矿物成分

矿物成分,第1张

1矿物组合

矿石矿物(表5-5)主要有:孔雀石、蓝铜矿、黄铁矿等,次要矿物有黄铜矿、自然铜、辉铜矿、褐铁矿、磁黄铁矿、镍黄铁矿等;微量矿物有斑铜矿、铜蓝、蓝辉铜矿、自然银、铂钯矿物等。

2铂族元素矿物特征

虽然大岩子铂矿床经过勘查证明具有较高品位的铂族元素矿化,但由于研究程度较低,未发现可供认可的含铂矿物,也缺乏相应的矿物学研究资料。为了确定矿床中铂族元素的赋存状态,本次研究重点在含铂矿物的物质组分方面做了较多工作,并由攀西地质队找到了含铂矿物。

表5-5 会理大岩子铂铜镍矿区矿物特征表

样品采集除了用于岩矿鉴定的光薄片外,还依据不同矿石类型,在大规格断面上采集了两件人工重砂样,对人工重砂样所挑选出来的金属矿物进行了鉴别,并通过电子探针分析发现了含铂矿物;同时还对分离出来的矿物进行了分析,以确定其含矿性。通过人工重砂样处理后配合薄片、砂光片、光薄片岩矿鉴定及现代化分析手段研究,结果(表5-6,表5-7)显示,矿区内有铂、钯元素矿物存在。该矿物铂、钯元素与铜、金、银、镍等组成化合物相——可暂时命名为铂钯质铜金矿,可能是大岩子矿床的主要含铂矿物。

铂钯质铜金矿(暂名):在实体显微镜下观察为灰色-银白色,少数呈锡白色,个别为浅**,金属光泽,具延长性,形态呈圆球形-次圆球形,片状-板状,尖角粒状,柱状、棍状,弯曲状等,其中又以圆球-次圆球形为主。反射光下观察铂钯质铜金矿为亮白色,白色带不同色调的浅**或铜**,抗划硬度中等,均质性,有少量细小包体。在两个矿石类型中,铂钯金属互化物在化学成分上及化学分子式方面基本相同。依据化学分子式(Cu,Pd,Pb)(Au,Ag),均可暂时命名为铂钯质铜金矿。由于成分含量变化及成分的不同可以出现不同的变种:(Cu,Pd,Pb)(Au,Ag)3、(Cu,Pd,Pt)5(Au,Ag)2、(Cu,Pd,Pt)(Au,Ag)2、(Ni,Cu,Pt,Pd)(Au,Ag)、(Cu,Ni,Pt,Pd)(Au,Ag)2、(Cu,Pd,Pt)4(Au,Ag)3等。由于缺乏进一步研究,在此均统称为铂钯质铜金矿;至于是否为不同的矿物或为同一矿物的共生系列还有待于进一步研究。

表5-6 含孔雀石、蓝铜矿碎裂白云岩型矿石人工重砂(Rz1)铂钯质铜金矿电子探针分析结果(wB/%)

表5-7 蚀变橄榄辉石岩型矿石人工重砂(Rz2)铂钯质铜金矿的电子探针分析结果 (wB/%)

经电子探析分析,结果显示在蚀变橄榄辉石岩型矿石中,1号样的测点2、5、7及4号样中的铂钯质铜金矿内有黄铜矿、辉铜矿或斑铜矿的小包体存在。这说明铂钯质铜金矿不是单晶,难以进行x光鉴定(包括甘多芬法作粉晶和结构精测),但从蚀变橄榄辉石岩型矿石中样品(4号)简化式(Cu,Pd,Pt)4(Au,Ag)3可以看出可能为新矿物。主要依据是:简化式中Cu、Pd、Pt置于同一结构位置,Au、Ag同理,似可表示为Cu4Au3。查阅相关金铜(铂族元素)系列矿物资料:铂铜金矿首次在我国金川铜镍硫化物矿床中出现,国外尚未报道;近期资料中名为铂铜金矿,其原子比为1:1,相当于(Cu,Pd,Pt,Rh)Au;本矿区铂钯质铜金矿的矿物原子比约为4:3,其结构大致相同,也可能为同一系列矿物的不同亚种。建议今后争取获得铂钯质铜金矿的单晶,以进一步展开研究。

431 矿石化学全分析

对安坝矿段360#脉蚀变千枚岩及蚀变斜长花岗斑岩型矿石进行了分析,结果列于表414。蚀变千枚岩型矿石SiO2含量变化较大,为6207%~7457%,可能与硅化强度有关,其平均值为6722%,接近于蚀变斜长花岗斑岩型矿石。蚀变千枚岩型矿石Fe2O3、MgO含量较高,而蚀变斜长花岗斑岩型矿石Al2O3和K2O含量较高,两者其他成分含量差异不明显。分析数据中烧失量较大,可能与矿石中硫化物、碳酸盐以及含砷矿物较多有关。光谱分析结果也表明,安坝矿段305#脉中砷、锑含量较高(表415)。

表414 360#脉群矿石全分析成果表 w(B)/%

表415 305#脉群矿石光谱分析结果表

432 矿石微量元素成分

安坝矿段305#脉矿石微量元素化学分析结果(表416)表明,各类矿石金品位变化较大,为108×10-6~47×10-6。其中蚀变千枚岩型矿石金平均品位为510×10-6,略高于蚀变斜长花岗斑岩型矿石(471×10-6),而碎裂岩化较强的千枚岩或斜长花岗斑岩矿石金品位最高,平均为1814×10-6,可见构造破碎强度在一定程度上影响了矿化强度。也因为碎裂岩型矿石取样较多,所以样品总体品位偏高,达838×10-6。除Au以外,矿石中还含一定量的Ti(746×10-6~3 405×10-6),Sb(12×10-6~204×10-6),Cu(881×10-6~541×10-6),Pb(243×10-6~514×10-6),Zn(322×10-6~116×10-6)等,但不具备综合利用价值。矿石中As含量较高,为011%~243%(平均087%),这与镜下观察到的毒砂含量较高相一致。此外,矿石中C有机含量(表417)也偏高,为007%~222%(平均080%)。较高的As和C有机含量对选矿较为不利。

安坝矿段360#脉矿石微量元素特征(表418)与305#脉较为相似,只是其Au,As,C有机含量较305#脉略低。

表416 305#脉群矿石多元素分析结果表 w(B)/%

对比305#脉地表氧化矿石与深部原生矿石微量元素含量特征(表417)可以发现,原生矿石Au含量(平均为599×10-6)高于氧化矿石(平均为208×10-6)。而且,深部原生矿石的As,Co,Fe,S,C有机含量高于氧化矿石,尤其是原生矿石C有机平均含量高达152%,远高于氧化矿石(009%)。氧化矿石中Au含量高的样品则Bi,Hg含量高,Ag,As,Cu,Pb,Zn,Fe,S含量低,而原生矿石Au含量高的样品则As,Hg,Fe,S,C有机含量高,Bi,Co,Ni含量低。Pb,Mo,Sb,Bi,Sn,Ag等元素在两种矿石中的含量变化不大。微量元素组合的上述差异和不同一方面是由于成矿后的表生变化引起的,同时亦与成矿过程中元素的原生分带密切相关。

表417 安坝矿段305#脉矿石多元素分析结果

表418 安坝矿段360#脉群矿石多元素分析结果表

安坝、葛条湾矿段的矿石、围岩其他微量元素含量见表419。

表419 阳山金矿带矿石多元素分析结果表 w(B)/10-6

433 微量元素相关性分析

为研究该区多元素的相互关系,对矿区岩矿石微量元素含量进行了相关分析,结果列于表420,从表420中可见,Au与As,Sb,Bi,Hg,W为正相关,其中Au和Sb的相关系数最高,为0933,其次为Au和As,两者的相关系数为0829,而Au与Hg的相关系数也达到了0416,Au与W的相关系数为0310,而Au与Ag,Cu,Pb,Zn,Mo的相关系数较低,相关性不明显。以上特征与王学明等(1999)对文康地区泥盆系中多元素相关分析结果较为相似。

表420 阳山金矿带微量元素相关系数表

在R型聚类谱系图上(图410),当相关系数大于04时,主要有两组元素,即Au-Sb-As-Hg-(W)-Bi元素组合和Ag-Mo-Zn元素组合。前者属一套低温热液元素组合,与本区低温成矿流体活动有关(流体包裹体测试也表明本区成矿流体温度主要集中于150~250℃,齐金忠,2003);而后者由于其叠加强度及富集系数较低,且与Au相关性不明显,可能与成矿流体活动无关。

图410 阳山金矿微量元素R型聚类分析谱系图

434 微量元素在垂向上的变化

将样品按标高进行统计分析后可以看出(表421),随着标高的降低,Au,As,Hg,Sb,W的含量均呈现逐渐降低的趋势,Pb,Zn也有类似的变化,而Ag,Cu,Mo等元素的变化趋势并不明显,显示在阳山金矿区矿体头晕、尾晕元素的变化特征并不很清晰(李惠等,2000)。由于深部样品主要来自安坝复背斜南翼的钻孔,所以Au及相关元素的含量随标高降低而降低,表明了向南翼深部矿化有减弱的趋势

表421 阳山金矿不同标高矿石微量元素含量统计表 w(B)/10-6

岩浆岩的矿物成分造岩矿物:组成岩石的矿物,常见的不过二十多种,这些构成岩石的矿物通称为造岩矿物。一、硅铝矿物和铁镁矿物常见的造岩矿物,根据其化学成分的特点,可以分为两类:1、硅铝矿物:SiO2和Al2O3的含量较高,不含FeO、MgO,其中包括石英类,长石类及似长石类。这些矿物的颜色较浅,所以又称浅色或淡色矿物。2、铁镁矿物:FeO与MgO的含量较高,SiO2含量较低。其中包括橄榄石类、辉石类、角闪石类及黑云母类等。这些矿物的颜色一般较深,所以又称为深色或暗色矿物。岩浆岩中暗色矿物的含量通常称为色率,又称颜色指数。二、主要矿物、次要矿物、副矿物按照矿物在岩浆岩中的含量和在岩浆岩分类中的作用,可分为主要、次要和副矿物三类。1、主要矿物:指在岩石中含量多,并在确定岩石大类名称上起主要作用的矿物。例如一般花岗岩的主要矿物是石英和长石,没有石英或石英含量不够,则岩石为正长岩类;沿有长石则为石英岩或脉石英。所以对花岗岩来说,石英和长石都是主要矿物。2、次要矿物:指在岩石中含量少于主要矿物的矿物。对于划分岩石大类虽不起作用,但对确定岩石种属起一定作用的矿物,含量一般小于15‰。如闪长岩类中,石英是次要矿物。闪长岩中有石英可称石英闪长岩,无石英,或石英含量小于5%,则称闪长岩,但二者均属闪长岩类。3、副矿物:在岩石中含量很少,通常不到1‰。因此,在一般岩石分类命名中不起作用。三、矿物的成因类型1、原生矿物:是在岩浆冷凝过程中结晶出来,而且在岩石形成过程中相对稳定的矿物、残余矿物和反应矿物三个亚类。正常矿物:是直接从岩浆中结晶出来,而且在岩石形成不定期程中相对稳定的矿物。如喷出岩中新鲜的透长石斑晶。残余矿物和反应矿物:矿物从岩浆中析出后,因温度、压力、成分等发生变化,使这些矿物受到部分反应、分解。其中尚未遭受变化的残留部分叫残余矿物,而反应、分解所形成的新矿物,称反应矿物。例如由岩浆中早期析出的镁橄榄石,与岩浆中SiO2反应形成了顽火辉石,那么顽火辉石就是反应矿物;而未反应完的残留的橄榄石就是残余矿物。2、成岩矿物:在岩浆完全结晶后,由于外界物理化学条件的变化(主要是温度和压力的降低),使原生矿物发生转变而新形成的矿物叫成岩矿物。如由高温石英变成低温石英,由透长石变成正长石。3、岩浆期后矿物:在岩浆基本上凝固成固体的岩石后,由于受残余挥发份和岩浆期后溶液的作用(蚀变、交代及充填)而生成的矿物。它往往交代原生矿物,或充填在矿物的孔隙及晶洞中。包括气成矿物,如电气石、萤石、黄玉等,也包括那些自—它变质矿物,例如由橄榄石变成的蛇纹石、滑石、皂石等。4、它生矿物:它们是由岩浆同化了围岩和捕虏体所生成的矿物。在纯净的正常岩浆中不会析出这类矿物。5、外生矿物:岩石受到各种外界营力,主要是地表风化而形成的矿物,又称表生矿物。这些矿物的形成,与原来的岩浆及岩浆期后气体液体的活动没有成因上的联系。如钾长石风化变成高岭土。四、矿物相矿物相:岩浆岩不的矿物成分与形成条件的有机联系,称为矿物相。岩浆岩中的主要矿物相如下:1、火山相:以出现高温低压矿物为特征。是快速晶出、反应不完全的产物。如出现高温石英、透长石、歪长石、高温斜长石、六方钾霞石。1)干火山相:多数火山岩(尤其是玄武岩)属于此相。2)湿火山相:次火山岩、超浅成的脉岩,以及个别粘度大、挥发份多的火山岩属于此相。2、深成相:以出现低温、高压矿物为特征。是缓慢冷却、结晶完全、反应平衡的产物。如出现低温石英、正长石、微斜长石、低温斜长石、斜方辉石等。1)干深成相:不出现含水矿物——角闪石、黑云母、白云母,也不出现需水矿物——黑榴石及方钠石类。2)湿深成相:结晶温度最低,岩浆粘度最小,含水及需水矿物,尤其以出现角闪石白云为特征。3)混合相:火山相与深成相兼而有之者,称混合相。

(一)矿石类型

抱伦及外围金矿石自然类型可分为2种,含金石英脉型矿石和含金蚀变岩型矿石,而前者为该矿床最主要的矿石类型。根据矿物组合特征的不同,可将石英脉型矿石自然类型进一步划分为含金石英脉型、含金碳酸盐-石英脉型和含金多金属硫化物-石英脉型。矿石化学成分及含量见表3-12。

表3-12 含金石英脉型金矿石化学全分析结果 w(B)/%

1含金石英脉型

脉石矿物主要是浅黑色石英,少量呈乳白色,石英总含量可在90%~95%以上;少量绢云母、金红石和绿泥石;局部含有碳酸盐矿物,呈细脉状或在硫化物细脉的两侧呈镶边状。金属矿物含量低,一般为1%~5%,局部可达10%~15%,主要是硫化物、铋化物和碲化物。硫化物以黄铁矿和磁黄铁矿为主,少量黄铜矿、闪锌矿、方铅矿、毒砂等;铋化物和碲化物种类很多,有自然铋、黑铋金矿、硫金铋矿、辉铋矿、硫铋铅矿、斜方硫铋铅矿、柱硫铋铅矿、卡辉铋铅矿、柱辉铋铅矿、赫碲铋矿、硫碲铋矿、碲铋矿、辉碲铋矿等。呈自形—他形粒状结构、镶嵌结构,浸染状构造、网脉状构造、角砾状构造。

2含金碳酸盐-石英脉型

脉石矿物主要为碳酸盐矿物,可占20%~35%,呈自形—半自形晶,白色到浅粉色,颗粒较粗大;石英含量60%~74%,主要呈乳白色。金属矿物5%左右,局部可达15%~20%,主要是黄铁矿、闪锌矿和方铅矿,少量黄铜矿、磁黄铁矿。

含金碳酸盐-石英脉型矿石中常见微晶簇状或梳状石英,说明生长过程中有自由空间,可能是在张性裂隙中形成的。

3含金多金属硫化物-石英脉型

脉石矿物主要是石英,可达50%~80%;其次为碳酸盐矿物,占10%~25%;少量绢云母、绿泥石、金红石和碳质。金属矿物含量5%~20%,主要为黄铁矿、方铅矿、闪锌矿、黄铜矿,少量毒砂,具交代残留结构、鳞片变晶结构,似条带状构造、片状构造、揉皱状构造等。

4含金蚀变岩型

非金属矿物以绢云母为主,次为石英,金属矿物有黄铁矿、磁黄铁矿、自然金、毒砂等,具交代残留结构、鳞片变晶结构,似条带状构造、片状构造、揉皱状构造等。

(二)矿石结构构造

1矿石结构

矿石结构主要有自形不等粒状结构,半自形不等粒状结构,他形不等粒状结构,斑状变晶结构,交代结构,交代残留结构,环状交代结构,筛状结构,包含结构,固溶体分离结构,文象或蠕虫状结构,鳞片变晶结构,扇形(或放射状)变晶结构等。

2矿石构造

矿石构造主要有细脉状或网脉状构造,似条带状构造,稀疏浸染状构造,团块浸染状构造,片状构造,揉皱状构造,劈理构造,晶洞构造,梳状构造,碎裂及碎斑构造等。

(三)矿石组成

1矿物组成

矿石中主要金属矿物最常见的为黄铁矿,其次有磁黄铁矿,少量闪锌矿和方铅矿,微量金属矿物有毒砂、黄铜矿、自然金、银金矿、辉铋矿、自然铋、黑铋金矿、硫金铋矿、硫铋铅矿、斜方硫铋铅矿、卡辉铋铅矿、柱辉铋铅矿、辉锑镍矿、赫碲铋矿、叶碲铋矿和金铋合金等。

图3-25 矿石中Au含量与Bi、Ag和As含量关系图

(数据和样品描述见表3-13)

非金属矿物主要为石英,其次有方解石、白云母、绢云母、绿泥石、金红石及少量粘土类矿物如高岭石和伊利石等。在近地表部位的矿石中常可见到氧化矿物褐铁矿与赤铁矿。

2化学成分

从矿石的矿物组成判断,抱伦金矿床矿石的常量化学成分以SiO2为主,含有少量但不均匀的CaO、Al2O3、Fe2O3、FeO、K2O以及微量的TiO2、MgO和Na2O等。对15个样品的定量光谱分析结果表明,抱伦金矿床的矿石含Ag0043×10-6~044×10-6,Cu8×10-6~82×10-6,Pb10×10-6~30×10-6,Zn6×10-6~84×10-6,Hg0006×10-6~0024×10-6,As35×10-6~6917×10-6,S008%~121%(丁式江等,2000)。

对取自不同矿体不同部位的矿石及近矿围岩进行了Au、Ag、As、Bi含量分析,其Au含量为066×10-6~327×10-6(平均909×10-6),Ag005×10-6~027×10-6(平均011×10-6),As228×10-6~118×10-6(平均425×10-6),Bi018×10-6~16×10-6(平均411×10-6)(表3-13)。图3-25显示矿石中Au含量与Bi、Ag和As含量之间的相关性不很明显,尤其是Au与As之间;尽管如此,Au与Bi和Ag含量之间所具有的一定程度的正相关关系还是可以确定的。结合对矿体边部蚀变矿化围岩的3个样品分析结果(表3-13)看,上述相关关系则显得更加清楚。

李中坚等(2000)曾报告,V1-3主矿体高品位地段矿石中,金含量可高达4700×10-6,同一样品含Ag182×10-6,As520×10-6,Bi419×10-6,Cu117×10-6,Pb1300×10-6,Zn20×10-6,Fe051%,Co125×10-6,Ni17×10-6,Sb227×10-6,Hg0015×10-6,Te124×10-6,S013%(表3-13)。这说明,矿石含金品位与Ag、As、Bi、S以及多种亲硫元素之间具有正相关关系。

抱伦金矿及外围金矿石样品成矿元素及成矿指示元素光谱分析结果如表3-14所示。根据表3-14矿石样品的定量光谱分析结果,矿石伴生有益组分主要有银、铜、铅、锌等,其含量分别为Ag0016×10-6~188×10-6、Cu793×10-6~8279×10-6、Pb1002×10-6~97918×10-6、Zn1646×10-6~1100×10-6,但均因含量低微而无综合利用价值。有害组分主要有汞、砷、硫等,其含量分别为Hg318×10-9~90×10-9,As35×10-6~25449×10-6,S0092%~109%。

表3-13 不同矿体和标高的矿石及近矿围岩Au、Ag、As、Bi含量 w(B)/10-6

注:①据李中坚等,2000;其余由国家地质测试研究中心测试。

综上可见,抱伦金矿床矿石Ag/Au比值较低。与国内外大多数热液型金矿相比,抱伦金矿床的矿石相对富含Bi元素和多达近20种的复杂Bi矿物组合(主要为自然金属类、硫化物类以及硫盐类),这在中(低)温热液脉型金矿床中是比较罕见的现象。因此,抱伦金矿属于较为特殊的富含铋矿物的热液型矿床。

表3-14 含金石英脉金矿石样品光谱分析结果表 w(B)/10-6

注:①C、S单位为%;②Hg单位为10-9。

图3-26 矿石矿物组合显微照片

a—闪锌矿(Sp)与黄铜矿(Chal)固溶体出溶物共生于黄铁矿(Py)中;b—自然金自形晶(Au)散布于黄铁矿(Py)中;c—自然金(Au)呈他形充填于碎裂黄铁矿(Py)之裂隙中;d—自然金(Au)粒度差别悬殊,其形状严格受控于石英(Qz)晶间或微晶洞的空间形态,黄铁矿(Py)则呈自形晶;e—他形自然金(Au)颗粒赋存在闪锌矿(Sp)晶体内部或沿其边缘分布;f—自然金(Au)自形晶产于磁黄铁矿(Pyr)晶体中;g—自然金(Au)呈他形交代毒砂(Aspy)和黄铁矿(Py);h—自然金(Au)和磁黄铁矿(Pyr)晶体被自然铋(Bi)和辉铋铅矿(GnBi)之连晶所穿切;i—赫碲铋矿(BiTe)与自然金(Au)呈连晶并被后者半包裹;j—作为黑铋金矿的分解产物,自然铋(Bi)与自然金(Au)的连晶出现在黑铋金矿(Mal)晶体(照片左侧)内,在照片中心部位可见自然铋被硫铋金矿(AuBiS)包裹的现象;k—沿石英(Qz)微裂隙分布的他形自然铋(Bi)和自然金(Au)颗粒;l—共生自然金(Au)和硫铋金矿(AuBiS)被方铅矿(Gn)交代;m—球粒状自然铋(Bi)颗粒散布于一个自然金(Au)晶体中;n—自然金(Au)颗粒被辉铋矿(Bism)包裹

此外,位于抱伦金矿床北部的戈枕剪切带中的2个热液型大型金矿床,即二甲红甫门岭和不磨金矿床,其矿石也显示有较高的Bi含量,并且前人(饶家光等,1993)研究曾报道发现辉铋矿和辉铅铋矿。据此推断,海南岛西部的热液型金矿床,均应与岩浆活动均有密切的成因联系。另据1:20万和1:5万水系沉积物测量结果,整个海南岛在王五-文教断裂以南的绝大部分地区都存在Bi的地球化学异常。这一现象,一方面反映海南岛的中—南部地区花岗岩类岩浆活动及与其相关的成矿作用非常强烈,另外也可能暗示该地区处于一个Bi的区域地球化学高异常省,这一点与整个华南地区在一定程度上具有相似性。

一、宝石矿物晶体化学的分类

从晶体化学的角度,宝石矿物可划分为含氧盐类、氧化物类和自然元素类等。

(一)含氧盐类

大部分宝石矿物属于含氧盐类,其中又以硅酸盐类矿物居多。据统计,宝石矿物中硅酸盐类矿物约占一半,还有少量宝石矿物属磷酸盐类。

1硅酸盐类

在硅酸盐类矿物的晶体结构中,硅氧络阴离子配位的四面体[SiO4]4-是它们的基本构造单元。硅氧四面体在结构中可以孤立地存在,也可以以其角顶相互连接而形成多种复杂的络阴离子(基型)。根据硅氧四面体在晶体结构中的连接方式,可分成以下几种。

(1)岛状基型

表现为单个硅氧四面体[SiO4]4-或每两个四面体以一个公共角顶相连组成双四面体在结构中独立存在。它们彼此之间靠其他金属阳离子(如Zr4+、Fe2+、Mg2+、Ca2+等)来连接,它们之间并不相连,因而呈独立的岛状。属于此类的宝石矿物有锆石ZrSiO4、橄榄石(Mg,Fe)2SiO4、石榴石A3B2(SiO4)3(其中A为Mg2+、Fe2+、Ca2+、Mn2+等二价阳离子,B为Al3+、Fe3+、Cr3+等三价阳离子)、黄玉Al2SiO4(F,OH)2、榍石CaTi(SiO4)O、十字石Fe2Al9(SiO4)4O6(O,OH)2和绿帘石Ca2FeAl2(Si2O7)(SiO4)O(OH)等。

(2)环状基型

结构中包含由三个、四个或六个[SiO4]4-硅氧四面体所组成的封闭的环(分别叫三方、四方和六方环)。环内每一个四面体均以两个角顶分别与相邻的两个四面体连接,而环与环之间则靠其他金属阳离子连接。属于此类的宝石矿物有蓝锥矿BaTiSi3O9(三方环)、绿柱石Be3Al2Si6O18(六方环)、堇青石(Mg,Fe)2Al3AlSi5O18(六方环)和电气石(六方环)等。

(3)链状基型

指每一[SiO4]4-四面体以两个角顶分别与相邻的两个[SiO4]4-四面体连成一条无限延伸的链,链与链之间通过其他金属阳离子来连接。属于此类的宝玉石有翡翠、软玉、透辉石和蔷薇辉石等。

(4)架状基型

每个[SiO4]4-四面体均以其全部的四个角顶与相邻的四面体连接,组成在三维空间中无限扩展的骨架。属于此类的宝石矿物有月光石、日光石、拉长石、天河石和方柱石等。

2磷酸盐类

该类含有磷酸根[PO4]3-阴离子。由于半径较大,因而要求半径较大的阳离子(如Ca2+、Pb2+等)与之结合才能形成稳定的磷酸盐。此类矿物成分复杂,往往有附加阴离子。属于此类的宝石矿物有磷灰石Ca5(PO4)3(F,Cl,OH)和绿松石CuAl6(PO4)4(OH)8·4H2O等。

(二)氧化物类

氧化物是一系列金属和非金属元素与氧阴离子O2-化合(以离子键为主)而成的化合物,其中包括含水氧化物。这些金属和非金属元素主要有Si、Al、Fe、Mn、Ti、Cr等。阴离子一般按立方或六方最紧密堆积,而阳离子则充填于其四面体或八面体空隙中。属于简单氧化物的宝石有刚玉矿物(Al2O3)的红宝石、蓝宝石,SiO2类矿物(SiO2和SiO2·nH2O)的紫晶、黄晶、水晶、烟晶、芙蓉石、玉髓、欧泊、蛋白石及金红石(TiO2)等。属于复杂氧化物的宝石矿物有尖晶石(Mg,Fe)Al2O4和金绿宝石BeAl2O4等。

(三)自然元素类

有些金属和元素可呈单质独立出现。属于此类的宝石矿物有钻石(成分为C)等。

二、宝石矿物的化学组成及其变化

宝石矿物的化学成分和晶体结构是决定一个宝石矿物种的两个最基本的因素。只考虑其化学成分,不考虑结构不能确定一个宝石种;同样,只考虑其结构而不考虑化学成分也不能确定一个宝石种。例如,化学成分为碳(C)的固体,只有当C以立方对称排列时,才能确定其为钻石或金刚石;而如果C以六方对称排列时,只能确定为石墨。同样,都具立方面心格子构造的固体,化学成分为NaCl时,其为石盐,而化学成分为CaF2时,只能确定其为萤石。因此,化学成分是宝石矿物存在的物质基础,晶体结构是其存在的表现形式,二者是相互依存的,离开一方,另一方也就不再存在。很显然,矿物的化学成分和结构是决定宝石矿物一切性质的最基本因素。

作为一个宝石矿物种,其化学成分可分为主要化学成分和次要或微量成分。主要化学成分是指能保持其结构的化学成分,如果缺某个成分,其结构便不能存在或保持。但在保持其结构和物化性质基本不变的条件下,主要化学成分是可以有一定变化的,或者说它可以有一个变化范围。因此我们说,宝石矿物的化学组成并不是固定不变的,而是可以有一定的变化幅度的。如刚玉宝石矿物,是具三方对称的Al2O3,不含任何次要或微量成分时,呈无色透明,Al和O均为其主要化学成分。但Al可以被少量的Cr所替代,而呈现红色,这时的Cr就可称为刚玉的次要化学成分或微量元素。但Cr的替代量是有限的,更不能全部替代Al,否则就不能保持其三方对称的结构,刚玉也就不能存在了。引起矿物化学成分变化的原因很多,主要是类质同象替代(下一节将详述)和一些微细组分的机械混入(可以以显微包体形式存在)。对宝石矿物而言,杂质组分的介入是极其重要的,它可使宝石矿物呈现各种漂亮迷人的颜色(如祖母绿因含有微量Cr元素而呈现美丽的翠绿色),也可使部分宝石矿物具有特殊的光学效应(如星光效应和猫眼效应等)。

三、宝石矿物中的水

许多宝石矿物含有水,根据矿物中水的存在形式及它们在晶体结构中的作用,可以把水分成以下几大类。

1吸附水

吸附水不参加晶格,是渗入在矿物集合体中,为矿物颗粒间隙或裂隙表面机械吸附的中性水分子(H2O)。吸附水不属于矿物的化学成分,不写入化学式。它们在矿物中的含量不定,随温度和湿度变化而不同。常压下温度达到100~110℃时,吸附水就基本上从矿物中逸出,而不破坏晶格。吸附水可以呈气态、液态或固态。

另外,水胶凝体中含有一种特殊类型的吸附水,称为胶体水。它被微弱的联结力固着在微粒的表面,通常计入矿物的化学组成,但其含量变化很大。例如蛋白石,其分子式为SiO2·nH2O(n为H2O分子数,不固定)。

2结晶水

结晶水以中性水分子(H2O)存在于矿物中,在晶格中占有固定的位置,起着构造单位的作用,是矿物化学组成的一部分。水分子的数量与矿物其他成分之间有固定的比例。结晶水从矿物中逸出的温度一般不超过600℃,通常为100~200℃。当结晶水失去时,晶体的结构将被破坏并形成新的结构。

比如绿松石就是一种含结晶水的磷酸盐,分子式为CuAl6(PO4)4(OH)8·5H2O,其中H2O含量达1947%。

3结构水

结构水(也称化合水)是以OH-、H+、H3O+等离子形式参加矿物晶格的“水”,其中OH-形式最为常见。结构水在晶格中占有固定的位置,在组成上具有确定的比例。由于与其他质点有较强的键力联系,结构水需要较高的温度(通常在600~1000℃之间)才能逸出。当其逸出后,晶体结构完全破坏。

许多宝石矿物都含有这种结构水,例如:碧玺NaMg3A l6(Si6O18)(BO3)3(OH)4、十字石Fe2Al9(SiO4)4O6(O,OH)2、黄玉Al2SiO4(OH,F)2和磷灰石Ca5(PO4)3(F,Cl,OH)等。

此外,在堇青石和绿柱石平行Z轴的结构通道中,常会有一定数量的水,含量有一定的变化。其存在形式和结构状态到目前仍不太清楚。它是一种特殊类型的结构水,它的失去需要很高温度。

高炉矿渣是由哪些化学成分和矿物组成

高炉矿渣中主要的化学成分是:二氧化硅(SiO2)、三氧化二铝(Al2O3)、氧化钙(CaO)、氧化镁(MgO)、氧化锰(MnO)、氧化铁(FeO)和硫等。此外有些矿渣还含有微量的氧化钛(TiO2)、氧化矾(V2O5)、氧化钠(Na2O)、氧化钡(BaO)、五氧化二磷(P2O5)、三氧化二铬(Cr2O3)等。在高炉矿渣中氧化钙(CaO)、二氧化硅(SiO2)、三氧化二铝(Al2O3)占重量的90%以上。几种高炉矿渣的化学成分见表1。

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  表1

高炉矿渣的化学成分(%)

高炉矿渣中的各种氧化物成分以各种形式的硅酸盐矿物形式存在。

   

碱性高炉渣中最常见的矿物有黄长石、硅酸二钙、橄榄石、硅钙石、硅灰石和尖晶石。

   

酸性高炉渣由于其冷却的速度不同,形成的矿物也不一样。当快速冷却时全部凝结成玻璃体;在缓慢冷却时(特别是弱酸性的高炉渣)往往出现结晶的矿物相,如黄长石、假硅灰石,辉石和斜长石等。

   

高钛高炉矿渣的矿物成分中几乎都含有钛。

   

锰铁矿渣中存在着锰橄榄石(2MnO·SiO2)和蔷薇辉石(MnO·SiO2)矿物。

高铝矿渣中存在着大量的铝酸钙(CaO·Al2O3)、三铝酸五钙(5CaO·3A12O3)、二铝酸钙(CaO·2Al2O3)等。

氢是有机化合物的最最最主要成分

在人体上是绝对不可少的 氧是人体中含量最多的成分

占65% 氮是蛋白质

氨基酸的组成部分 钙

镁等是骨骼所含的几个常见组分 铁是组成血的成份

参考: 自己

化学成份方面:H(hydeogen) and O(oxygen)

因人体成份最多的是水份(H2O) 矿物成份方面: Calcium(钙)

Sodium(钠)---骨骼的主要成份 Iron(铁)--血液的主要成份 2007-03-07 09:58:49 补充: 补充:还有Carbon-C(碳),人体所有组织都是由C(碳)

O(氧)

H(氢)再加其他微量元素组成。

一、宝石与地壳中的化学元素

1 地壳中的化学元素

宝石矿物是由不同元素组成的,地壳中的化学元素有 100 多种,各种元素在地壳中的平均含量 (即元素在地壳中的丰度) 有很大的差异。O、Si、Al、Fe、Ca、Na、K、Mg 8种元素就占了地壳总质量的 98 59%,其中 O 几乎占了地壳质量的一半,Si 占了四分之一强。表 1 -1 -1 列出了地壳中 20 种丰度最高的元素,同时也列出了一些常出现在宝石矿物中的稀有元素或宝石学家比较感兴趣的元素。

表 1 -1 -1 地壳中元素的丰度

(据 Hurlbu,1991)

从表 1 -1 -1 中可以看到 O 占地壳体积的 93% 以上,从原子的角度来看,地壳基本上是由氧的阴离子堆积而成,Si 和金属离子 (如 Al、K、Na、Ca 等) 充填在其空隙之中。

宝石矿物的形成不仅与元素的相对数量有关,还决定于元素的地球化学性质,有些元素的丰度虽然很低,但趋向于集中,可以形成独立的矿物种,并可以富集成矿床,如 Sb、Bi、Hg、Ag 和 Au 等,称为聚集元素; 有些元素的丰度虽然远比上述元素高,但趋向于分散,不易聚集成矿床,甚至很少能形成独立的矿物种,而是常常作为微量的混入物赋存于主要由其他元素组成的矿物中,如 Rb、Cs、Ga、In、Se 等,称为分散元素。

2 元素的离子类型

元素在宝石矿物中的结合,主要取决于元素本身与原子外电子层有关的性质。各种元素的原子得到电子的能力 (电负性) 和失去电子的能力 (电离势) 以及它们成为离子后的性质,包括离子的电子层结构 (离子类型) 、离子半径等,都是支配元素之间能否结合形成化合物的重要因素。元素之间化合时,离子的外电子层以 2、8 或18 个电子的结构最稳定,各种元素都有力图使自己达到这种结构的趋势。一些元素之所以结合形成矿物,正是通过彼此间得失电子的方式来满足各自的要求。根据离子的最外电子层结构,可将离子分为 3 种基本类型 (表 1 -1 -2) 。

表 1 -1 -2 元素的离子类型

注: ① TR 与 Ac 分别为镧系及锕系元素。

1—惰性气体型原子; 2—惰性气体型离子; 3—过渡型离子: 3a—亲氧性强,3b—亲硫性强; 4—铜型离子。

(1) 惰性气体型离子

元素周期表左边的碱金属和碱土金属以及一些非金属元素的原子,失去或得到一定数目的电子成为离子时,其最外电子层结构与惰性气体原子的最外电子层结构相似,具有 8个 (s2p6) 或 2 个 (s2) 电子,称为惰性气体型离子。碱金属和碱土金属原子的电离势较低,容易失去电子变成阳离子,而非金属元素 (主要是氧和卤素元素) 的电负性较高,容易接受电子而变成阴离子,氧是地壳中含量最多、分布最广的元素,极易接受两个电子变成 O2-而达到稳定的外电子壳层。所以它们极易与氧结合生成氧化物和含氧盐 (主要是硅酸盐) ,形成大部分造岩矿物。因此,地质上常将这部分元素称为造岩元素,也称亲石元素或亲氧元素。碱金属和碱土金属元素的离子半径较大,极化性能较低,与氧和卤素元素形成以离子键为主的化合物。

(2)铜型离子

元素周期表上右半部分的有色金属和重金属元素,失去电子成为阳离子时,其最外电子层具有18(或18+2)个电子,与一价铜离子(s2p6d10)相似,称为铜型离子。本类离子的离子半径较小,外层电子又多,极化性能很强,易与半径较大、又易被极化的S2-结合生成以共价键为主的化合物,形成主要的金属矿物。因此将这部分元素称为造矿元素,也称为亲硫元素或亲铜元素。

(3)过渡型离子

元素周期表上Ⅲ—Ⅷ族的副族元素,失去电子成为阳离子时,其最外电子层为具有8到18个电子的过渡型结构,所以称为过渡型离子,其在元素周期表上也居于惰性气体型离子与铜型离子之间的过渡位置,它们的离子半径和极化性质也介于惰性气体型离子与铜型离子之间。外电子层的电子数愈近于8者亲氧性愈强(表1-1-2中3a),易形成氧化物和含氧盐;愈近于18者亲硫性愈强(表1-1-2中3b),易形成硫化物;居于中间位置的Mn和Fe,则与氧和硫均能结合。

3有色宝石矿物的化学成分

有色宝石矿物与其他物质一样,都是化学元素组成的。每一种宝石矿物都有其特定的化学成分及一定的变化范围,并决定着宝石的各种特征和性质。按照有色宝石矿物成分组成类别可划分为以下几类:

1)单质:即组成元素只有一种,如钻石由单一的碳(C)元素组成。

2)化合物:由一种以上元素按一定比例组成,有色宝石中常见4种类型:

●简单氧化物:成分中阳离子为一种元素,阴离子为氧元素。如石英(SiO2)和刚玉(Al2O3),阳离子分别为硅(Si)和铝(Al),两者阴离子都为氧(O)。

●复杂氧化物:组成中阳离子为一种以上的元素,如尖晶石(MgAl2O4)的阳离子为镁(Mg)和铝(Al),金绿宝石(BeAl2O4)的阳离子为铍(Be)和铝(Al),两种宝石的阴离子都为氧(O)。

●单盐:阳离子为一种元素,但阴离子不是单一元素,而是由阴离子与阳离子组合的阴离子团,也称酸根。如方解石化学成分为碳酸钙Ca[CO3],方括号中为阴离子团,由碳(C)与氧(O)组合而成。又如锆石的化学成分为硅酸锆Zr[SiO4],阳离子为锆,酸根为硅酸根。

●复盐:由一种以上的阳离子组成的盐类,如白云石CaMg[CO3]2,阳离子有钙(Ca)和镁(Mg)两种。又如绿柱石就是铍和铝的硅酸盐,其化学式为Be3Al2[Si6O18]。

●卤化物:组成中阳离子为一种或以上的元素,阴离子为氟(F)、氯(Cl)、溴(Br)和碘(I)的化合物,有色宝石中最常见的是萤石(CaF2)。

二、宝石化学成分的变化———类质同像

无论是单质还是化合物,宝石矿物的化学成分都不是绝对固定不变的,通常都会在一定的范围内有所变化。引起矿物化学成分变化的原因,对晶质矿物而言,主要是元素的类质同像代替。通常说某种矿物成分中含有某些混入物,除因类质同像代替和吸附而存在的成分外,还包括一些以显微(及超显微)包裹体形式存在的机械混入物。

1类质同像的概念

晶体结构中某种质点(原子、离子或分子)为他种类似的质点所代替,仅使晶格常数发生不大的变化,而结构形式并不改变,这种现象称为类质同像。

类质同像可根据代换的多少分为两种类型,一种为完全的类质同像,其相互代换离子的量不受限制,它们可以形成一个连续的类质同像系列,如橄榄石;另一种为不完全的类质同像,其代换量不能超过一定限度,它们不能形成连续的系列,如红宝石铬离子代换铝离子最多不过百分之几就能使刚玉呈现红色。

根据相互取代的质点的电价是否相同,分别称为等价的类质同像和异价的类质同像,前者如Mg2+与Fe2+之间的代替,后者如在钠长石Na[AlSi3O8]与钙长石Ca[Al2Si2O8]系列中Na+和Ca2+之间的代替以及Si4+和Al3+之间的代替都是异价的,但由于这两种代替同时进行,代替前后总电价是平衡的。

2类质同像形成的条件

形成类质同像的原因一方面取决于代替质点本身的性质,如原子和离子半径大小、电价、离子类型和化学键性等,另一方面也取决于外部条件,如形成代替时的温度、压力、介质条件等。

(1)原子和离子半径

相互取代的原子或离子,其半径应当相近。在电价和离子类型相同的情况下,类质同像的代换能力随着离子半径差别的增大而减小。当异价类质同像代换时,代换能力主要取决于电荷的平衡,离子半径的大小退居次要地位,如在斜长石中,(rAl3+-rSi4+)/rSi4+高达50%,Al3+仍可代替Si4+。

(2)总电价平衡

在类质同像的代替中,必须保持总电价的平衡。在使总电价平衡的前提下,类质同像的代替可以为同价代替或不等价离子之间的代替。如Mg[CO3]-Fe[CO3]中Mg2+和Fe2+的代替;斜长石Na[AlSi3O8]-Ca[Al2Si2O8]系列中Na++Si4+→Ca2++Al3+的代替,或磷灰石(Ca2+,Ce3+,Na+)5[PO4]3F中的Ce3++Na+→2Ca2+。

(3)离子类型和化学键

离子类型不同,化学键不同,则它们之间的类质同像代替就不易实现。如6次配位的Ca2+和Hg2+的半径分别为0100nm和0102nm,电价相同,半径相近,但由于离子类型不同,它们之间一般不出现类质同像代替。Al3+和Si4+均为惰性气体型离子,Si-O与Al-O间距分别为0161nm和0176nm,两者较为接近,且主要是共价键,从而使Al3+可代替Si4+。

(4)温度和压力

温度增高有利于类质同像的产生,而温度降低则将限制类质同像的范围并促使离溶。如在高温下碱性长石中的K、Na可以相互替代形成(K,Na)[AlSi3O8]或(Na,K)[AlSi3O8]固溶体,温度降低则发生固溶体分离,形成由钾长石(K[AlSi3O8])和钠长石(Na[AlSi3O8])两个物相组成的条纹长石。

一般来说,压力的增大将限制类质同像代替的范围并促使固溶体分离。

(5)组分浓度

一种宝石矿物晶体,其组成组分间有一定的量比。当它从熔体或溶液中结晶时,介质中各组分若不能与上述量比相适应,即某种组分不足时,则将有与之类似的组分以类质同像的方式混入晶格加以补偿。例如磷灰石的化学式为Ca5[PO4]3F,从岩浆熔体中形成磷灰石要求熔体中的CaO和P2O5等的浓度符合一定的比例,若P2O5浓度较大,而CaO的浓度相对不足,则Sr、Ce等元素就可以类质同像的方式补偿,代替Ca进入磷灰石的晶格,因而磷灰石中常可聚集相当数量的稀有分散元素。

3类质同像对宝石物理性质的影响

类质同像不仅可使宝石矿物的化学成分发生一定程度的规律变化,而且也必然会导致宝石矿物的一系列物理性质的改变,主要表现在颜色、光泽、折射率、相对密度、条痕、熔点及硬度等方面。

绿柱石的化学成分为Be3Al2[Si6O18],因类质同像的替换可呈现不同的颜色。当微量的Cr3+或V3+代替Al3+时,则称祖母绿;如果Li+代替Be2+,为保持电价平衡,Cs+会进入绿柱石的结构通道,含Cs越高,则绿柱石的折射率(No=1566~1602,Ne=1562~1594)、双折射率(0004~0009)、相对密度(260~290)也越高。一般Cs的质量分数最高可达413%,但当Cs、Li类质同像替换更多时,则物理性质会发生更大的变化,甚至被命名为新的宝石种。2003年在马达加斯加发现了一种红色宝石,经研究,它是一种含Cs、Li的绿柱石,晶体化学式是Cs(Be2Li)Al2Si6O18,折射率No=1615~1619,Ne=1607~1610,相对密度为309~311,因该宝石与绿柱石物理性质有很大差异,故以Pezzottaite命名为一种新宝石矿物。

三、宝石矿物中的水

在很多宝石矿物中含有水,根据水的存在形式以及它们在晶体结构中的作用,可以把水分为两类:一类不参加晶格,与矿物晶体结构无关,统称为吸附水;另一类参加晶格或与矿物晶体结构密切相关,包括结构水、结晶水、沸石水和层间水。

1)吸附水:以中性H2O分子的形式被机械吸附于宝石矿物集合体的颗粒表面或裂隙中,不写入化学式。吸附水在宝石矿物中的含量不定,随温度和湿度而不同,常压下110℃时全部逸出。另外,水胶凝体中含有一种特殊类型的吸附水,称为胶体水。它被微弱的联结力固着在微粒的表面,通常计入矿物的化学组成,但其含量变化很大,如蛋白石SiO2·nH2O。

2)结晶水:以中性H2O分子的形式在晶格中占有固定的位置,是矿物化学组成的一部分。结晶水的逸出温度一般不超过600℃,通常为100~200℃。当结晶水失去时,晶体的结构遭到破坏,形成新的结构,宝石矿物的一系列性质相应发生变化。如绿松石就是一种含有结晶水的磷酸盐,分子式为CuAl6[PO4]4(OH)8·4H2O,其中水(H2O)的含量可达20%左右。

3)结构水:又称化合水,是以(OH)-、H+、(H3O)+离子形式参加矿物晶格的“水”,其中(OH)-形式最常见。结构水在晶格中占有固定的位置,具确定的含量比,由于与其他质点有较强的键力联系,需要较高的温度(大约在600~1000℃之间)才能逸出,并引起结构的完全破坏。许多宝石中都含有结构水,如碧玺NaMg3Al6[Si6O18][BO3]3(OH,F)4、黄玉Al2[SiO4](F,OH)2、磷灰石Ca5[PO4]3(F,Cl,OH)等。在堇青石和绿柱石平行于z轴的结构通道中,常会有一定数量的水,含量有一定的变化,是一种特殊类型的结构水,它的失去需要很高的温度。

4)沸石水和层间水:在宝石中很少见。

研究水在宝石矿物中存在形式的最好方法是热分析,也可用红外吸收光谱、X射线衍射、电子衍射和中子衍射配合进行。

四、宝石矿物的化学式

宝石矿物的化学成分以化学式表达。化学式是表示矿物的组成、元素的种类、比例及某些结构特征的符号,有两种形式。

1实验式

表示宝石矿物化学成分中各组分数量比的化学式称为实验式,如祖母绿为Be3Al2Si6O18,也可用氧化物表示为3BeO·Al2O3·6SiO2。

2结构式或晶体化学式

不但可以表示出元素的种类和比例,还能表达一定的结构特征。如上述祖母绿的结构式为Be3Al2[Si6O18],说明其成分中存在阴离子团[Si6O18],并在晶体结构中占据特定的位置。

结构式或晶体化学式的书写原则有如下规定:

1)阳离子在前,阴离子在后。如果有一种以上的阳离子,则按碱性强弱的顺序排列,如尖晶石MgAl2O4。

2)当存在阴离子团时,一定用方括号括起来,如锆石Zr[SiO4]。

3)当成分中有附加阴离子如氟、氯及羟基等时,将其排在一般阴离子后面,如黄玉(托帕石)Al2[SiO4](F,OH)。

4)当存在类质同像代换时,应将相互代换的离子置圆括号中,前后按多少顺序排列,离子之间用逗号分开,如橄榄石(Mg,Fe)2[SiO4]表示阳离子Mg和Fe之间有代换,黄玉Al2[SiO4](F,OH)2表示附加阴离子F和OH之间有代换。

5)如成分中含有水分子,则排在最后,中间以居中小圆点隔开,如石膏Ca[SO4]·2H2O。水分子数如果不固定,可以用n表示,如欧泊写作SiO2·nH2O。

欢迎分享,转载请注明来源:品搜搜测评网

原文地址:https://pinsoso.cn/meirong/1962475.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-10-30
下一篇2023-10-30

随机推荐

  • 收缩毛孔的护肤品哪些好用?兰芝毛孔细致精华露效果怎么样?

    很多人都觉得自己脸上的毛孔很大,总是很容易出油,尤其是在炎热的夏季,会让自己的肌肤更加油腻,而且一般毛孔里面会有很多脏东西,很难清洗出来,需要辅助一些护肤产品来帮助,那么收缩毛孔的护肤品哪些好用?兰芝毛孔细致精华露效果怎么样?1、收缩毛孔护

    2024-04-15
    27900
  • 妮维雅美白身体乳需要避光吗

    需要。根据查询妮维雅官网得知,妮维雅身体乳中的成分会因为长时间暴露在阳光下而失去活性,影响保湿效果和质量,所以需要避光存储,正确存储方式是放在阴凉干燥处,避免阳光直射和高温环境。妮维雅(NIVEA)德国拜尔斯道夫公司所有的大型全球护肤品与身

    2024-04-15
    26000
  • 精华露和精华液的区别(精华露和精华液的区别及使用)

    在护肤步骤中少不了要用到精华,平时我们在护肤中常听到精华露和精华液,这两者是一样的东西吗?下面来说一下精华露和精华液的区别及使用方法,希望对大家能有所帮助。 长久以来精华类的护肤品作用是十分明显的,很多人都非常喜欢这种产品。一般 而言精华类

    2024-04-15
    17900
  • 妮维雅630淡斑精华真假

    关于妮维雅630淡斑精华的真假问题,我可以告诉你,这取决于你购买的渠道和产品包装。如果你选择在正规渠道购买,比如官网、专柜或者认可的线上零售商,那么你购买到的产品应该是真品。如果你选择在一些不明来源的小店或者个人手中购买,那么就存在假货风险

    2024-04-15
    9100
  • 完美日记钻石高光哪个色号好看

    01 银白:FB钻石高光平替本替辽,blingbling的银白色钻闪,上脸像碎钻一样,精致又闪耀,仙女下凡了!!03 香槟金:超日常的浅香槟金,上脸光泽感细腻自然,百搭不挑妆容,值得pick!05 香槟粉:草莓绵绵冰吗!和mac的dazzl

    2024-04-15
    7800
  • 妮维雅和欧莱雅哪个好?妮维雅是哪国的品牌?

    妮维雅和欧莱雅都是有名的护肤品牌,并且都拥有男女士两个系列,那么妮维雅和欧莱雅哪个好妮维雅是哪国的品牌妮维雅和欧莱雅哪个好妮维雅NIVEA,全球销量第一的肌肤护肤品牌,百年德国护肤品牌为女性提供专业的肌肤健康知识,成为广大女性乐于亲近、

    2024-04-15
    8800
  • 全世界最好用的护手霜推荐 平价好用护手霜分享

    平价好用的护手霜在市面上很常见,品牌也是五花八门,相信很多集美都不知道该怎么挑选,作为一名多年的护肤达人,接下来我就分享给大家5款常用实惠好用的护手霜,快快收藏起来吧!凡士林护手霜参考价格:169元50ml凡士林护手霜的主要成分就是凡士林

    2024-04-15
    16100

发表评论

登录后才能评论
保存