保存因子分析就好,如果用spssau分析前先勾选“因子得分”选项,即可在分析后得到因子得分项。
spss直接把几个因子都已经算出来了,就是duFAC1-1列就是因子F1,同理可以得知F2,F3不用算的,如果问F1怎么来的,就说是F1=0701X1-0549X2+0736X3+0216X4+0112X5-0318X6。
如果进行主成分分析之后又要进行回归分析,应该是用提取出来的主因子作为自变量进行计算的,回归是只能有一个自变量,一个因变量才算回归的,如果不是的话,建议你使用多项式属分析。
把因变量的值还有自变量的值放到EXCEL里,按列排列。然后全部圈起来,找图表选项,绘制散点图,之后对其中的点点击右键,进行数据拟合就可以得出式子。
扩展资料:
标准逐步回归法做两件事情。即增加和删除每个步骤所需的预测。
向前选择法从模型中最显著的预测开始,然后为每一步添加变量。
向后剔除法与模型的所有预测同时开始,然后在每一步消除最小显著性的变量。
这种建模技术的目的是使用最少的预测变量数来最大化预测能力。这也是处理高维数据集的方法之一。
-回归分析
老大,首先,你上传的图我无法看清。
其次,用SPSS软件做主成分分析也没那么复杂,不过你要钻研一番。下面的说明及举例希望可以对你有帮助:
主成分分析法在SPSS中的操作
1、指标数据选取、收集与录入(表1)
2、Analyze →Data Reduction →Factor Analysis,弹出Factor Analysis 对话框:
3、把指标数据选入Variables 框,Descriptives: Correlation Matrix 框组中选中Coefficients,然后点击Continue, 返回Factor Analysis 对话框,单击OK。
注意:SPSS 在调用Factor Analyze 过程进行分析时, SPSS 会自动对原始数据进行标准化处理, 所以在得到计算结果后的变量都是指经过标准化处理后的变量, 但SPSS 并不直接给出标准化后的数据, 如需要得到标准化数据, 则需调用Descriptives 过程进行计算。
从表3 可知GDP 与工业增加值, 第三产业增加值、固定资产投资、基本建设投资、社会消费品零售总额、地方财政收入这几个指标存在着极其显著的关系, 与海关出口总额存在着显著关系。可见许多变量之间直接的相关性比较强, 证明他们存在信息上的重叠。
主成分个数提取原则为主成分对应的特征值大于1的前m个主成分。特征值在某种程度上可以被看成是表示主成分影响力度大小的指标, 如果特征值小于1, 说明该主成分的解释力度还不如直接引入一个原变量的平均解释力度大, 因此一般可以用特征值大于1作为纳入标准。通过表4( 方差分解主成分提取分析) 可知, 提取2个主成分, 即m=2, 从表5( 初始因子载荷矩阵) 可知GDP、工业增加值、第三产业增加值、固定资产投资、基本建设投资、社会消费品零售总额、海关出口总额、地方财政收入在第一主成分上有较高载荷, 说明第一主成分基本反映了这些指标的信息; 人均GDP 和农业增加值指标在第二主成分上有较高载荷, 说明第二主成分基本反映了人均GDP 和农业增加值两个指标的信息。所以提取两个主成分是可以基本反映全部指标的信息, 所以决定用两个新变量来代替原来的十个变量。但这两个新变量的表达还不能从输出窗口中直接得到, 因为“Component Matrix”是指初始因子载荷矩阵, 每一个载荷量表示主成分与对应变量的相关系数。
用表5( 主成分载荷矩阵) 中的数据除以主成分相对应的特征值开平方根便得到两个主成分中每个指标所对应的系数。将初始因子载荷矩阵中的两列数据输入( 可用复制粘贴的方法) 到数据编辑窗口( 为变量B1、B2) , 然后利用“Transform→Compute Variable”, 在Compute Variable对话框中输入“A1=B1/SQR(722)”[注: 第二主成分SQR后的括号中填1235, 即可得到特征向量A1(见表6)。同理, 可得到特征向量A2。将得到的特征向量与标准化后的数据相乘, 然后就可以得出主成分表达式[注: 因本例只是为了说明如何在SPSS 进行主成分分析, 故在此不对提取的主成分进行命名, 有兴趣的读者可自行命名。
标准化:通过Analyze→Descriptive Statistics→Descriptives 对话框来实现: 弹出Descriptives 对话框后, 把X1~X10 选入Variables 框, 在Save standardized values as variables 前的方框打上钩, 点击“OK”, 经标准化的数据会自动填入数据窗口中, 并以Z开头命名。
以每个主成分所对应的特征值占所提取主成分总的特征值之和的比例作为权重计算主成分综合模型, 即用第一主成分F1 中每个指标所对应的系数乘上第一主成分F1 所对应的贡献率再除以所提取两个主成分的两个贡献率之和, 然后加上第二主成分F2 中每个指标所对应的系数乘上第二主成分F2 所对应的贡献率再除以所提取两个主成分的两个贡献率之和, 即可得到综合得分模型:
根据主成分综合模型即可计算综合主成分值, 并对其按综合主成分值进行排序, 即可对各地区进行综合评价比较, 结果见表8。
具体检验还需进一步探讨与学习
业务上对特征值维度的要求:
统计学模型:3-15个维度,高维度可能导致维度灾难------理论
机器学习模型:50个维度,速度问题------降维
如何降维:
保留重要的特征,剔除不重要的特征
处理流程:
1经验法
2数据分析法(使用yx相关分析,剔除与y无关的变量)
3经验法+数据分析法(x与x相关分析)
4数据分析法+经验法(逐步回归法)
5主成分分析(因为前四步,已经把重要的变量筛选出来了,不重要的删除了,剩下的变量意义很模糊)
下面使用 bankloan_binning (提取码:78uh)做个案例:
1经验法(通过业务判断age_group是重要的)
2数据分析法
3经验法+数据分析法
下面将使用统计学方法对变量做整合
4数据法+经验法(删除变量)
5主成分分析(若变量个数仍大于15,对整个结果进行压缩)
1对于主成分分析,判断大小是根据绝对值大小来判断,而不是看它正负大小。
2主成分分析的目的就是降元,即找到主要的影响因子,排除影响较小的因子。分析因子负荷,看每个因子的负荷值,一般绝对值>07的因子,才能称为主要因子。对于你分析出的因子负荷值,可以看出,主成分1中,打工时间是主要影响因子,主成分2为寝る时间和移动时间,主成分3为外出时间,因此,将打工时间、寝る时间、移动时间和外出时间是主要影响因子,而重要程度依次降低。
补充:没分,就只能回答这些,有分可以更加详细。
结果分析
(1)KMO与巴特利特球形检验
由表可以知,巴特利特球形检验的统计量值为3960473,相应的概率P值为0。在显著性水平下,应拒绝原假设,认为相关系数矩阵与单位矩阵存在显著差异。同时KMO值为0844,根据Kaiser给出的度量KMO的标椎可知问卷题项适合做因子分析。
(2)公因子方差
提取值表示每个变量被公因子表达的多少,一般认为,大于07就说明变量被公因子很好地表达。由表可以看出,绝大多数变量的提取值大于085,变量能被公因子很好地表达。
(3)解释总方差
提取方法:主成分分析法
(4)旋转成分矩阵
提取方法:主成分分析法
(5)计算因子得分:因子分析是基于研究各题项之间的内部依赖关系,将一些信息重叠、相关性高的变量指标归结为几个不相关的综合因子的多重统计方法。通过SPSS230得出的成分得分系数矩阵,见表,可得到、、、、公因子的得分表达式为:
其中、、、、公因子分别代表基础技能,创新能力,资源运用,合作精神,创新思维。
欢迎分享,转载请注明来源:品搜搜测评网