莫来石粉中氧铝含量是多少

莫来石粉中氧铝含量是多少,第1张

莫来石粉中氧铝含量是多少

氧化铝的化学成分应符合表1的规定。

表 1氧化铝的化学成分

牌号 化学成分, %

Al2O3 不小于 杂质含量,不大于

SiO2 Fe2O3 Na2O 酌减

AO-1 986 002 002 050 10

AO-2 984 004 003 060 10

AO-3 983 006 004 065 10

AO-4 982 008 005 070 10

玻璃体通常是粉煤灰的主要组成部分,但晶体物质的含量有时也比较高,范围在11% ~ 48% 之间。主要晶体相物质有莫来石、石英、赤铁矿、磁铁矿、铝酸三钙、黄长石、默硅镁钙石、方镁石、石灰石等,在所有晶相中莫来石所占比例最大,可达到总量的6% ~ 15% ,此外粉煤灰中还含有未燃尽的炭粒 ( 钱觉时,2002) 。

表 4 1 是 Rohatgi 等 ( 1995) 列出的粉煤灰中可能的晶体矿物,其中高钙粉煤灰中的矿物要比低钙粉煤灰中的矿物复杂得多。Vassilev 等 ( 1996) 对保加利亚 11 个热电厂煤灰 ( 包括飞灰、底灰、结渣和储灰池灰) 的研究识别出矿物和其他物相多达 71 种,其中绝大多数含量都在 1% 以下,含量为 1% ~ 10% 的主要是石英、高岭石、长石、磁铁矿、赤铁矿、硬石膏和炭粒,含量在 10% 以上的主要是莫来石和玻璃体。我国粉煤灰的物相及组成范围见表 4 2。

Vassilev 等 ( 1996,2003) 将粉煤灰中矿物或相的成因分为 3 种: 原生成因 ( prima-ry) 、次生成因 ( secondary) 和后生成因 ( tertiary) 。

原生成因是指原来存在于煤中的矿物或相,在煤的燃烧过程中未经历任何相的转变;次生成因是指在煤燃烧过程中形成的新矿物或相; 后生成因则是指粉煤灰在经水处理、干燥、存储和运输过程中形成的新矿物或相。根据 Vassilev 等 ( 1996,2003) 的研究,粉煤灰中的矿物和相主要为次生 ( 包括各种硅酸盐、氧化物、硫酸盐、碳酸盐、炭粒和玻璃体) ,少量为原生 ( 包括部分硅酸盐、氧化物、硫酸盐、碳酸盐和磷酸盐) ,后生的数量为最少 ( 常见的是硫酸盐、碳酸盐和氯化物) 。这种差异主要与煤中矿物种类、数量、燃烧条件和后期处理方式有关。在粉煤灰的常见矿物中,石英、长石、方解石、磷灰石一般都是原生成因,而莫来石、磁铁矿、赤铁矿、硬石膏基本属于次生成因,后生矿物主要是石膏。粉煤灰中的原生矿物主要以分散的粒状和集合体出现,次生矿物主要存在于玻璃体或玻璃体的外表面以及炭粒孔隙之中,而后生矿物则主要以集合体的形式存在。

表 4 1 粉煤灰中的晶体矿物组成

( 据Rohatgi 等,1995)

表 4 2 我国粉煤灰的物相组成及范围

许多研究人员都曾经详细研究过煤燃烧过程中的矿物转化及其机理,Huffman 等( 1991) 对美国 18 种煤的高温特性进行了研究,给出的 FeO-SiO2-Al2O3平衡相图 ( 图4 1) 说明,煤灰中矿物整体上位于莫来石区域,在富铁区域首先发生熔融,液相也可能是在富铁共熔区域内首先形成的。粉煤灰在 CaO-SiO2-Al2O3相图中的位置主要位于莫来石、钙长石区域 ( 图 4 2) ,由于 CaO 的存在及含量变化较大,所以也会存在钙黄长石、石膏以及石灰石等矿物 ( Mollah 等,1999) 。

图 4 3 显示不同矿物及其含量随温度的变化情况 ( Huffman 等,1991) ,大约在 900℃以下,样品中所观察到的矿物基本上都能与煤中的矿物相对应。方铁矿和富铁的铁酸盐相主要来自富铁矿物,如黄铁矿、菱铁矿和硫酸铁等。900℃以下时玻璃体中的铁含量正比于含钾黏土矿物和煤中伊利石中铁的含量,通常认为这是由于在 K2O-SiO2-Al2O3相图中有很多低熔点的共熔区域。在 900 ~ 1000℃之间,方铁矿和其他富铁氧化物将会和石英、高岭石发生反应而熔融。在 1000 ~ 1200℃之间,由于铁尖晶石和铝酸铁等的形成,铁的这种熔融反应停止,超过 1200℃所有的铁将会与液态的硅酸盐结合。

图 4 1 FeO-SiO2-Al2O3相图( 阴影为粉煤灰区域)

图 4 2 CaO-SiO2-Al2O3相图( 阴影为粉煤灰区域)

图 4 3 煤灰矿物含量随温度的变化曲线

Spears ( 2000) 对英国煤燃烧过程中黏土矿物的转化行为也做过详细研究,他认为粉煤灰中的莫来石主要来源于煤中高岭石矿物的转化,而粉煤灰中的玻璃相和空心微珠主要得益于煤中的伊利石矿物。我国学者邵靖邦等 ( 1996) 也详细给出了煤中 12 种矿物在不同温度下的化学反应及其矿物相。盛昌栋等 ( 1998) 综合国内外研究成果评述了煤中含铁矿物在煤粉燃烧过程中的行为。不同人给出的化学反应式基本一致,存在的差异主要是矿物转变过程中的温度问题。

Demir 等 ( 2001) 根据多人研究成果列出煤中矿物不同温度下的化学反应及其矿物相转变如下:

高铝粉煤灰特性及其在合成莫来石和堇青石中的应用

高铝粉煤灰的物相组成与普通粉煤灰也有很大差别。XRD 分析 ( SIROQUANT 软件)表明,准格尔电厂高铝粉煤灰中含有 55 2% 的玻璃相和 44 8% 的结晶矿物相,结晶矿物主要为 35 6%莫来石和 8 4%刚玉,另有次要矿物 0 5%方解石、0 2% 石英和 0 2% 金红石 ( 表 4 3; 图 4 4,图 4 5) 。

表 4 3 XRD 和 SIROQUANT 软件测得的高铝粉煤灰物相组成 ( %)

莫来石和刚玉均为煤燃烧过程中形成的二次矿物相,特别是刚玉相在普通粉煤灰中几乎难以寻觅,但在准格尔电厂高铝粉煤灰中高达 8 4%,这种情况十分少见。

莫来石矿物含量高达 35 6%,也比普通粉煤灰中常见的含量 20% 左右高出许多。粉煤灰中高含量的莫来石主要来源于煤中丰富的高岭石在高温下的分解和转化产物; 莫来石的另一来源途径是,煤中丰富的勃姆石矿物失水转变为 γ-Al2O3再与高岭石分解产生的非晶态 SiO2反应生成莫来石。刚玉则主要来自煤中勃姆石矿物失水后的晶体转化。

粉煤灰中极其少量的石英主要是原生 ( primary) 或次生 ( secondary) 矿物。在普通粉煤灰中石英是最常见的矿物 ( Vassilev 等,1996) ,呈多角形到浑圆状 ( 熔点 1713℃,软化温度≥1300℃) 。石英在准格尔电厂高铝粉煤灰中含量极少,与电厂炉前煤中石英含量很少有关 ( 邵龙义等,1996) ,也说明准格尔电厂高铝粉煤灰中的石英主要为原生残余矿物。

粉煤灰中的金红石主要是原生矿物 ( 熔点 1827℃) ,但 Vassilev 等 ( 1995) 认为,若煤中矿物含有锐钛矿时也可以次生形成。从炉前煤矿物组成看 ( 邵龙义等,1996) ,准格尔电厂粉煤灰中的金红石应为原生矿物。

图 4 4 准格尔电厂高铝粉煤灰 XRD 图谱

图 4 5 测定的 ( 上) 和计算的 ( 中) XRD 图谱及其二者之间的差分 ( 下)

粉煤灰中的方解石主要是原生或后生 ( Tertiary) 的,几乎没有次生成因的,当温度低于 700 ~ 950℃ 时,较粗颗粒的方解石可能出现不完全分解而残留下来 ( Vassilev 等,1996) 。

赵蕾 ( 2007) 测得准格尔电厂高铝粉煤灰样品中的主晶相和玻璃相含量与我们的研究结果基本一致,且莫来石含量在飞灰中明显高于底灰,而烧失量则与之相反 ( 表 4 4) ;利用 120、160、300、360 和 500 目分级筛将准格尔电厂高铝粉煤灰按粒度分为 6 级,测得不同粒度段粉煤灰中的矿物相和玻璃相含量见表 4 5。

表 4 4 准格尔电厂燃煤产物的物相组成

( 据赵蕾,2007)

表 4 5 准格尔电厂不同粒度粉煤灰的物相组成

( 据赵蕾,2007)

目数表示每平方英寸上的孔的数目,目数越大,孔径越小。目数与微米之间的对应关系可查相关资料获得。

高铝粉煤灰特性及其在合成莫来石和堇青石中的应用

从表 4 5 可以看出,莫来石和刚玉相含量随粉煤灰粒度减小其含量增多,而玻璃相含量则相应减少; Goodarzi ( 2006) 研究加拿大火电厂普通粉煤灰时发现,同一电厂布袋除尘器收集到的飞灰颗粒粒径小于静电除尘器,并且前者飞灰中的莫来石含量高于后者,因此推断莫来石更多地聚集于细颗粒中。将磁性飞灰与非磁性飞灰相比,非磁性飞灰中的莫来石和刚玉相含量明显高于磁性飞灰,而含铁矿物明显出现在磁性飞灰中 ( 表 4 6) 。

表 4 6 准格尔电厂磁性和非磁性飞灰的物相组成

( 据赵蕾,2007)

下面对准格尔电厂高铝粉煤灰中主要矿物的形成机理作详细探讨。

( 1) 莫来石

莫来石是在 Al2O3-SiO2二元相图中唯一稳定的结晶硅酸盐,具有极好的化学稳定性,典型化学成分为 3Al2O3·2SiO2,但实际上莫来石的成分可以从 3Al2O3·2SiO2到 2Al2O3·SiO2连续变化。众多的研究结果表明,莫来石并非一个固定的化学组成,它不仅有经典的 3 ∶2 型莫来石 ( α-莫来石) ,也有 2∶1 型莫来石 ( β-莫来石) ,还存在 1∶1 过渡型莫来石。莫来石的通式可以表示为: Al4 + 2xSi2 - 2xO10 - x,其中 x 表示单位晶胞中的氧空位,0≤x≤1,氧空位是由于莫来石晶格中的两个硅原子被两个铝原子替代所致: O2 -+ 2Si4 +→2Al3 ++ □, 见图 4 6。

图 4 6 莫来石结构沿 ( 001) 面的投影( 引自 Ban 等,1992)

就结晶学观点来说,莫来石的晶体结构符合最终组成硅线石 ( x = 0) 和具有莫来石结构的氧化铝 ( x =1) 之间的任何结构。实际上,在 1 atm下,硅线石和莫来石之间以及莫来石与具有莫来石结构的氧化铝之间分别存在非混熔区域,莫来石固熔体仅存在于组成为 x =0 2 和 x =0 6 之间,相当于莫来石的 Al2O3含量为 58 mol% 和 75 mol% ( Schnei-der 等,1990) 。烧结 3∶2 型莫来石 x = 0 25,Al2O3≈72%; 电熔 2∶1 型莫来石 x = 0 40,Al2O3≈78%; 经有机或无机先驱粉在 < 1000℃ 合成条件下经热处理得到的化学莫来石( x > 0 80,Al2O3> 90% ) 也 已 经 得 到 证 实 ( Schneider 等,2008 ) 。我国学 者 高 振 昕 等( 2002) 也指出,介稳态高铝莫来石 x = 0 57。

粉煤灰中的莫来石主要来源于煤中的黏土矿物,特别是高岭石矿物,因为高岭石在3 种常见的黏土矿物中 Al2O3/ SiO2质量比最高,为 0 85 ( 41% Al2O3,48% SiO2,11%H2O) 。

高铝粉煤灰特性及其在合成莫来石和堇青石中的应用

根据任国斌等 ( 1988) 的资料,高岭石加热到 700 ~800℃时,结构中的 [OH] 以水的形式分解脱失,形成偏高岭石; 继续加热到 950℃,偏高岭石转变为莫来石和非晶质SiO2,这些非晶质 SiO2在更高的温度下可以转变为方石英。由高岭石高温分解产生的莫来石称为一次莫来石。

高铝粉煤灰特性及其在合成莫来石和堇青石中的应用

上述转变过程中没有铝硅尖晶石中间相生成,这种情况也是存在的 ( Okada 等,1992; Castelein 等,2001) ,但是大多数人认为高岭石在转变为莫来石过程中有铝硅尖晶石中间相生成 ( 林彬荫等,1989; 高振昕等,2002) ,沃罗尔 ( 1980) 给出的高岭石高温下转变为莫来石的过程如下:

高铝粉煤灰特性及其在合成莫来石和堇青石中的应用

上式中的预莫来石 ( Al2O3·SiO2) 也就是现在所称的过渡组成 1∶1 莫来石。从上述情况看,高岭石转化为莫来石在形成方式和转化温度上的争议仍然会存在很长一段时间。

勃姆石又称一水软铝石,化学式为 γ-AlO ( OH) 或 γ-Al2O3·H2O,其中 含 85%Al2O3,15% H2O,成分中可能有少量 Fe3 +替代 Al3 +,晶体结构属层状。加热时于 530 ~600℃ 之间失水后相变为 γ-Al2O3( 林彬荫等,1989) 。γ-Al2O3结构与尖晶石结构相近,是具有缺陷的尖晶石结构。在 1200℃ 以上高温下,γ-Al2O3通过调整有缺陷的尖晶石结构,与高岭石分解出来的非晶质 SiO2反应生成莫来石,即二次莫来石。

高铝粉煤灰特性及其在合成莫来石和堇青石中的应用

准格尔电厂燃煤中高含量的高岭石和勃姆石为莫来石形成提供了充足的物质来源,因为电厂锅炉燃烧温度在 1200 ~1700℃,中心温度甚至超过 1700℃,所以在准格尔电厂粉煤灰中就形成了含量高达 35 6%的莫来石。粉煤灰中的莫来石多数以颗粒骨架结构存在,而骨架孔隙和表面通常被玻璃质充填和覆盖,所以在 SEM 下不易直接识别,如果用盐酸或氢氟酸侵蚀粉煤灰中的玻璃质,就可以发现有大量的针状莫来石晶体存在。

粉煤灰形成过程中结晶的莫来石,由于受到杂质的影响常常混入其他阳离子,特别是粉煤灰中的 Fe3 +和 Ti4 +可以进入莫来石晶格替代部分铝离子。Gomse 等 ( 2000) 对法国东部一家火电厂粉煤灰采用多种研究手段进行了研究,得出粉煤灰中莫来石的平均化学式为 Al4 61Fe0 05Ti0 02O9 65,XRD 和 NMR ( 核磁共振) 等研究得到的化学式为 Al4 70Si1 30O9 65( 对应 x = 0 35,Al2O3含量为 75 5%) ,其中铝含量略高出经典的莫来石化学式 Al4 5Si1 5O9 75( 对应 x = 0 25,Al2O3含量为71 8%) ,介于烧结3∶2 莫来石和电熔2∶1 莫来石之间。粉煤灰形成过程中的瞬时冷却使得莫来石并不能充分结晶和均一化,导致了莫来石在结构和成分上的差异。

( 2) 刚玉

刚玉是次生矿物,其熔融温度为2050℃,在准格尔电厂炉前煤中并没有检测到。Vas-silev 等 ( 1996) 认为,刚玉主要是黏土矿物熔融后重新结晶形成的,也可能是铝的氢氧化物发生脱羟基化作用形成。从准格尔电厂炉前煤矿物组成看,高铝粉煤灰中的刚玉主要来自煤中的勃姆石,即:

高铝粉煤灰特性及其在合成莫来石和堇青石中的应用

粉末衍射标准联合委员会 ( JCPDS) 的 XRD 卡片资料表明 Al2O3有 γ、η、χ、δ、θ、κ、τ 和 ε 过渡相,惟一稳定相为 α-Al2O3( 刚玉) 。至于 β-Al2O3,它不属于 Al2O3变体。这些过渡相的呈现类型和相变顺序取决于原始矿物的种类和形成方式。原始矿物为勃姆石,则其相变顺序极可能是 γ→δ→θ→α; 若原始矿物为三水铝石,则相变可能包括γ→χ→τ→θ→α; 如果原始矿物为一水硬铝石,则直接相变为 α-Al2O3( 刚玉) 。过渡型氧化铝的结晶参数见表 4 7。

表 4 7 过渡型氧化铝的结晶参数

( 据高振昕等,2002)

( 3) 石英

石英是粉煤灰中的常见矿物,石英在粉煤灰形成过程中是否熔融及其熔融温度也是一个颇具争议的问题。在常压下石英的同质多像转变形式为 ( 武汉地质学院矿物教研室,1979) :

高铝粉煤灰特性及其在合成莫来石和堇青石中的应用

在低温范围鳞石英和方石英的转变为:

高铝粉煤灰特性及其在合成莫来石和堇青石中的应用

石英、磷石英和方石英均有低温 ( α) 变体和高温 ( β) 变体,这种高低温变体间的转变,结构中的 [SiO4] 四面体只有稍微移动和旋转,其他变体的转变 [SiO4] 四面体则需要断开和重新排列。所以,同一晶型不同变体 α、β 间转变较快,各晶型间的转变速度较慢。

通常情况下,煤中的石英均为 α-石英,也就是我们经常所说的石英,其化学成分较纯 ( SiO2通常接近 100% ) ,化学性质相当稳定。有人认为石英在燃煤过程中只存在矿物相的转变,不存在熔融,因为锅炉的燃烧温度并不高,达不到石英的熔融温度( 鳞石英的熔点为 1670℃ ,方石英的熔点为 1713℃ ) ,但大部分人认为存在部分熔融( Demir 等,2001; Spears,2000) 。根据 Mitchell 和 Gluskoter ( 1976) 的报道,将石英暴露于大约 1200 ~ 1300℃ 的氧化条件下 30 min,石英可以转化为玻璃相 ( Demir 等,2001) 。由于燃煤中的石英颗粒大小不一,小的可能全部熔融,大的则可能存在部分熔融或表面熔融,因为从 XRD 曲线上基本都能够发现石英的衍射峰,用 FESEM-EDX 分析,也能够发现粉煤灰中的石英颗粒,而且基本保持了原来的粒状特征。粉煤灰中的石英可以是原生的 ( 石英的软化温度≥1300℃,有熔融的,也有半熔融的) ,也可以是次生的,但以原生为主,部分石英 ( 主要是骨架形) 还可来源于熔融物的重结晶作用 ( Vassilev 等,1996) 。

准格尔电厂粉煤灰中的石英数量较少,呈分散的粒状,具多角形或不规则形,基本保持一定的外形,但也可以发现有的石英边缘有熔融现象,根据形态和成分 ( FESEM-EDX分析) 仍然可以区分出来,它们在底灰中的数量略高于飞灰。

( 4) 其他次要矿物

用 XRD 法鉴定矿物的不足之处是对含量较低的矿物不敏感,也就是说,对于含量在1% ~ 2% 以下的矿物 XRD 衍射峰不明显,很难做出准确的判断。所以,我们在用 XRD 鉴定粉煤灰中矿物的同时,采用了 FESEM-EDX 方法对所有样品进行了分析,发现除上述矿物外,仍然有少量的磁铁矿、赤铁矿和金红石矿物,它们通常富集在玻璃体的表面或构成玻璃微珠的骨架。用磁选法很容易分选出粉煤灰中的磁性颗粒,其表面大部分比较粗糙,为粉煤灰冷却过程中析出的晶体,可以通过 FESEM-EDX 分析得以确认。

在粉煤灰中,磁铁矿通常表现为树枝状、粒状或八面体晶型; 而赤铁矿多表现为薄板状或薄片状或硬壳状晶体,通常形成 “铁玫瑰”或 “足球”状,极少数情况下可以继承黄铁矿晶型,呈现出立方体或立方体-八面体复合晶型。一般来说,粗颗粒的飞灰和底灰中容易富集磁铁矿,而细颗粒的飞灰中容易富集赤铁矿,这是因为细颗粒飞灰形成时具有相对较高的氧化条件 ( Vassilev 等,1996) ,我们的研究也基本如此,但在飞灰中也并不缺乏磁铁矿微珠颗粒。此外,粉煤灰中还存在未完全燃烧的炭粒和残余黏土矿物,它们在底灰中的含量明显高于飞灰。空心炭在底灰中富集较多,丝质体组分的碎片呈光滑或带有瘤状的杆状颗粒,既存在于底灰也存在于飞灰中。此次研究,在个别粉煤灰微珠颗粒中还发现有针状或柱状的金红石矿物,形成球体的骨架,有玻璃质或多或少充填于金红石骨架孔隙之中。金红石通常是粉煤灰中 TiO2的主要物质来源,其熔点高达 1827℃,主要为原生成因,但也可以来自熔体的结晶作用或者来自锐钛矿同质异像的转变 ( Vassilev 等,1996) 。图 4 7 是准格尔电厂粉煤灰 FESEM-EDX 分析得到的部分矿物图像和主要成分特征。

高铝粉煤灰特性及其在合成莫来石和堇青石中的应用

图 4 7 准格尔电厂粉煤灰中的晶体矿物 ( 附有 EDX 能谱点的颗粒)

耐火原料是指生产耐火制品所必需的材料。它是耐火材料生产的基础。耐火原料多为天然矿物(如耐火粘土、铝矾土、硅石、铬铁矿、菱镁矿、白云石、镁橄榄石、锆石、蓝晶石、硅线石、红柱石等。)随着耐火材料综合性能要求的不断提高,工业原料和合成原料(如工业氧化铝、合成莫来石、人造耐火纤维、人造耐火空心球等。)越来越多地用于生产耐火材料。耐火材料产品的质量和成本在很大程度上取决于原材料的正确选择和合理使用。耐火材料按化学性质可分为酸性耐火材料、碱性耐火材料和中性耐火材料;按来源可分为天然矿物原料和合成原料;人们通常把生产耐火材料的原料分为主原料和辅助原料。用于生产耐火制品的原料,无论是天然矿物原料还是合成原料,从矿物学的角度来看,都必须具有产品足够高的耐火性能;从技术角度看,应能满足技术的基本要求;从性能上看,用它制成的产品应该能够满足产品性能的要求,尤其是高温性能。一般耐火材料分为铝硅耐火材料(二氧化硅、粘土、高铝等。)、碱性耐火材料、隔热耐火材料和其他耐火材料。1硅质原料由于应时变体的体积效应,硅砖也是直接由硅石制成,硅石是脉状应时、石英岩、燧石和砂岩的总称。二氧化硅的主要成分是二氧化硅,其余为杂质。用于耐火材料的硅石原料包括结晶碎石和胶结硅石。表1耐火材料用二氧化硅的分类和特性二、粘土原料耐火粘土是生产硅铝酸盐耐火材料的主要原料。耐火温度高于1580℃的各种硬粘土、软(半软)粘土、粘土质页岩统称为耐火粘土。天然耐火粘土通常是粘土矿物的混合物,主要以高岭石(Al2O32SiO22H2O)为主要成分,即以水合硅酸盐为主要成分,混有游离应时、黄铁矿、金红石和有机质。这种非单一矿物大部分是由直径小于12μm的颗粒组成的分散体。根据粘土形成条件的不同,可分为原生粘土和次生粘土。原生粘土是指母岩(如长石)风化形成的粘土,至今仍留在原地。次生粘土又称残积粘土,是在自然动力条件下,由原生粘土转移到其他地方,然后沉积下来的粘土。它的粒度细,分散度大,可塑性高。用于耐火材料工业的耐火粘土主要分为以下两类。①硬粘土的特点是结构致密,硬度高,颗粒极细,在水中不易分散,可塑性低。这种粘土的外观通常是浅灰色、灰白色或灰色。贝壳状骨折,有的表面有滑腻感,容易风化破碎。②软(半软)粘土常为土块状,组织柔软,可塑性好。由于杂质的种类和含量不同,这种粘土的颜色差异很大。从灰色、深灰色到黑色;有些是紫色、红色或白色。三。高铝原料(1)铝土矿铝矾土是生产棕刚玉的主要原料,Al2O3含量为88%~90%的高铝熟料是生产亚白刚玉的主要原料。氧化铝是生产白刚玉和致密刚玉的原料。铝土矿又称铝土矿或铝土矿,主要矿物为一水硬铝石(al2o3·H2O)和三水铝石(al2o3·3H2O)。中国的铝土矿储量极其丰富:产地从山西、河北、山东到黄河以北,中间经过河南、广西,西南到贵州、云南。目前铝土矿熟料的主要产地有山西、河南、贵州。湖南还有一些正在开发的小煤矿。我国铝土矿的主要矿物为勃姆石、勃姆石、高岭石和叶蜡石,按其矿物组成可分为三种类型:勃姆石-高岭石型(DK);勃姆石-高岭石型(BK);一水硬铝石-叶蜡石型(DP)。目前应用最广泛的是DK型铝土矿,DK型铝土矿熟料按其Al2O3含量分为S、_、_A、_B、_等。(2)烧结刚玉和电熔刚玉人造刚玉是以工业氧化铝或高铝矾土为主要原料,在电弧炉中熔融而成。此外,刚玉板状氧化铝可以通过烧结制备。这种方法仍然是以工业氧化铝粉为主要原料,经过煅烧、细磨、造球、烧制而成。这种方法生产技术难度大,但产品强度高,耐腐蚀性强,热震稳定性好。所谓“亚白刚玉”,其实是以高铝为主的致密电熔刚玉,Al2O3含量大于98%,显气孔率小于4%。它由高铝矾土在还原气氛和受控条件下通过电熔制成。刚玉晶体呈颗粒状,一般为1~15mm;主要杂质为金红石、钛酸铝及其固溶体。(3)莫来石莫来石是以3al2o3·2SiO2晶相为主要成分的耐火原料。莫来石分为天然莫来石和合成莫来石。天然莫来石很少,一般都是人工合成的。莫来石化学性质稳定,不溶于氢氟酸。它在高温下具有良好的机械和热性能。因此,合成莫来石及其制品具有致密度高、纯度高、高温结构强度高、高温蠕变率低、热膨胀系数小、抗化学腐蚀和抗热震性强等优点。(4)硅线石矿物硅线石矿物有蓝晶石、红柱石和硅线石,俗称“三石”。三种石头化学成分相同,但晶体结构不同,属于类质同晶。当加热到高温时,它们都转化为莫来石,形成少量的熔融SiO2,并伴有体积膨胀。由于三种石材的热膨胀不同,它们的直接利用程度也不同。由于红柱石体积变化小,无论是用来制砖还是作为添加剂,都是直接使用原料。硅线石和蓝晶石常以膨胀剂的形式加入配料中,尤其是不定型耐火材料。用来制砖,就要煅烧熟料,尤其是蓝晶石。四。碱性耐火原料41镁原料(1)菱镁矿中国的菱镁矿主要有两种:结晶菱镁矿和无定形菱镁矿。中国的菱镁矿主要分布在辽宁和山东省。菱镁矿的主要杂质是滑石,部分菱镁矿CaO含量高,其次是白云石。我国菱镁矿按化学成分可分为S、_、_、_、_五个等级,只有S级和I级用于煅烧砖用镁砂。采用两步浮选和两步煅烧法制备高纯氧化镁。以该方法制备的高纯氧化镁为原料,可开发多种高性能耐火制品。(2)其他含镁矿物镁质耐火材料中镁橄榄石制品的主要矿物成分是镁橄榄石(2MgOSiO2)和方镁石(MgO)。该产品的特点是抗熔融氧化铁能力强,热震稳定性优于普通镁砖。生产该产品的主要原料是橄榄岩和蛇纹石。42白云石原料白云石是一种耐火原料,主要成分为碳酸镁(MgCO3)和碳酸钙(CaCO3)。其化学式为CaMg(CO3)2或MgCO3CaCO3,理论组成为CaO3041%,MgO2187%,CO247。72%CaO/MgO=139,硬度354。中国的白云石原料丰富,分布广泛,纯度相对较高。辽宁大石桥地区储量丰富。山东、湖北、陕西、广西、甘肃、江西、安徽、四川、云南、湖南等省矿产资源丰富。该矿体常与石灰岩和菱镁矿共生。5锆产品的原材料(1)锆石锆英石(ZrO2SiO2或ZrSiO4)是生产锆制品和锆英石制品的主要原料。中国锆石的产地是海南省。广东省、广西壮族自治区、山东省、福建省和台湾省均有分布。锆石的理论成分是ZrO267。01%和二氧化硅32。99%常含有TiCfe等微量稀土氧化物,由于这些元素的存在,具有不同程度的放射性。因此,使用这种原料生产产品时,应采取必要的防护措施。锆石的热导率较低,在201000℃时为372W/(mK)。与其他晶相相比,锆石的膨胀系数也较低,1000℃时为46×10-6℃。其单晶在垂直和平行主轴(C轴)两个方向上的膨胀系数差别很大。锆英石是化学惰性的,难以与酸反应。它与玻璃熔体反应程度很小,在冶金和玻璃工业中常用作耐火材料。(2)斜锆石天然斜锆石(ZrO2)通常不规则,呈黑色、棕色、**或无色。我国天然斜锆石矿体很少。工业上使用的ZrO2是一种化工原料,是由锆石(ZrO2SiO2)经化学方法制成的白色或微**粉末。常压下纯ZrO2从低温到高温有三种晶型:单斜相、四方相和立方相。根据稳定的程度,稳定的ZrO2可分为部分稳定的ZrO2和完全稳定的ZrO2。由于热膨胀系数大,完全稳定的ZrO2在热震稳定性方面不如部分稳定的ZrO2,所以后者常用作陶瓷和耐火材料的增韧材料。(3)脱硅锆在国外,除锆英石精矿外,在电熔锆刚玉(AZS)耐火材料的生产中,大多加入一定量的“脱硅锆”原料。目的是调整和稳定配方;二是提高和优化产品性能。(4)锆刚玉莫来石原料为工业氧化铝、高岭土和锆英石,经细磨混合均匀,用半干法压制成球,在3001700℃煅烧得到该材料。结果表明,增加锆英石含量会提高烧结温度,降低总收缩率,增加闭孔。这些反应使烧结的锆刚玉莫来石具有更高的密度、强度和更好的抗热震性。不及物动词铬产品的原材料铬铁矿或铬铁矿是生产铬(铬砖、铬镁砖、镁铬砖)耐火材料的主要原料之一。铬铁矿是多种矿物的混合物,因为其矿物成分波动很大,化学成分和物理性质差异很大。通常由含铬粒的脉石矿物组成。这些脉石矿物通常是硅酸镁,如蛇纹石、镁橄榄石和橄榄石。铬铁矿中除Cr2O3外,还有Al2O3、Fe2O3和MgO。通常,由于镁和铁的存在,亚铬酸盐通常表示为(Mg,Fe)Cr2O3。

耐火原料是指生产耐火制品所必需的材料。它是耐火材料生产的基础。耐火原料多为天然矿物(如耐火粘土、铝矾土、硅石、铬铁矿、菱镁矿、白云石、镁橄榄石、锆石、蓝晶石、硅线石、红柱石等。)随着耐火材料综合性能要求的不断提高,工业原料和合成原料(如工业氧化铝、合成莫来石、人造耐火纤维、人造耐火空心球等。)越来越多地用于生产耐火材料。耐火材料产品的质量和成本在很大程度上取决于原材料的正确选择和合理使用。耐火材料按化学性质可分为酸性耐火材料、碱性耐火材料和中性耐火材料;按来源可分为天然矿物原料和合成原料;人们通常把生产耐火材料的原料分为主原料和辅助原料。用于生产耐火制品的原料,无论是天然矿物原料还是合成原料,从矿物学的角度来看,都必须具有产品足够高的耐火性能;从技术角度看,应能满足技术的基本要求;从性能上看,用它制成的产品应该能够满足产品性能的要求,尤其是高温性能。一般耐火材料分为铝硅耐火材料(二氧化硅、粘土、高铝等。)、碱性耐火材料、隔热耐火材料和其他耐火材料。1硅质原料由于应时变体的体积效应,硅砖也是直接由硅石制成,硅石是脉状应时、石英岩、燧石和砂岩的总称。二氧化硅的主要成分是二氧化硅,其余为杂质。用于耐火材料的硅石原料包括结晶碎石和胶结硅石。表1耐火材料用二氧化硅的分类和特性二、粘土原料耐火粘土是生产硅铝酸盐耐火材料的主要原料。耐火温度高于1580℃的各种硬粘土、软(半软)粘土、粘土质页岩统称为耐火粘土。天然耐火粘土通常是粘土矿物的混合物,主要以高岭石(Al2O32SiO22H2O)为主要成分,即以水合硅酸盐为主要成分,混有游离应时、黄铁矿、金红石和有机质。这种非单一矿物大部分是由直径小于12μm的颗粒组成的分散体。根据粘土形成条件的不同,可分为原生粘土和次生粘土。原生粘土是指母岩(如长石)风化形成的粘土,至今仍留在原地。次生粘土又称残积粘土,是在自然动力条件下,由原生粘土转移到其他地方,然后沉积下来的粘土。它的粒度细,分散度大,可塑性高。用于耐火材料工业的耐火粘土主要分为以下两类。①硬粘土的特点是结构致密,硬度高,颗粒极细,在水中不易分散,可塑性低。这种粘土的外观通常是浅灰色、灰白色或灰色。贝壳状骨折,有的表面有滑腻感,容易风化破碎。②软(半软)粘土常为土块状,组织柔软,可塑性好。由于杂质的种类和含量不同,这种粘土的颜色差异很大。从灰色、深灰色到黑色;有些是紫色、红色或白色。三。高铝原料(1)铝土矿铝矾土是生产棕刚玉的主要原料,Al2O3含量为88%~90%的高铝熟料是生产亚白刚玉的主要原料。氧化铝是生产白刚玉和致密刚玉的原料。铝土矿又称铝土矿或铝土矿,主要矿物为一水硬铝石(al2o3·H2O)和三水铝石(al2o3·3H2O)。中国的铝土矿储量极其丰富:产地从山西、河北、山东到黄河以北,中间经过河南、广西,西南到贵州、云南。目前铝土矿熟料的主要产地有山西、河南、贵州。湖南还有一些正在开发的小煤矿。我国铝土矿的主要矿物为勃姆石、勃姆石、高岭石和叶蜡石,按其矿物组成可分为三种类型:勃姆石-高岭石型(DK);勃姆石-高岭石型(BK);一水硬铝石-叶蜡石型(DP)。目前应用最广泛的是DK型铝土矿,DK型铝土矿熟料按其Al2O3含量分为S、_、_A、_B、_等。(2)烧结刚玉和电熔刚玉人造刚玉是以工业氧化铝或高铝矾土为主要原料,在电弧炉中熔融而成。此外,刚玉板状氧化铝可以通过烧结制备。这种方法仍然是以工业氧化铝粉为主要原料,经过煅烧、细磨、造球、烧制而成。这种方法生产技术难度大,但产品强度高,耐腐蚀性强,热震稳定性好。所谓“亚白刚玉”,其实是以高铝为主的致密电熔刚玉,Al2O3含量大于98%,显气孔率小于4%。它由高铝矾土在还原气氛和受控条件下通过电熔制成。刚玉晶体呈颗粒状,一般为1~15mm;主要杂质为金红石、钛酸铝及其固溶体。(3)莫来石莫来石是以3al2o3·2SiO2晶相为主要成分的耐火原料。莫来石分为天然莫来石和合成莫来石。天然莫来石很少,一般都是人工合成的。莫来石化学性质稳定,不溶于氢氟酸。它在高温下具有良好的机械和热性能。因此,合成莫来石及其制品具有致密度高、纯度高、高温结构强度高、高温蠕变率低、热膨胀系数小、抗化学腐蚀和抗热震性强等优点。(4)硅线石矿物硅线石矿物有蓝晶石、红柱石和硅线石,俗称“三石”。三种石头化学成分相同,但晶体结构不同,属于类质同晶。当加热到高温时,它们都转化为莫来石,形成少量的熔融SiO2,并伴有体积膨胀。由于三种石材的热膨胀不同,它们的直接利用程度也不同。由于红柱石体积变化小,无论是用来制砖还是作为添加剂,都是直接使用原料。硅线石和蓝晶石常以膨胀剂的形式加入配料中,尤其是不定型耐火材料。用来制砖,就要煅烧熟料,尤其是蓝晶石。四。碱性耐火原料41镁原料(1)菱镁矿中国的菱镁矿主要有两种:结晶菱镁矿和无定形菱镁矿。中国的菱镁矿主要分布在辽宁和山东省。菱镁矿的主要杂质是滑石,部分菱镁矿CaO含量高,其次是白云石。我国菱镁矿按化学成分可分为S、_、_、_、_五个等级,只有S级和I级用于煅烧砖用镁砂。采用两步浮选和两步煅烧法制备高纯氧化镁。以该方法制备的高纯氧化镁为原料,可开发多种高性能耐火制品。(2)其他含镁矿物镁质耐火材料中镁橄榄石制品的主要矿物成分是镁橄榄石(2MgOSiO2)和方镁石(MgO)。该产品的特点是抗熔融氧化铁能力强,热震稳定性优于普通镁砖。生产该产品的主要原料是橄榄岩和蛇纹石。42白云石原料白云石是一种耐火原料,主要成分为碳酸镁(MgCO3)和碳酸钙(CaCO3)。其化学式为CaMg(CO3)2或MgCO3CaCO3,理论组成为CaO3041%,MgO2187%,CO247。72%CaO/MgO=139,硬度354。中国的白云石原料丰富,分布广泛,纯度相对较高。辽宁大石桥地区储量丰富。山东、湖北、陕西、广西、甘肃、江西、安徽、四川、云南、湖南等省矿产资源丰富。该矿体常与石灰岩和菱镁矿共生。5锆产品的原材料(1)锆石锆英石(ZrO2SiO2或ZrSiO4)是生产锆制品和锆英石制品的主要原料。中国锆石的产地是海南省。广东省、广西壮族自治区、山东省、福建省和台湾省均有分布。锆石的理论成分是ZrO267。01%和二氧化硅32。99%常含有TiCfe等微量稀土氧化物,由于这些元素的存在,具有不同程度的放射性。因此,使用这种原料生产产品时,应采取必要的防护措施。锆石的热导率较低,在201000℃时为372W/(mK)。与其他晶相相比,锆石的膨胀系数也较低,1000℃时为46×10-6℃。其单晶在垂直和平行主轴(C轴)两个方向上的膨胀系数差别很大。锆英石是化学惰性的,难以与酸反应。它与玻璃熔体反应程度很小,在冶金和玻璃工业中常用作耐火材料。(2)斜锆石天然斜锆石(ZrO2)通常不规则,呈黑色、棕色、**或无色。我国天然斜锆石矿体很少。工业上使用的ZrO2是一种化工原料,是由锆石(ZrO2SiO2)经化学方法制成的白色或微**粉末。常压下纯ZrO2从低温到高温有三种晶型:单斜相、四方相和立方相。根据稳定的程度,稳定的ZrO2可分为部分稳定的ZrO2和完全稳定的ZrO2。由于热膨胀系数大,完全稳定的ZrO2在热震稳定性方面不如部分稳定的ZrO2,所以后者常用作陶瓷和耐火材料的增韧材料。(3)脱硅锆在国外,除锆英石精矿外,在电熔锆刚玉(AZS)耐火材料的生产中,大多加入一定量的“脱硅锆”原料。目的是调整和稳定配方;二是提高和优化产品性能。(4)锆刚玉莫来石原料为工业氧化铝、高岭土和锆英石,经细磨混合均匀,用半干法压制成球,在3001700℃煅烧得到该材料。结果表明,增加锆英石含量会提高烧结温度,降低总收缩率,增加闭孔。这些反应使烧结的锆刚玉莫来石具有更高的密度、强度和更好的抗热震性。不及物动词铬产品的原材料铬铁矿或铬铁矿是生产铬(铬砖、铬镁砖、镁铬砖)耐火材料的主要原料之一。铬铁矿是多种矿物的混合物,因为其矿物成分波动很大,化学成分和物理性质差异很大。通常由含铬粒的脉石矿物组成。这些脉石矿物通常是硅酸镁,如蛇纹石、镁橄榄石和橄榄石。铬铁矿中除Cr2O3外,还有Al2O3、Fe2O3和MgO。通常,由于镁和铁的存在,亚铬酸盐通常表示为(Mg,Fe)Cr2O3。

耐火原料是指生产耐火制品所必需的材料。它是耐火材料生产的基础。耐火原料多为天然矿物(如耐火粘土、铝矾土、硅石、铬铁矿、菱镁矿、白云石、镁橄榄石、锆石、蓝晶石、硅线石、红柱石等。)随着耐火材料综合性能要求的不断提高,工业原料和合成原料(如工业氧化铝、合成莫来石、人造耐火纤维、人造耐火空心球等。)越来越多地用于生产耐火材料。耐火材料产品的质量和成本在很大程度上取决于原材料的正确选择和合理使用。耐火材料按化学性质可分为酸性耐火材料、碱性耐火材料和中性耐火材料;按来源可分为天然矿物原料和合成原料;人们通常把生产耐火材料的原料分为主原料和辅助原料。用于生产耐火制品的原料,无论是天然矿物原料还是合成原料,从矿物学的角度来看,都必须具有产品足够高的耐火性能;从技术角度看,应能满足技术的基本要求;从性能上看,用它制成的产品应该能够满足产品性能的要求,尤其是高温性能。一般耐火材料分为铝硅耐火材料(二氧化硅、粘土、高铝等。)、碱性耐火材料、隔热耐火材料和其他耐火材料。1硅质原料由于应时变体的体积效应,硅砖也是直接由硅石制成,硅石是脉状应时、石英岩、燧石和砂岩的总称。二氧化硅的主要成分是二氧化硅,其余为杂质。用于耐火材料的硅石原料包括结晶碎石和胶结硅石。表1耐火材料用二氧化硅的分类和特性二、粘土原料耐火粘土是生产硅铝酸盐耐火材料的主要原料。耐火温度高于1580℃的各种硬粘土、软(半软)粘土、粘土质页岩统称为耐火粘土。天然耐火粘土通常是粘土矿物的混合物,主要以高岭石(Al2O32SiO22H2O)为主要成分,即以水合硅酸盐为主要成分,混有游离应时、黄铁矿、金红石和有机质。这种非单一矿物大部分是由直径小于12μm的颗粒组成的分散体。根据粘土形成条件的不同,可分为原生粘土和次生粘土。原生粘土是指母岩(如长石)风化形成的粘土,至今仍留在原地。次生粘土又称残积粘土,是在自然动力条件下,由原生粘土转移到其他地方,然后沉积下来的粘土。它的粒度细,分散度大,可塑性高。用于耐火材料工业的耐火粘土主要分为以下两类。①硬粘土的特点是结构致密,硬度高,颗粒极细,在水中不易分散,可塑性低。这种粘土的外观通常是浅灰色、灰白色或灰色。贝壳状骨折,有的表面有滑腻感,容易风化破碎。②软(半软)粘土常为土块状,组织柔软,可塑性好。由于杂质的种类和含量不同,这种粘土的颜色差异很大。从灰色、深灰色到黑色;有些是紫色、红色或白色。三。高铝原料(1)铝土矿铝矾土是生产棕刚玉的主要原料,Al2O3含量为88%~90%的高铝熟料是生产亚白刚玉的主要原料。氧化铝是生产白刚玉和致密刚玉的原料。铝土矿又称铝土矿或铝土矿,主要矿物为一水硬铝石(al2o3·H2O)和三水铝石(al2o3·3H2O)。中国的铝土矿储量极其丰富:产地从山西、河北、山东到黄河以北,中间经过河南、广西,西南到贵州、云南。目前铝土矿熟料的主要产地有山西、河南、贵州。湖南还有一些正在开发的小煤矿。我国铝土矿的主要矿物为勃姆石、勃姆石、高岭石和叶蜡石,按其矿物组成可分为三种类型:勃姆石-高岭石型(DK);勃姆石-高岭石型(BK);一水硬铝石-叶蜡石型(DP)。目前应用最广泛的是DK型铝土矿,DK型铝土矿熟料按其Al2O3含量分为S、_、_A、_B、_等。(2)烧结刚玉和电熔刚玉人造刚玉是以工业氧化铝或高铝矾土为主要原料,在电弧炉中熔融而成。此外,刚玉板状氧化铝可以通过烧结制备。这种方法仍然是以工业氧化铝粉为主要原料,经过煅烧、细磨、造球、烧制而成。这种方法生产技术难度大,但产品强度高,耐腐蚀性强,热震稳定性好。所谓“亚白刚玉”,其实是以高铝为主的致密电熔刚玉,Al2O3含量大于98%,显气孔率小于4%。它由高铝矾土在还原气氛和受控条件下通过电熔制成。刚玉晶体呈颗粒状,一般为1~15mm;主要杂质为金红石、钛酸铝及其固溶体。(3)莫来石莫来石是以3al2o3·2SiO2晶相为主要成分的耐火原料。莫来石分为天然莫来石和合成莫来石。天然莫来石很少,一般都是人工合成的。莫来石化学性质稳定,不溶于氢氟酸。它在高温下具有良好的机械和热性能。因此,合成莫来石及其制品具有致密度高、纯度高、高温结构强度高、高温蠕变率低、热膨胀系数小、抗化学腐蚀和抗热震性强等优点。(4)硅线石矿物硅线石矿物有蓝晶石、红柱石和硅线石,俗称“三石”。三种石头化学成分相同,但晶体结构不同,属于类质同晶。当加热到高温时,它们都转化为莫来石,形成少量的熔融SiO2,并伴有体积膨胀。由于三种石材的热膨胀不同,它们的直接利用程度也不同。由于红柱石体积变化小,无论是用来制砖还是作为添加剂,都是直接使用原料。硅线石和蓝晶石常以膨胀剂的形式加入配料中,尤其是不定型耐火材料。用来制砖,就要煅烧熟料,尤其是蓝晶石。四。碱性耐火原料41镁原料(1)菱镁矿中国的菱镁矿主要有两种:结晶菱镁矿和无定形菱镁矿。中国的菱镁矿主要分布在辽宁和山东省。菱镁矿的主要杂质是滑石,部分菱镁矿CaO含量高,其次是白云石。我国菱镁矿按化学成分可分为S、_、_、_、_五个等级,只有S级和I级用于煅烧砖用镁砂。采用两步浮选和两步煅烧法制备高纯氧化镁。以该方法制备的高纯氧化镁为原料,可开发多种高性能耐火制品。(2)其他含镁矿物镁质耐火材料中镁橄榄石制品的主要矿物成分是镁橄榄石(2MgOSiO2)和方镁石(MgO)。该产品的特点是抗熔融氧化铁能力强,热震稳定性优于普通镁砖。生产该产品的主要原料是橄榄岩和蛇纹石。42白云石原料白云石是一种耐火原料,主要成分为碳酸镁(MgCO3)和碳酸钙(CaCO3)。其化学式为CaMg(CO3)2或MgCO3CaCO3,理论组成为CaO3041%,MgO2187%,CO247。72%CaO/MgO=139,硬度354。中国的白云石原料丰富,分布广泛,纯度相对较高。辽宁大石桥地区储量丰富。山东、湖北、陕西、广西、甘肃、江西、安徽、四川、云南、湖南等省矿产资源丰富。该矿体常与石灰岩和菱镁矿共生。5锆产品的原材料(1)锆石锆英石(ZrO2SiO2或ZrSiO4)是生产锆制品和锆英石制品的主要原料。中国锆石的产地是海南省。广东省、广西壮族自治区、山东省、福建省和台湾省均有分布。锆石的理论成分是ZrO267。01%和二氧化硅32。99%常含有TiCfe等微量稀土氧化物,由于这些元素的存在,具有不同程度的放射性。因此,使用这种原料生产产品时,应采取必要的防护措施。锆石的热导率较低,在201000℃时为372W/(mK)。与其他晶相相比,锆石的膨胀系数也较低,1000℃时为46×10-6℃。其单晶在垂直和平行主轴(C轴)两个方向上的膨胀系数差别很大。锆英石是化学惰性的,难以与酸反应。它与玻璃熔体反应程度很小,在冶金和玻璃工业中常用作耐火材料。(2)斜锆石天然斜锆石(ZrO2)通常不规则,呈黑色、棕色、**或无色。我国天然斜锆石矿体很少。工业上使用的ZrO2是一种化工原料,是由锆石(ZrO2SiO2)经化学方法制成的白色或微**粉末。常压下纯ZrO2从低温到高温有三种晶型:单斜相、四方相和立方相。根据稳定的程度,稳定的ZrO2可分为部分稳定的ZrO2和完全稳定的ZrO2。由于热膨胀系数大,完全稳定的ZrO2在热震稳定性方面不如部分稳定的ZrO2,所以后者常用作陶瓷和耐火材料的增韧材料。(3)脱硅锆在国外,除锆英石精矿外,在电熔锆刚玉(AZS)耐火材料的生产中,大多加入一定量的“脱硅锆”原料。目的是调整和稳定配方;二是提高和优化产品性能。(4)锆刚玉莫来石原料为工业氧化铝、高岭土和锆英石,经细磨混合均匀,用半干法压制成球,在3001700℃煅烧得到该材料。结果表明,增加锆英石含量会提高烧结温度,降低总收缩率,增加闭孔。这些反应使烧结的锆刚玉莫来石具有更高的密度、强度和更好的抗热震性。不及物动词铬产品的原材料铬铁矿或铬铁矿是生产铬(铬砖、铬镁砖、镁铬砖)耐火材料的主要原料之一。铬铁矿是多种矿物的混合物,因为其矿物成分波动很大,化学成分和物理性质差异很大。通常由含铬粒的脉石矿物组成。这些脉石矿物通常是硅酸镁,如蛇纹石、镁橄榄石和橄榄石。铬铁矿中除Cr2O3外,还有Al2O3、Fe2O3和MgO。通常,由于镁和铁的存在,亚铬酸盐通常表示为(Mg,Fe)Cr2O3。

欢迎分享,转载请注明来源:品搜搜测评网

原文地址:https://pinsoso.cn/meirong/1974727.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-10-31
下一篇2023-10-31

随机推荐

  • 身高172 体重114 小腿围38 求助~

    你的体重算正常体重,不能从食物方面下手就从外部下手,首先你要看你的小腿是属于水肿,脂肪还是肌肉胖水肿你一按下去它不会立刻恢复,会有凹痕,这是你要注意腿部运动,使血液循环,也可以吃些冬瓜,咖啡等消水肿的食品脂肪比较好久解决,推荐两款好的减肥膏

    2024-04-15
    1053500
  • 男士洗面奶哪个牌子最好

    男士洗面奶如下:1、碧欧泉男士洁面乳碧欧泉男士洁面乳是法国的高端护肤品牌,价格偏高,而且基本不打折。适合所有肤质男士,深层清洁力很强,而且保湿锁水效果挺好。用完之后脸部不会觉得很干,早上睡醒皮肤都还有点水滑滑的感觉。2、迪蕾氨基酸洁面泡泡迪

    2024-04-15
    60600
  • 有没有好的平价补水的套盒呀推荐一下呀?

    皮肤补水是每天不可缺少的一步,尤其在换季阶段,皮肤经常会出现脱皮等现象,这种情况就很尴尬。在这方面我也做了很多功课,从以往使用的礼盒中挑选了五款平价补水的套盒,在效果方面真的好用,推荐给大家~1、佰草集御五行抗衰套盒它的功效正如名字一样,从

    2024-04-15
    64300
  • 超补水保湿的护肤品

    超补水保湿的护肤品  超补水保湿的护肤品,想拥有好的肤色,好的皮肤,找到一款好用的适合自己的护肤品是至关重要的,有些护肤品如果不适合自己可能会导致过敏,所以在选择的时候我们要很慎重,下面会大家推荐超补水

    2024-04-15
    53300
  • 妮维雅是欧莱雅旗下的吗 妮维雅是什么档次

    妮维雅是欧莱雅旗下的一款护肤品牌,它属于中档护肤品。妮维雅以其独特的产品设计和高质量的成分在市场上受到广大消费者的喜爱。让我们来讨论妮维雅是否属于欧莱雅旗下。是的,妮维雅是欧莱雅旗下的一个品牌。欧莱雅是全球知名的化妆品公司,拥有多个知名品牌

    2024-04-15
    52800
  • 妮维雅是哪里的?

      品牌名称: 妮维雅 NIVEA 查看产品  国家: 中国  品牌历史: 1994年6月8日,Nivea(Shanghai)Co, Ltd妮维雅(上海)有限公司成立了。  品牌详细描述  1994年6月8日,Nivea(Shangha

    2024-04-15
    45000
  • skii一套多少钱

    一般几千一套。SK2有违禁物质铬、钕严重超标!铬的危害性远远不止损伤皮肤这么简单。所有铬的化合物都有毒性,它们直接损害人体的消化道、呼吸道、皮肤和黏膜。而且,铬对人体的毒害为全身性的,除引起皮炎、湿疹、气管炎和鼻炎外,甚至可能有致癌作用。而

    2024-04-15
    37300

发表评论

登录后才能评论
保存