1、低、中碳钢不容易断,高碳钢是容易断。高碳钢是WC量为06%以上的钢。
2、碳钢也叫碳素钢,指含碳量Wc小于211%的铁碳合金。碳钢除含碳外一般还含有少量的硅、锰、硫、磷。
3、在材料科学及冶金学上,韧性是指当承受应力时对折断的抵抗,其定义为材料在破裂前所能吸收的能量与体积的比值。
原因分析
11辊面热疲劳失效
热疲劳失效是造成连铸辊失效的主要原因之一。其主要起因是工作状态的辊子表面环向温度分布不均匀,辊子表面与辊子内部的温度差达到300℃左右,由此在辊子表面及内部产生了非轴对称、周期性变化、不均匀分布的热应力,连铸辊在与高温铸坯接触的同时,受到高压冷却水的快速冷却,承受着反复高温急冷、急热,同时连铸辊还受到板坯鼓肚力和静压力的交变机械应力作用;当连铸过程中出现滞坯和漏钢时,连铸辊还受到非平衡热和非平衡应力的作用;辊子在机械应力和热应力的共同作用下就产生热疲劳失效。这样的冷热循环造成严重的冷热疲劳作用,这些因素的共同作用下,辊面出现不同程度的网状热裂纹和弯曲变形。
12辊面磨损
由于辊子是在高温潮湿环境下工作,辊面与高温铸坯接触,受到高温氧化、冷却水和连铸生产用的保护渣中的氟离子的腐蚀作用,引起连铸辊辊面氧化、腐蚀鳞皱脱落,使辊子外径减薄,导致辊面磨损,甚至导致辊子报废。
13堆焊材料的质量
堆焊材料的质量直接影响着连铸辊的工作质量,连铸辊若采用以碳作为固溶强化元素来提高堆焊层的硬度,由于碳在高温下(400~900℃)极易与Cr形成Cr23C6金属间化合物,造成堆焊层尤其是过渡区出现贫铬现象,而连铸辊长期处在高温潮湿的环境下工作,容易造成堆焊层晶间贫铬开裂损坏。
14母材的质量
母材质量的好坏是决定连铸辊质量最直接、最关键的因素,也是造成连铸辊失效的主要原因。母材中非金属夹杂物含量较多,锻造不当,保留了铸态形貌、枝晶间的低熔点夹杂物、化学成分偏析铸态缺陷,调质处理温度过高或保温时间较长,形成魏氏组织,降低了连铸辊的力学性能。如果母材选择不当,连铸辊就不能满足使用工矿要求,在常温下有较好的屈服强度,但在高温情况下屈服强度急剧下降,抗热疲劳裂纹性能不足,这就会直接导致连铸辊热疲劳失效断裂及弯曲。
氧化铁皮之形成
氧化铁皮是钢坯在加热或热轧状态进行加工形成的附在表面上的金属氧化物。这层可能是致密的四氧化三铁,也可能是疏松的氧化亚铁。氧化铁皮约为5-15微米厚,外层的三氧化二铁占1%,中间层是占4%的四氧化三铁,内层为氧化亚铁占95%。高温下氧化铁皮形成激烈,当温度低于570℃时氧化铁皮基本停止形成。
氧化铁皮厚度及机构的影响因素有哪些
终轧温度及卷取温度:一般控制轧制温度在850摄氏度左右,温度越高,带钢上的氧化皮越厚,且氧化铁皮中难容的三氧化二铁和四氧化三铁含量较高。
带钢规格:带钢厚度越厚,表面铁皮越厚。窄带钢表面的氧化铁皮是典型的三层结构。
氧化铁皮在钢卷中的位置:带钢头、尾及边部在冷却时与空气接触大,氧化铁皮结构中的四氧化三铁和三氧化二铁含量相对较高。
冷却方式:带钢冷却速度越慢,生产的氧化铁皮越厚,且氧化铁皮中难溶的三氧化二铁和四氧化三铁含量较高。
氧化铁皮的性质
紧密度:氧化铁皮内层是疏松且多孔的细结晶组织,主要由氧化亚铁组成,中间层是致密、无孔和裂缝、成玻璃状断口的磁性氧化铁,外层是结晶结构的氧化铁。
内应力:内应力小于氧化铁的强度时,氧化铁皮会产生雷锋,当内应力大于氧化铁皮同金属表面的附着力时,氧化铁皮会从金属表面上脱落下来。基本铁表面越粗糙,内应力越大,氧化铁皮破碎和脱落的可能性就越大。
附着力:附着力一般用破坏应力来衡量,附着力越大,破坏应力越大,附着力越小,破坏应力越小。
减少氧化铁皮的一些措施
通过降低加热温度、减少在炉时间、调节炉内气氛为偏还原性气氛,抑制炉生氧化铁皮生成。
通过提高除鳞水压力,调整优化水嘴高度、角度,提高立辊测压能力减少粗轧氧化铁皮。
降低辊生氧化铁皮措施:采用抗裂性好的辊压材质,采用合理的磨削制度,及时彻底的去除轧辊表面残余裂纹,采用润滑压制,提高轧辊表面质量,降低机架单位轧制力,防治因单位轧制力过大导致轧辊表面裂纹扩展而产生辊生氧化铁皮,保证轧辊迅速冷却。
精轧机架侧喷水投入,可减少氧化铁皮压入。
提高保护渣质量,减少保护渣卷入,保证钢坯出鳞效果可减少保护渣铁皮。
优化钢坯的化学成分,不影响力学性能和其他性能的基础上,尽量减少碳、硅元素的含量,提高锰、铝含量,对热轧厂减少氧化铁皮更切实有效。
间隙原子C、N对IF钢的织构、r值与时效特性有着十分重要的影响。固溶的C、N原子不利于{111}织构的形成,r值急剧降低。此外,C、N含量高还将会明显增大IF钢的时效硬化倾向。Nb、Ti等元素可以将C、N间隙原子从基体中清除出来,从而获得较纯净的铁素体钢,有利于{111}织构的发展和r值增大,并且保证了IF钢的非时效性。因此IF钢必须具有超低碳氮、铌钛微合金化等特点。
IF钢的成分特点是:①为了获得良好的深冲性能,钢中的[C]、[N]、[Si]很低;②为Al脱氧钢。除了脱氧作用以外,Al对冷轧钢板的织构控制有重要作用;③对[S]和[P]控制要求相对宽松;④为了保证良好的表面质量,对钢中的非金属夹杂物要求严格。日本企业提出IF钢冷轧板中非金属夹杂物的尺寸必须小于100μm。
从IF钢的性质可知,钢中最有害的元素是间隙原子C、N,为保证钢的深冲性能、表面质量、镀锌性能以及生产顺行,对钢中其他元素和夹杂物也有一定要求。根据对钢的有害程度,对钢中有害杂质排序如图1 :C:严重影响钢的深冲性能,必须尽可能去除,对于钢中残余的C,采用加Ti的方式加以固定。
N:对钢的有害作用与C类似,但因炼钢一般能将N控制在40ppm以下,而脱氧残留的Al能与N生产稳定的AlN, 能将N完全固定,因此,N对IF钢的有害作用基本上得到控制。
夹杂物:对钢的表面质量和深冲性能有一定影响,应使钢中夹杂物尽可能少,尺寸尽可能小。
Si:一方面增加钢的强度,减少钢的延性,对钢的深冲性能有害;另一方面影响钢的镀锌性能。应尽可能减少钢中的Si含量。
S:在一定程度上(约0005~0006%)有利于C的析出,对提高钢的深冲性能有利。但是S过高则对钢有害。
P:对IF钢的延性、低温塑性有很大影响,要求IF钢中磷含量越低越好。在某些高强IF钢中作为强化元素提高钢的强度。 IF钢生产中,碳的控制是十分关键的内容。钢中的碳对IF钢的性能有极大的影响,IF钢中不允许有固溶的碳,钢中的碳必须采用加入钛合金的方式加以固定。钢中的碳含量一要尽可能的低从而减少合金的加入量;二要稳定从而确定钛铁的加入量。这两点都要得到保证,IF钢才能大规模生产。
目前IF钢转炉冶炼终点的碳含量一般控制在(200~400)×10-4%,要使钢中的碳含量小于50×10-4%,甚至低于20×10-4%,必须通过RH真空精炼来完成。
RH真空精炼是生产超低碳IF钢的关键技术,通过吹氧强制脱碳和后序工艺防止增碳来实现对碳的控制。
提高钢水脱碳速度的工艺措施有 :
(1)进一步提高真空系统的抽气能力。
真空泵的抽气能力是通过真空室的真空度来影响脱碳速度的。真空度的高低,决定了RH真空脱碳的速度。较大的抽气能力可以使真空度在短时间内获得较高的真空度,即快速降低真空室的压力,可以增加CO气泡的发生率,使钢中碳含量迅速下降,能够达到的最终碳含量页越低。武钢二炼钢厂1、2 号RH 真空度的变化曲线和碳含量变化的对应关系说明了这一点,如图2所示。
(2)增加驱动气体流量。
驱动气体是RH的钢液循环的动力源,驱动气体量的大小直接影响钢液循环状态和脱碳等冶金反应。驱动气体流量控制不当会产生强烈喷溅。脱碳过程中生成CO气体,加剧喷溅程度,在脱碳前期,驱动气体量应调小,随着C-O反应的减弱而适当增大,直到脱碳结束达到RH循环所需驱动气体量,可以加强后期钢液的搅拌,抑制传质系数的降低,从而抑制了后期脱碳速率的降低。
(3)脱碳前期吹氧强制脱碳
在真空脱碳反应中,当钢水中碳含量高([C]/[O]>066)时,即脱碳反应前期,氧的传质决定脱碳速度。这时顶吹氧枪吹氧可以有效提高表观脱碳常数,缩短处理时间。另外,高速氧气流冲击钢水表面,钢水飞散成为大量小液滴,更增加了脱气表面积,加快了脱碳速度。但是,吹氧一般会使得脱碳结束钢水中的溶解氧含量增加,从而恶化钢水的洁净度。应该掌握好吹氧时机和吹入的氧气量。
(4)增加插入管截面积。
在增大钢水循环流量的措施中,如果单纯增大驱动气体流量会使得环流管内钢水线速度上升,容易造成真空室内喷溅粘钢。解决办法就是扩大环流管内径。增大插入管内径,即增大了插入管的截面积,增大了循环流量。即使在同样的驱动气体流量的情况下,由于CO气体向气泡中的扩散作用,可以容纳和产生更多的气泡,增大了循环管上升区的相界面,同时也使喷溅到真空室的钢液量增加,增大了钢液乳化区的相界面,使脱碳速度加快。另一方面由于循环流量增加,钢液在真空室底部的线速度增加,使钢流的边界层减薄,碳氧向钢液面扩散速度增加。插入管的内径越大,脱碳速度越快。在条件允许的情况下应尽可能地增大插入管内径,增加循环流量,促进脱碳反应。图3展示了新日铁八幡厂增大插入管内径后钢水环流量的变化,可以看出增大插入管内径对于增大钢水环流量效果明显。
新日铁八幡厂由于采用极低碳覆盖剂、中空保护渣(含量为05%)和将保护渣熔渣层厚度增加到30mm,将RH精炼结束到铸坯中的增碳量从原来的81ppm减少至26ppm。 鞍钢开发了低氮IF钢的生产工艺,包括转炉冶炼工序提高铁水比、冶炼过程控制返干、冶炼终点减少补吹次数和时间,采用铁矿石(烧结矿)造渣,能够控制冶炼终点氮的质量分数小于12×10;RH-TB精炼工序处理前期提高脱碳速度,处理中期快速提高真空度、提升氩气流量和钢水循环量,处理后期控制钢水中的氧含量,同时必须保证钢水极低的硫含量。目前鞍钢可以批量稳定生产氮含量小于20×10的IF钢。 马钢CSP在生产SPHC钢种时转炉采用全程底吹氩模式,在转炉自动化系统中增加氮气阀门的控制手段,彻底杜绝吹炼过程中的氮气泄露,加强出钢口的维护,出钢氮含量从474×10降至30×10。 刘光穆等人考察了涟钢100t转炉不同氮氩切换模式对终点氮含量的影响,尽管全程底吹氩气有利于钢中[N]的降低,但是在考虑综合成本的情况下,将转炉冶炼供薄板钢水底吹定为前10min吹氮后吹氩工艺。此外吹氩强度合理时,可以避免钢水在吹氩站增氮。
武钢三炼钢厂通过转炉终点、脱氧制度和连铸三个环节来系统控制钢中的氮含量,并把保护浇注视作控氮关键环节,为此提高钢包开浇自开率,在长水口和钢包下水口之间采用特殊密封材料和氩封方式,中间包采用高碱度覆盖剂并控制吹氩流量确保液面不暴露。目前该厂钢包到中间包钢水增氮已经控制在2×10以内,中间包钢水平均氮含量为228×10。
内陆钢公司通过转炉副枪终点控制降低补吹率、终点添加石灰石造泡沫渣、以CO2作为底吹气体,终点氮含量小于13×10,沸腾出钢避免吸氮,出钢过程平均增氮7×10。RH精炼改进浸渍管的法兰密封同时采用低氮合金和废钢,RH平均氮含量为183×10。保护浇注增氮量为1×10。
综上所述,IF钢氮含量控制的要点是 :
转炉工序提高铁水比,提高氧气纯度;吹炼过程中增加矿石的投入量,添加石灰石造泡沫渣,控制转炉炉内为正压;吹炼后期,采用低枪位操作,增加搅拌强度,强化终点命中率;采用沸腾出钢。RH工序加强真空室密封,减少合金和废钢带入的氮,避免RH吸氮。连铸工序提高钢包开浇自开率,改进长水口机构、操作、密封材料、氩封方式并控制合理的吹氩量,中间包采用高碱度覆盖剂,确保液面不暴露。 (1)转炉工序氧含量的控制
冶炼IF钢一般采用顶底复吹转炉,在冶炼后期增大底部惰性气体流量、加强溶池搅拌,以降低转炉冶炼终点钢中氧含量;实现转炉冶炼动态模型控制,将IF钢转炉冶炼终点碳含量由002%~003%提高到003%~004%以提高冶炼终点钢液碳含量和温度的双命中率,减少补吹率;采用挡渣出钢、钢包下渣自动检测技术及钢包渣改质措施以减少钢包渣对钢液的污染。
IF钢转炉冶炼终点炉渣的全铁含量一般为15%~25%,通过出钢挡渣技术使钢包内炉渣的厚度控制在50mm以下、防止出钢过程中下渣量过大造成钢液二次氧化严重。出钢后立即向钢包内加入改质剂,炉渣改质剂由CaCO3和金属铝组成,可将渣中的全铁含量降低到4%左右,甚至2%以下。
(2)连铸工序氧含量的控制
在IF钢冶炼的连铸工序,采用大容量连铸中间包并进行钢液流场优化,以促进夹杂物上浮和均匀成分、温度;采用碱性连铸中间包包衬和覆盖剂以减少包衬和覆盖剂对钢液的传氧污染;采用连铸结晶器液面自动控制技术,确保液面波动小于±3mm,以减少保护渣卷入钢液。
欢迎分享,转载请注明来源:品搜搜测评网