年,美国生理学家Kenndy提出体重调定点假说。他认为如同体温一样——寒冷时颤抖,太阳下流汗,是为了维持住恒定的体温——当身体发觉体重低于预定值时,就可能通过升高食欲,使你厌倦运动等手段,促使体重尽快恢复到正常状态。

与此同时,Hirsch教授革新了测定人体每日基础能量消耗的方法。基础能量消耗,是维持生存必需的开销,对于缺乏锻炼的人而言,这个消耗就在总花费中占去了大半。即便你每日入口的食物总量不变,只需基础消耗长期轻微升高或者降低一点,你的体重就可能发生惊人的变化。Hirsch的新方法,给体重调定点假说提供了一定的支持。他发现体重相同的人,每日的基础能量消耗可以大不一样。

身体总是希望回到它自己的平衡点。当然体重恒定点与体温不一样,它的高低受许多因素的影响,如家族背景、儿童时期的营养状况、体育锻炼、年龄等等。毫无疑问,对一些人而言,这个体重的恒定点是偏高了。但我们仍然没有既有效又安全的方法去调节体重的恒定点。在这样的状况下,试图对抗我们历经数百万年,残酷考验才锻造而成的躯体,其难度可想而知。

瘦素、细菌可抑制脂肪过剩

身体又是如何得知体重变化呢?实际上,我们的脂肪组织会向大脑通报储脂情况,如果储存过多,它们会大量释放一种称为瘦素的激素,知会大脑节制食欲,或许还会激发你运动的兴趣,反之它们则默不作声。

1994年,Friedman和复旦大学毕业的张一影合作,从遗传性肥胖的老鼠身上,找到了制造这个激素的基因,并证实了它的功能。一时间舆论为之沸腾,Amgen公司迅即以3000万美金的代价,获得该基因的专利。然而,奇迹没有发生。的确,这世上有人正是因为丧失了制造瘦素的能力,而陷入病态肥胖之中,但这样的人实在太少,到目前为止仅发现十余例。

据最新研究显示,体重似乎还和肠胃中的细菌有关。2004年,戈登发现体内无菌的实验鼠虽然食量比它的孪生同胞大29%,但体内脂肪却少了42%之多,同时其基础代谢率还低27%。当把这些可怜的苗条鼠,从无菌环境中放回正常环境后,它们的体重在两星期的时间里,恢复到和同胞一致,食量也随之减少。它也证实了我们长期以来的猜测,肠胃中的细菌能促进食物的消化吸收。戈登小组随后又发现,在人们减肥的过程中,胃肠中拟杆菌的数量明显增加,而这和普通人的情况一致。

不过,对拟杆菌的进一步研究却让人迷惑,这是一种拥有非凡消化能力的细菌,它能够把多种我们自己无法消化的食物,转变为可以吸收利用的形式。让人意外而更“过分”的是,它还能抑制一种促进脂肪消耗的蛋白质,从而间接帮助身体积蓄脂肪。看来无论是否喜欢,我们都得继续在漫漫肥胖路上跋涉一阵子了。

研究表明,脂肪量的变动很可能没有一个普遍性的原因。或许,那些单因素所致的体重异常,都已经被我们发现了。比如:瘦素缺乏,或者由于肾上腺分泌了过多的糖皮质激素……

要透彻地理解发胖原因,也许还必须求助于进化论,了解我们祖先的生活方式。我们那些酷爱甜食的基因,早在祖先们还呆在树上的时候就已经进化出来。而非洲草季交替分明的气候,攸关生死,不可大意度过食物短缺旱季的这些,曾经帮助祖宗基因,在如今这个高的时代,成为长胖最本质的根源。 在脂肪酶的作用下,脂肪水解成甘油和脂肪酸。甘油经磷酸化和脱氢反应,转变成磷酸二羟丙酮,纳入糖代谢途径。脂肪酸与ATP和CoA在脂酰CoA合成酶的作用下,生成脂酰CoA。脂酰CoA在线粒体内膜上肉毒碱:脂酰CoA转移酶系统的帮助下进入线粒体衬质,经β-氧化降解成乙酰CoA,在进入三羧酸循环彻底氧化。β-氧化过程包括脱氢、水合、再脱氢和硫解四个步骤,每次β-氧化循环生成FADH2、NADH、乙酰CoA和比原先少两个碳原子的脂酰CoA。此外,某些组织细胞中还存在α-氧化生成α羟脂肪酸或CO2和少一个碳原子的脂肪酸;经ω-氧化生成相应的二羧酸。

萌发的油料种子和某些微生物拥有乙醛酸循环途径。可利用脂肪酸β-氧化生成的乙酰CoA合成苹果酸,为糖异生和其它生物合成提供碳源。乙醛酸循环的两个关键酶是异柠檬酸裂解酶和苹果酸合成酶,前者催化异柠檬酸裂解成琥珀酸和乙醛酸,后者催化乙醛酸与乙酰CoA生成苹果酸。

人体脂肪代谢途径:人体代谢最终也是通过生成脂肪酶的方式,将脂肪生物降解为代谢废物排出,可以生物直接合成脂肪酶,但是化学合成脂肪酶大部分没有办法被人体直接吸收,胆固醇等脂质小分子具有重要的生物学功能,但过量的胆固醇会引起动脉粥样硬化,进而导致冠心病和脑中风等一系列严重疾病。因此,体内脂质水平必须受到严密而精准的调控。gp78作为一个泛素连接酶,能调控胆固醇代谢过程中一些重要蛋白质的降解。研究组发现,gp78基因缺失的小鼠消瘦,脂肪含量减少,能够显著抵抗高脂饮食和年龄诱导的肥胖,并且表现为胰岛素敏感性增强。其分子机制在于一方面减少了胆固醇与脂肪酸等脂质合成,另一方面促进大量葡萄糖和脂肪酸等营养物质的消耗。这项研究发现了脂质合成与能量代谢之间的联系,并提示gp78可作为治疗肥胖、糖尿病等代谢疾病的靶标。

人们可以通过天然植物方式的提炼物可以生成被人体吸收利用的脂肪酶从而代谢脂肪,让身体多余脂肪健康的代谢消耗掉。,身体也会自然变得消瘦,也是非常的健康的消瘦途径。 脂肪的生物合成包括三个方面:饱和脂肪酸的从头合成,脂肪酸碳链的延长和不饱和脂肪酸的生成。脂肪酸从头合成的场所是细胞液,需要CO2和柠檬酸的参与,C2供体是糖代谢产生的乙酰CoA。反应有二个酶系参与,分别是乙酰CoA羧化酶系和脂肪酸合成酶系。首先,乙酰CoA在乙酰CoA羧化酶催化下生成,然后在脂肪酸合成酶系的催化下,以ACP作酰基载体,乙酰CoA为C2受体,丙二酸单酰CoA为C2供体,经过缩合、还原、脱水、再还原几个反应步骤,先生成含4个碳原子的丁酰ACP,每次延伸循环消耗一分子丙二酸单酰CoA、两分子NADPH,直至生成软脂酰ACP。产物再活化成软脂酰CoA,参与脂肪合成或在微粒体系统或线粒体系统延长成C18、C20和少量碳链更长的脂肪酸。在真核细胞内,饱和脂肪酸在O2的参与和专一的去饱和酶系统催化下,进一步生成各种不饱和脂肪酸。高等动物不能合成亚油酸、亚麻酸、花生四烯酸,必须依赖食物供给。

3-磷酸甘油与两分子脂酰CoA在磷酸甘油转酰酶作用下生成磷脂酸,在经磷酸酶催化变成二酰甘油,最后经二酰甘油转酰酶催化生成脂肪。

人体脂肪,也就是通俗意义上讲的肥肉。当然,人体脂肪并不仅仅指外在我们看得到的肥肉,还有很多是我们看不到的。

人体摄入的大部分脂肪经胆汁乳化成小颗粒,胰腺和小肠内分泌的脂肪酶将脂肪里的脂肪酸水解成游离脂肪酸和甘油单酯(偶尔也有完全水解成甘油和脂肪酸)水解后的小分子,如甘油、短链和中链脂肪酸,被小肠吸收进入血液。甘油单脂和长链脂肪酸被吸收后,先在小肠细胞中重新合成甘油三酯,并和磷脂、胆固醇和蛋白质形成乳糜微粒(Chylomicron),由淋巴系统进入血液循环。

基本介绍 中文名 :人体脂肪 外文名 :Body fat 水解物 :甘油、脂肪酸 吸收 :被小肠吸收进入血液 来源 :人体自身合成、食物供给 人体脂肪形成,人体主要脂类,脂类消化吸收,甘油三酯代谢,能量生成,合成代谢,重要衍生物,其他氧化方式,生成及利用,磷脂的代谢,胆固醇的代谢,蛋白代谢,代谢, 人体脂肪形成 人体摄入的大部分脂肪经胆汁乳化成小颗粒,胰腺和小肠内分泌的脂肪酶将脂肪里的脂肪酸水解成游离脂肪酸和甘油单酯(偶尔也有完全水解成甘油和脂肪酸)水解后的小分子,如甘油、短链和中链脂肪酸,被小肠吸收进入血液。甘油单脂和长链脂肪酸被吸收后,先在小肠细胞中重新合成甘油三酯,并和磷脂、胆固醇和蛋白质形成乳糜微粒(Chylomicron),由淋巴系统进入血液循环。 人体主要脂类 人体脂类主要包括以下几种:

1脂肪:由甘油和脂肪酸合成,体内脂肪酸来源有二:一是机体自身合成,二是食物供给,特别是某些不饱和脂肪酸,机体不能合成,称必需脂肪酸,如亚油酸、α-亚麻酸。

2磷脂:由甘油与脂肪酸、磷酸及含氮化合物生成。

3鞘脂:由鞘氨酸与脂肪酸结合的脂,含磷酸者称鞘磷脂,含糖者称为鞘糖脂。

4胆固醇脂:胆固醇与脂肪酸结合生成。 人体脂肪 脂类消化吸收 消化主要在小肠上段经各种酶及胆汁酸盐的作用,水解为甘油、脂肪酸等。

脂类的吸收含两种情况:

中链、短链脂肪酸构成的甘油三酯乳化后即可吸收——>肠黏膜细胞内水解为脂肪酸及甘油——>门静脉入血。长链脂肪酸构成的甘油三酯在肠道分解为长链脂肪酸和甘油一酯,再吸收——>肠黏膜细胞内再合成甘油三酯,与载脂蛋白、胆固醇等结合成乳糜微粒——>淋巴入血。 甘油三酯代谢 (一)合成代谢

甘油三酯是机体储存能量及氧化供能的重要形式。

1合成部位及原料

肝、脂肪组织、小肠是合成的重要场所,以肝的合成能力最强,注意:肝细胞能合成脂肪,但不能储存脂肪。合成后要与载脂蛋白、胆固醇等结合成极低密度脂蛋白,入血运到肝外组织储存或加以利用。若肝合成的甘油三酯不能及时转运,会形成脂肪肝。脂肪细胞是机体合成及储存脂肪的仓库。

合成甘油三酯所需的甘油及脂肪酸主要由葡萄糖代谢提供。其中甘油由糖酵解生成的磷酸二羟丙酮转化而成,脂肪酸由糖氧化分解生成的乙酰CoA合成。

2合成基本过程

①甘油一酯途径:这是小肠黏膜细胞合成脂肪的途径,由甘油一酯和脂肪酸合成甘油三酯。

②甘油二酯途径:肝细胞和脂肪细胞的合成途径。

脂肪细胞缺乏甘油激酶因而不能利用游离甘油,只能利用葡萄糖代谢提供的3-磷酸甘油。

(二)分解代谢

即为脂肪动员,在脂肪细胞内激素敏感性甘油三酯脂的酶作用下,将脂肪分解为脂肪酸及甘油并释放入血供其他组织氧化。

甘油甘油激酶——>3-磷酸甘油——>磷酸二羟丙酮——>糖酵解或有氧氧化供能,也可转变成糖脂肪酸与清蛋白结合转运入各组织经β-氧化供能。

(三)脂肪酸的分解代谢—β-氧化

在氧供充足条件下,脂肪酸可分解为乙酰CoA,彻底氧化成CO2和H2O并释放出大量能量,大多数组织均能氧化脂肪酸,但脑组织例外,因为脂肪酸不能通过血脑屏障。其氧化具体步骤如下:

1. 脂肪酸活化,生成脂酰CoA。

2.脂酰CoA进入线粒体,因为脂肪酸的β-氧化线上粒体中进行。这一步需要肉碱的转运。肉碱脂酰转移酶I是脂酸β氧化的限速酶,脂酰CoA进入线粒体是脂酸β-氧化的主要限速步骤,如饥饿时,糖供不足,此酶活性增强,脂肪酸氧化增强,机体靠脂肪酸来供能。

3.脂肪酸的β-氧化,基本过程(见原书)

丁酰CoA经最后一次β氧化:生成2分子乙酰CoA

故每次β氧化1分子脂酰CoA生成1分子FADH2,1分子NADH+H+,1分子乙酰CoA,通过呼吸链氧化前者生成2分子ATP,后者生成3分子ATP。 4脂肪酸氧化的能量生成

脂肪酸与葡萄糖不同,其能量生成多少与其所含碳原子数有关,因每种脂肪酸分子大小不同其生成ATP的量中不同,以软脂酸为例;1分子软脂酸含16个碳原子,靠7次β氧化生成7分子NADH+H+,7分子FADH2,8分子乙酰CoA,而所有脂肪酸活化均需耗去2分子ATP。故1分子软脂酸彻底氧化共生成:

7×2+7×3+8×12-2=129分子ATP

以重量计,脂肪酸产生的能量比葡萄糖多。 能量生成 脂肪酸与葡萄糖不同,其能量生成多少与其所含碳原子数有关,因每种脂肪酸分子大小不同其生成ATP的量中不同,以软脂酸为例;1分子软脂酸含16个碳原子,靠7次β氧化生成7分子NADH+H+,7分子FADH2,8分子乙酰CoA,而所有脂肪酸活化均需耗去2分子ATP。故1分子软脂酸彻底氧化共生成:

7×2+7×3+8×12-2=129分子ATP

以重量计,脂肪酸产生的能量比葡萄糖多。

(四)脂肪酸的其他氧化方式

1不饱和脂肪酸的氧化,也在线粒体进行,其与饱和脂肪酸不同的是键的顺反不同,通过异构体之间的相互转化,即可进行β-氧化。

2过氧化酶体脂酸氧化:主要是使不能进入线粒体的二十碳、二十二碳脂肪酸先氧化成较短的脂肪酸,以便能进入线粒体内分解氧化,对较短键脂肪酸无效。

3丙酸的氧化:人体含有极少量奇数碳原子脂肪酸氧化后还生成1分子丙酰CoA,丙酰CoA经羧化及异构酶作用转变为琥珀酰CoA,然后参加三羧酸循环而被氧化。 合成代谢 1脂肪酸主要从乙酰CoA合成,凡是代谢中产生乙酰CoA的物质,都是合成脂肪酸的原料,机体多种组织均可合成脂肪酸,肝是主要场所,脂肪酸合成酶系存在于线粒体外胞液中。但乙酰CoA不易透过线粒体膜,所以需要穿梭系统将乙酰CoA转运至胞液中,主要通过柠檬酸-丙酮酸循环来完成。

脂酸的合成还需ATP、NADPH等,所需氢全部NADPH提供,NADPH主要来自磷酸戊糖通路。

2软脂酸的合成过程(见原书)

乙酰CoA羧化酶是脂酸合成的限速酶,存在于胞液中,辅基为生物素。柠檬酸、异柠檬酸是其变构激活剂,故在饱食后,糖代谢旺盛,代谢过程中的柠檬酸可别构激活此酶促进脂肪酸的合成,而软脂酰CoA是其变构抑制剂,降低脂肪酸合成。此酶也有共价修饰调节,胰高血糖素通过共价修饰抑制其活性。

②从乙酰CoA和丙二酰CoA合成长链脂肪酸,实际上是一个重复加长过程,每次延长2个碳原子,由脂肪酸合成多酶体系催化。哺乳动物中,具有活性的酶是一二聚体,此二聚体解聚则活性丧失。每一亚基皆有ACP及辅基构成,合成过程中,脂酰基即连在辅基上。丁酰是脂酸合成酶催化第一轮产物,通过第一轮乙酰CoA和丙二酰CoA之间缩合、还原、脱水、还原等步骤,C原子增加2个,此后再以丙二酰CoA为碳源继续前述反应,每次增加2个C原子,经过7次循环之后,即可生成16个碳原子的软脂酸。

3酸碳链的加长。

碳链延长在肝细胞的内质网或线粒体中进行,在软脂酸的基础上,生成更长碳链的脂肪酸。

4脂肪酸合成的调节(过程见原书)

胰岛素诱导乙酰CoA羧化酶、脂肪酸合成酶的合成,促进脂肪酸合成,还能促使脂肪酸进入脂肪组织,加速合成脂肪。而胰高血糖素、肾上腺素、生长素抑制脂肪酸合成。 重要衍生物 前列腺素、血栓素、白三烯均由多不饱和脂肪酸衍生而来,在调节细胞代谢上具有重要作用,与炎症、免疫、过敏及心血管疾病等重要病理过程有关。在激素或其他因素 下,膜脂由磷脂酶A2催化水解,释放花生四烯酸,花生四烯酸在脂过氧化酶作用下生成丙三烯,在环过氧化酶作用下生成前列腺素、血栓素。 其他氧化方式 1不饱和脂肪酸的氧化,也在线粒体进行,其与饱和脂肪酸不同的是键的顺反不同,通过异构体之间的相互转化,即可进行β-氧化。

2过氧化酶体脂酸氧化:主要是使不能进入线粒体的二十碳、二十二碳脂肪酸先氧化成较短的脂肪酸,以便能进入线粒体内分解氧化,对较短键脂肪酸无效。

3丙酸的氧化:人体含有极少量奇数碳原子脂肪酸氧化后还生成1分子丙酰CoA,丙酰CoA经羧化及异构酶作用转变为琥珀酰CoA,然后参加三羧酸循环而被氧化。 生成及利用 酮体包括乙酰乙酸、β-羟丁酸、丙酮。酮体是脂肪酸在肝分解氧化时特有的中间代谢物,脂肪酸在线粒体中β氧化生成的大量乙酰CoA除氧化磷酸化提供能量外,也可合成酮体。但是肝却不能利用酮体,因为其缺乏利用酮体的酶系。

1生成过程: 2利用:肝生成的酮体经血运输到肝外组织进一步分解氧化。

总之肝是生成酮体的器官,但不能利用酮体,肝外组织不能生成酮体,却可以利用酮体。

3生理意义

长期饥饿,糖供应不足时,脂肪酸被大量动用,生成乙酰CoA氧化供能,但象脑组织不能利用脂肪酸,因其不能通过血脑屏障,而酮体溶于水,分子小,可通过血脑屏障,故此时肝中合成酮体增加,转运至脑为其供能。但在正常情况下,血中酮体含量很少。

严重糖尿病患者,葡萄糖得不到有效利用,脂肪酸转化生成大量酮体,超过肝外组织利用的能力,引起血中酮体升高,可致酮症酸中毒。

4酮体生成的调节

①1〃饱食或糖供应充足时:胰岛素分泌增加,脂肪动员减少,酮体生成减少;2〃糖代谢旺盛3-磷酸甘油及ATP充足,脂肪酸脂化增多,氧化减少,酮体生成减少;3〃糖代谢过程中的乙酰CoA和柠檬酸能别构激活乙酰CoA羧化酶,促进丙二酰CoA合成,而后者能抑制肉碱脂酰转移酶

Ⅰ,阻止β-氧化的进行,酮体生成减少。

②饥饿或糖供应不足或糖尿病患者,与上述正好相反,酮体生成增加。 磷脂的代谢 含磷酸的脂类称磷脂可分为两类:由甘油构成的磷脂称甘油磷脂,由鞘氨醇构成的称鞘磷脂。

(一)甘油磷脂的代谢

甘油磷脂由1分子甘油与2分子脂肪酸和1分子磷酸组成,2位上常连的脂酸是花生四烯酸,由于与磷酸相连的取代基团不同,又可分为磷脂酰胆碱(卵磷脂)、磷脂酰乙醇胺(脑磷脂)、二磷脂酰甘油(心磷脂)等。

1甘油磷脂的合成

①合成部位及原料

全身各组织均能合成,以肝、肾等组织最活跃,在细胞的内质网上合成。合成所用的甘油、脂肪酸主要用糖代谢转化而来。其二位的多不饱和脂肪酸常需靠食物供给,合成还需ATP、CTP。

②合成过程

磷脂酸是各种甘油磷脂合成的前体,主要有两种合成途径:

1〃甘油二酯合成途径:脑磷脂、卵磷脂由此途径合成,以甘油二酯为中间产物,由CDP胆碱等提供磷酸及取代基。

2〃CDP-甘油二酯途径:肌醇磷脂,心磷脂由此合成,以CDP-甘油二酯为中间产物再加上肌醇等取代基即可合成。

2甘油磷脂的降解

主要是体内磷脂酶催化的水解过程。其中磷脂酶A2能使甘油磷脂分子中第2位酯键水解,产物为溶血磷脂及不饱和脂肪酸,此脂肪酸多为花生四烯酸,Ca2+为此酶的激活剂。此溶血磷脂是一类较强的表面活性物质,能使细胞膜破坏引起溶血或细胞坏死。再经溶血磷脂酶继续水解后,即失去溶解细胞膜的作用。

(二)鞘磷脂的代谢

主要结构为鞘氨醇,1分子鞘氨醇通常只连1分子脂肪酸,二者以酰胺链相连,而非酯键。再加上1分子含磷酸的基团或糖基,前者与鞘氨醇以酯键相连成鞘磷脂,后者以β糖苷键相连成鞘糖脂,含量最多的神经鞘磷脂即是以磷酸胆碱,脂肪酸与鞘氨醇结合而成。

1合成代谢

以脑组织最活跃,主要在内质网进行。反应过程需磷酸呲哆醛,NADPH+H+等辅酶,基本原料为软脂酰CoA及丝氨酸。

2降解代谢

由神经鞘磷脂酶(属磷脂酶C类)作用,使磷酸酯键水解产生磷酸胆碱及神经酰胺(N-脂酰鞘氨醇)。若缺乏此酶,可引起痴呆等鞘磷脂沉积病。 胆固醇的代谢 (一)合成代谢

1.几乎全身各组织均可合成,肝是主要场所,合成主要在胞液及内质网中进行。

2.合成原料乙酰CoA是合成胆固醇的原料,因为乙酰CoA是在线粒体中产生,与前述脂肪酸合成相似,它须通过柠檬酸——丙酮酸循环进入胞液,另外,反应还需大量的NADPH+H+及ATP。合成1分子胆固醇需18分子乙酰CoA、36分子ATP及16分子NADPH+H+。乙酰CoA及ATP多来自线粒体中糖的有氧氧化,而NADPH则主要来自胞液中糖的磷酸戊糖途径。

3合成过程

简单来说,可划分为三个阶段。

①甲羟戊酸(MVA)的合成:首先在胞液中合成HMGCoA,与酮体生成HMGCoA的生成过程相同。但在线粒体中,HMGCoA在HMGCoA裂解酶催化下生成酮体,而在胞液中生成的HMGCoA则在内质网HMGCoA还原酶的催化下,由NADPH+H+供氢,还原生成MVA。HMGCoA还原酶是合成胆固醇的限速酶。

②鲨烯的合成:MVA由ATP供能,在一系列酶催化下,生成3OC的鲨烯。

③胆固醇的合成:鲨烯经多步反应,脱去3个甲基生成27C的胆固醇。

4.调节

HMGCoA还原酶是胆固醇合成的限速酶。多种因素对胆固醇的调节主要是通过对此酶活性的影响来实现的。 ②胆固醇:可反馈抑制胆固醇的合成。

③激素:胰岛素能诱导HMGCoA还原酶的合成,增加胆固醇的合成,胰高血糖素及皮质醇正相反。

(二)胆固醇的转化

1转化为胆汁酸,这是胆固醇在体内代谢的主要去路。

2转化为固醇类激素,胆固醇是肾上腺皮质、卵巢等合成类固醇激素的原料,此种激素包括糖皮质激素及性激素。

3转化为7-脱氢胆固醇,在皮肤,胆固醇被氧化为7-脱氢胆固醇,再经紫外光照射转变为VitD3。 蛋白代谢 (一)血浆脂蛋白分类

1电泳法:可将脂蛋白分为前β、β脂蛋白及乳糜微粒(CM)。

2超速离心法:分为乳糜微粒、极低密度脂蛋白(VLDL)、低密度脂蛋白(LDL)和高密度脂蛋白(HDL)分别相当于电泳分离的CM、前β、β、α-脂蛋白。

(二)血浆脂蛋白组成

血浆脂蛋白主要由蛋白质、甘油三酯、磷脂、胆固醇及其酯组成。游离脂肪酸与清蛋白结合而运输不属于血浆脂蛋白之列。CM最大,含甘油三酯最多,蛋白质最少,故密度最小。VLDL含甘油三酯亦多,但其蛋白质含量高于CM。LDL含胆固醇及胆固醇酯最多。HDL含蛋白质量最多。

(三)脂蛋白的结构

血浆各种脂蛋白具有大致相似的基本结构。疏水性较强的甘油三酯及胆固醇酯位于脂蛋白的核心,而载脂蛋白、磷脂及游离胆固醇等双性分子则以单分子层覆盖于脂蛋白表面,其非极性向朝内,与内部疏水性核心相连,其极性基团朝外,脂蛋白分子呈球状。CM及VLDL主要以甘油三酯为核心,LDL及HDL则主要以胆固醇酯为核心。因脂蛋白分子朝向表面的极性基团亲水,故增加了脂蛋白颗粒的亲水性,使其能均匀分散在血液中。从CM到HDL,直径越来越小,故外层所占比例增加,所以HDL含载脂蛋白,磷脂最高。

(四)载脂蛋白

脂蛋白中的蛋白质部分称载脂蛋白,主要有apoA、B、C、D、E五类。不同脂蛋白含不同的载脂蛋白。载脂蛋白是双性分子,疏水性胺基酸组成非极性面,亲水性胺基酸为极性面,以其非极性面与疏水性的脂类核心相连,使脂蛋白的结构更稳定。 (五)高脂血症

血脂高于正常人上限即为高脂血症,表现为甘油三脂、胆固醇含量升高,表现在脂蛋白上,CM、VLDL、LDL皆可升高,但HDL一般不增加。 消灭肥肉脂肪 多运动,多吃水果蔬菜,少吃油腻东西内脏等等。 代谢 1乳糜微粒

主要功能是转运外源性甘油三酯及胆固醇。空腹血中不含CM。外源性甘油三酯消化吸收后,在小肠黏膜细胞内再合成甘油三酯、胆固醇,与载脂蛋白形成CM,经淋巴入血运送到肝外组织中,在脂蛋白脂肪酶作用下,甘油三酯被水解,产物被肝外组织利用,CM残粒被肝摄取利用。

2极低密度脂蛋白

VLDL是运输内源性甘油三酯的主要形式。肝细胞及小肠黏膜细胞自身合成的甘油三酯与载脂蛋白,胆固醇等形成VLDL,分泌入血,在肝外组织脂肪酶作用下水解利用,水解过程中VLDL与HDL相互交换,VLDL变成IDL被肝摄取代谢,未被摄取的IDL继续变为LDL。

3低密度脂蛋白

人血浆中的LDL是由VLDL转变而来的,它是转运肝合成的内源性胆固醇的主要形式。肝是降解LDL的主要器官,肝及其他组织细胞膜表面存在LDL受体,可摄取LDL,其中的胆固醇脂水解为游离胆固醇及脂肪酸,水解的游离胆固醇可抑制细胞本身胆固醇合成,减少细胞对LDL的进一步摄取,且促使游离胆固醇酯化在胞液中储存,此反应是在内质网脂酰CoA胆固醇脂酰转移酶(ACAT)催化下进行的。

除LDL受体途径外,血浆中的LDL还可被单核吞噬细胞系统清除。

4高密度脂蛋白

主要作用是逆向转运胆固醇,将胆固醇从肝外组织转运到肝代谢。新生HDL释放入血后径系列转化,将体内胆固醇及其酯不断从CM、VLDL转入HDL,这其中起主要作用的是血浆卵磷脂胆固醇脂酰转移酶(LCAT),最后新生HDL变为成熟HDL,成熟HDL与肝细胞膜HDL受体结合被摄取,其中的胆固醇合成胆汁酸或通过胆汁排出体外,如此可将外周组织中衰老细胞膜中的胆固醇转运至肝代谢并排出体外。 人体脂肪

脂肪肝易误诊 在正常情况下,肝脏对人体内物质的分解、合成、解毒以及脂肪的代谢等一系列精细而又复杂的操作始终保持着动态平衡状态。正常人肝组织中含有少量的脂肪,其重量约为肝重量的4%~5%。如果肝内脂肪堆积过多,超过肝重量的10%甚至15%时,就被称为脂肪肝。 脂肪肝一般可分为急性和慢性两种。急性脂肪肝类似于急性、亚急性病毒性肝炎,比较少见,临床症状表现为疲劳、恶心、呕吐和不同程度的黄疸,并可短期内发生肝昏迷和肾衰,严重者可在数小时死于并发症,如果及时治疗,病情可在短期内迅速好转。 慢性脂肪肝较为常见,起病缓慢、隐匿,病程漫长。早期没有明显的临床症状,一般是在做B超时偶然发现,部分病人可出现食欲减退、恶心、乏力、肝区疼痛、腹胀,以及右上腹胀满和压迫感。由于这些症状没有特异性,与一般的慢性胃炎、胆囊炎相似,因而往往容易被误诊误治。 酒是祸首 脂肪肝之所以发展成肝硬化,主要是因为大量的肝细胞内脂肪长期堆积,使其血液供应、氧气供应及自身的代谢受到影响,造成肝细胞大量肿胀、炎症浸润及变性坏死,最终会导致肝脏有纤维增生及假小叶形成。 慢性嗜酒者近60%发生脂肪肝,20%~30%最终将发展为肝硬化。非酒精性脂肪肝发生肝纤维化的发病率为25%,发生肝硬化的概率较低,发展进程相对较慢,约15%~80%的病人可进展为肝硬化。 谈到脂肪肝与肝癌的关系,脂肪肝是各种肝毒性损伤的早期表现,脂肪肝疾患本身与原发性肝癌的发生无直接关系,脂肪肝不是肝癌的危险因素。但是,脂肪肝的某些病因,如饮酒、营养不良、药物及毒物质损害等,既是脂肪肝的发病因素,也是肝癌的发病因素,因此,脂肪肝对肝癌的发生有一个助动因素,可增加癌变的几率。在肝炎病毒感染低发国家,长期嗜酒引起的肝硬化是肝癌的重要因素,约2%~3%的慢性嗜酒者通过酒精性肝硬化发展为肝癌。在我国酒精性肝硬化合并肝癌者几乎都伴有乙肝病毒和丙肝病毒的感染,而嗜酒和慢性病毒性肝炎并存者肝癌的发生率高,发病年龄提前,预期寿命短。 非酒精性脂肪肝由于肝硬化发病率低,出现较晚,因此极少发生肝癌。所以说,远离酒精就是远离脂肪肝,就是远离肝癌。 ■食疗很重要 脂肪肝主要是不良生活方式引起的疾病,因此,在治疗原则上一般以纠正不良生活方式为主,使脂肪肝逐步逆转。对于症状较重者,必要时辅以保肝、去脂及抗纤维化药物进行治疗。 ■饮食疗法 对酒精性脂肪肝,戒酒及改善营养状况是基本治疗方法。禁酒和纠正营养不良可使大部分脂肪肝在1~6周内消退,也有需4个月或更长者。饮食主要为高热量、高蛋白(每日高于正常60g),适量补充维生素。蛋白质摄入不足,可促使继续形成脂肪肝。 对肥胖相关性脂肪肝,重点是减重。减轻体重可改善肥胖伴同的糖尿病、高脂血症,并使脂肪肝消退,饮食疗法和锻炼是减重的基础,减重10%可使脂肪肝引起的转氨酶增高恢复正常。但减重方法需在医生的指导下进行,特别是伴有糖尿病、心肾疾病及肝损害明显的病人更要注意。 通过进食低热量饮食或饥饿疗法使肥胖者体重减轻后,脂肪肝的程度可改善并使肝功能恢复正常。但如体重骤减(一个月减下5公斤),则会导致动员脂肪组织入肝增多,并刺激胰岛素分泌增多,也易发生脂肪肝并使原有脂肪肝的患者病情进一步加重。 ■脂肪肝一日食谱 早餐: 馒头(面粉50克),稀饭(大米50克),红腐乳10克,小咸菜10克。 午餐: 大米饭100克,韭菜炒鸡蛋(韭菜100克、鸡蛋50克),菠菜牛肉丝(菠菜100克、牛肉50克),西红柿蛋汤(西红柿50克、鸡蛋20克)。 晚餐: 莜麦面饼(莜麦面50克),小米粥(小米50克),菜花炖肉(菜花100克、猪肉50克),腐竹炒芹菜(腐竹50克、芹菜100克)。 全日烹调用油15克。全日热能1660千卡左右。 ■药物辅助治疗 目前临床上尚无满意的干预脂蛋白代谢的药物。非酒精性脂肪肝去除病因为主,减重、饮食治疗并辅以药物可有效地控制病变的进一步发展,并促使病情逆转。 1胆碱:仅适用于营养不良性脂肪肝。 2生物膜保护剂:必需磷脂和多不饱和卵磷脂,可减少肝细胞的脂变,保护和修复受损的肝细胞膜及其伴同的炎症和纤维化,但对不能戒酒者慎用。 3抗氧化剂:还原型谷光肝泰、水飞蓟素、VE、牛磺酸等具有一定的降酶保肝作用,并可减少诱发的肝纤维化,其确切疗效有待证实。S-腺苷甲硫氨酸(蛋氨酸)对酒精性脂肪肝有效。 4熊去氧胆酸:对脂肪肝、酒精性肝病等有明显的治疗作用,是一种有良好前景的去脂药物。 5中药:大、小柴胡汤对脂肪肝有治疗效果。比较有效的药物有胆宁片、血脂康、绞股蓝总甙等,中成药由于毒副作用小,因此应用前景广阔。 肝保健归纳为十六字要诀“合理膳食,控制体重,适量运动,慎用药物”。因此预防脂肪肝要从年轻时做起,从日常生活做起,养成良好的生活习惯,做到十六字要决,不仅可以拒绝脂肪肝,还可以将肥胖症、高血压、高血糖等拒之门外。 ■成因: 六大元凶让肝不堪重负 脂肪肝也不是一种独立的疾病,是由诸多原因造成的后果。在长期研究和临床治疗过程中,发现导致脂肪肝的原因主要有六个: 病因之一:长期酗酒酒精是损害肝脏的第一杀手。这是因为酒精进入人体后,主要在肝脏进行分解代谢,酒精对肝细胞的毒性使肝细胞对脂肪酸的分解和代谢发生障碍,引起肝内脂肪沉积而造成脂肪肝。饮酒越多,脂肪肝也就越严重,还可诱发肝纤维化,进而引起肝硬化。 病因之二:营养过剩长期摄入过多的动物脂肪、植物油、蛋白质和碳水化合物,这些食物在体内不能被充分利用,过剩的营养物质便转化为脂肪储存起来,导致肥胖、高血脂和脂肪肝。 病因之三:营养不良肥胖者容易得脂肪肝,但并不是说瘦人就不会得脂肪肝。临床上也常发现有的人很瘦但也患有脂肪肝,这是由于长期营养不良,缺少蛋白质和维生素,同样可引起营养缺乏性脂肪肝。如因患有慢性肠道疾病、长期厌食、节食、素食、吸收不良综合征及胃肠旁路手术等原因,造成低蛋白血症、缺乏胆碱、氨基酸或趋脂物质,从而使肝内脂肪堆积,形成脂肪肝。 病因之四:糖尿病、肝炎、甲亢、重度贫血等慢性疾病糖尿病患者由于胰岛素不足,身体对葡萄糖的利用减少,为了补充能量,体内脂肪酸显著增加,这些脂肪酸不能被充分利用,就会使肝脏的脂肪合成亢进,从而引起脂肪肝。60%肥胖患者会发生糖尿病,他们发生脂肪肝的比率较无糖尿病者要多2倍。 病因之五:药物性肝损害药物性肝损害占成人肝炎的1/10,脂肪肝是常见类型。有数十种药物与脂肪肝有关,如四环素、乙酰水杨酸、糖皮质类固醇、合成雌激素、胺碘酮、硝苯地平、某些抗肿瘤药及降脂药等,都可以导致脂肪在肝内积聚。 病因之六:高脂血症高胆固醇血症与脂肪肝关系密切,其中以高TG(甘油三酯)血症关系最为密切,绝大多数常伴有肥胖、糖尿病和酒精中毒。 此外,某些工业毒物,如黄磷、砷、铅、铜、汞、苯、四氯化碳等也可导致脂肪肝。妊娠、遗传或精神、心理与社会因素,如多坐、少活动,生活懒散等也与脂肪肝发生有关系。 ■小常识:肝脏的功能 肝脏是人体最大的化工厂,承担着消化、解毒、分泌等重要功能,我们一日三餐吃进去的营养物质都必须依靠肝脏进行加工,才能提供人体生命活动的需要。除了物质代谢外,肝脏还是人体内最大的解毒器官,体内产生的毒物、废物,吃进去的毒物、有损肝脏的药物等等也必须依靠肝脏解毒。可以

脂肪是人体必需的三大营养素之一

分为以下三种

鞘糖脂:脑苷脂类、神经节昔脂。

脂蛋白:乳糜微粒、极低密度脂蛋白、低密度脂蛋白、高密度脂蛋白。

类固醇:胆固醇、麦角因醇、皮质甾醇、胆酸、维生素D、雄激素、雌激素、孕激素。

磷脂是构成生物膜的重要组分,油脂是机体代谢所需燃料的贮存和运输形式。脂类物质也可为动物机体提供溶解于其中的必需脂肪酸和脂溶性维生素。某些萜类及类固醇类物质如维生素A、D、E、K、胆酸及固醇类激素具有营养、代谢及调节功能。有机体表面的脂类物质有防止机械损伤与防止热量散发等保护作用。脂类作为细胞的表面物质,与细胞识别,种特异性和组织免疫等有密切关系。

人体面部分泌的油脂中主要成份是甘油酯三脂,少量含有一定的胆固醇、肌醇和脂肪酸。甘油三酯(TG)是脂质的组成成分,是甘油和3个脂肪酸所形成的脂。脂质组成复杂,除甘油三酯外,还包括胆固醇、磷脂、脂肪酸以及少量其他脂质。

如果是经常吃奶茶一类的,反式脂肪酸也含有其中。油脂的组成结构就是普通碳水化合物,主链是碳,剩下就是氢和氧。

丙三醇(甘油),能从空气中吸收潮气,也能吸收硫化氢、氰化氢和二氧化硫。难溶于苯、氯仿、四氯化碳、二硫化碳、石油醚和油类。 丙三醇是甘油三酯分子的骨架成分。

相对密度126362。熔点178℃。沸点2900℃(分解)。折光率14746。闪点(开杯)176℃。急性毒性:LD50:31500 mg/kg(大鼠经口)。

脂肪酸(fatty acid),是指一端含有一个羧基的长的脂肪族碳氢链,是有机物,直链饱和脂肪酸的通式是C(n)H(2n+ 1)COOH,低级的脂肪酸是无色液体,有刺激性气味,高级的脂肪酸是蜡状固体,无可明显嗅到的气味。

扩展资料

脸上出油的解决办法:

1、养成饮食和作息好习惯

饮食方面应该以清淡为主,避免吃辛辣、油炸、容易上火的食物,多吃蔬菜和水果,多喝水,补充身体所需要的水分,避免经常性的熬夜,不然会导致皮肤暗沉发黄,每天睡觉之前可以对脸部进行按摩,促进脸部的血液循环,让气色变得越来越好。

2、黄瓜敷脸

黄瓜里面含有维生素c,可以减少黑色素的沉着并且可以为肌肤补充大量的水分,需要半根黄瓜放在榨汁机里面榨汁,然后使用压缩面膜浸泡在黄瓜汁里面。

拿出后敷在脸上15分钟之后洗干净脸,早晚各服一次,一个月就可以看到效果,黄瓜能够促进身体的新陈代谢,促进血液循环,具有润肤美容的功效。

3、毛巾保湿

每次出门的时候可以携带一块小毛巾,感觉到身体闷热的时候可以把毛巾侵湿在温水里面,轻轻的敷在脸部,不仅可以为身体降温,并且还可以带走多余的油脂,从而防止油脂堵塞毛孔。

-甘油三酯

人民网-脸部容易出油怎么办?几种方法让你清凉一夏

人体脂肪,也就是通俗意义上讲的肥肉。当然,人体脂肪并不仅仅指外在我们看得到的肥肉,还有很多是我们看不到的。

(人体摄入的大部分)脂肪经胆汁乳化成小颗粒,胰腺和小肠内分泌的脂肪酶将脂肪里的脂肪酸水解成游离脂肪酸和甘油单酯(偶尔也有完全水解成甘油和脂肪酸)水解后的小分子,如甘油、短链和中链脂肪酸,被小肠吸收进入血液。甘油单脂和长链脂肪酸被吸收后,先在小肠细胞中重新合成甘油三酯,并和磷脂、胆固醇和蛋白质形成乳糜微粒(chylomicron),由淋巴系统进入血液循环。

脂肪:由甘油和脂肪酸合成,体内脂肪酸来源有二:一是机体自身合成,二是食物供给特别是某些不饱和脂肪酸,机体不能合成,称必需脂肪酸,如亚油酸、α-亚麻酸。

欢迎分享,转载请注明来源:品搜搜测评网

原文地址:https://pinsoso.cn/meirong/1948529.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-10-29
下一篇2023-10-29

随机推荐

  • 抗老精华液哪个牌子最好用

    抗老精华液以下牌子最好用:1、宝丽极光幻彩精华液这款产品是它抗衰老系列当中最高端的产品,里面蕴含的成分也是非常的珍贵的,集合了多种核心专利技术,可以从根源上柔弱肌肤。2、莱伯妮鱼子酱反重力精华这款产品主要利用了深海鱼籽精粹作为配方,再结合珍

    2024-04-15
    26700
  • 精华露是水还是乳液精华露是水还是精华液

    精华露不是水,也不是乳,它属于精华的一种。精华露属于精华素的一种剂型,富含营养成分,具有高效的保湿、美白、抗衰等效果。一般30岁以上的人群更适合选用精华露产品,因为这时候女性肌肤开始走向衰老状态,必须使用和补充更多的营养护肤品,才能维持皮肤

    2024-04-15
    24400
  • nivea防晒霜怎么样_妮维雅防晒霜怎么样

    妮维雅nivea防晒霜是一款来自德国的护肤品牌,这款新防晒霜同系列防晒产品区别也会比较明显,下面我们就一起来看看效果好不好!我点评这款和一直卖的妮维雅经典防晒乳有什么区别虽然两款质地很相似,但这一款的防晒指数更高,SPF50 P

    2024-04-15
    12800
  • 精华露和精华液有区别吗

    有区别,精华露和精华液的质地不同,针对的皮肤状态也不同。但是两者基本上添加的有效成分所起到的作用是相同的,可以根据不同的肤质以及面部状态来选择使用哪一种产品。精华露相比起精华液更加粘稠一些,它可以说是精华液的浓缩体,所以它的使用感更加适合干

    2024-04-15
    17400
  • 大家都用的什么男士化妆品,麻烦推荐一下

    1 曼秀雷敦作为专业男士护肤的领导品牌,曼秀雷敦男士一直十分注重护肤成分的创新应用、护肤科技的研发升级,多年来在遵循GMP制药标准高品质要求的前提下不断突破传统,实现安全和高效的双保障。2 欧莱雅欧莱雅男士劲能深层净化洁面膏含维生素C衍生物

    2024-04-15
    16500
  • 红伊思蜗牛水乳怎么样

    以下全是我爱听的,希望你能喜欢。1、snowdreams(雪的梦幻)2、river flows in you3、kiss the rain4、三个人的时光5、我曾在那一角落患过伤风6、The mass(弥撒)7、Hello Zepp(电锯惊

    2024-04-15
    10100
  • 碧欧泉蓝钻精华水和紧肤水哪个好

    都好。1、碧欧泉蓝钻精华爽肤水,收敛毛孔,紧致轮廓,让肌肤畅饮深澈补水,舒缓紧绷,平滑修护。2、碧欧泉蓝钻紧肤水主如果收缩毛孔,它含有酒精,会有燥热干爽的觉得能够避免青春痘的滋生,有用抑制细菌的生殖。碧欧泉精华露和精华液的质感不同。精华液的

    2024-04-15
    10600

发表评论

登录后才能评论
保存