保存因子分析就好,如果用spssau分析前先勾选“因子得分”选项,即可在分析后得到因子得分项。
spss直接把几个因子都已经算出来了,就是duFAC1-1列就是因子F1,同理可以得知F2,F3不用算的,如果问F1怎么来的,就说是F1=0701X1-0549X2+0736X3+0216X4+0112X5-0318X6。
如果进行主成分分析之后又要进行回归分析,应该是用提取出来的主因子作为自变量进行计算的,回归是只能有一个自变量,一个因变量才算回归的,如果不是的话,建议你使用多项式属分析。
把因变量的值还有自变量的值放到EXCEL里,按列排列。然后全部圈起来,找图表选项,绘制散点图,之后对其中的点点击右键,进行数据拟合就可以得出式子。
扩展资料:
标准逐步回归法做两件事情。即增加和删除每个步骤所需的预测。
向前选择法从模型中最显著的预测开始,然后为每一步添加变量。
向后剔除法与模型的所有预测同时开始,然后在每一步消除最小显著性的变量。
这种建模技术的目的是使用最少的预测变量数来最大化预测能力。这也是处理高维数据集的方法之一。
-回归分析
可以使用在线spssau完成因子分析,可结合帮助手册的案例懂的更快。
通常有三个步骤:第一步是判断是否适合进行因子分析;第二步是因子与题项对应关系判断;第三步是因子命名。
第一步:判断是否进行因子分析。
主要看KMO值大小,一般KMO值大于06说明适合进行因子分析。
第二步:提取因子,因子与题项对应关系判断。
看因子的提取情况,以及因子载荷系数,分析题项与因子的对应关系。
第三步:因子命名。
在第二步删除掉不合理题项后,并且确认因子与题项对应关系良好后,则可结合因子与题项对应关系,对因子进行命名。
具体步骤可阅读在线spssau帮助手册:因子分析-SPSSAU
因为对阁下的题目不了解,所以不知道上图中的结果代表什么含义。
你的理解是正确的,主成分分析得到的主成分是一个综合性指标。
从数学的运算来看,主成分分析的过程只是在原来的相关系数矩阵上做了一个正交旋转。而降维处理应该体现在“选取”二字上(根据特征值大小筛选)。这是因为特征值(也就是图中的贡献率)反映了对应的主成分包含的信息量,一般都是选累积贡献率达到85%以内的,换个说法就是选取的主成分含有85%的信息量。
通常由于主成分分析得到的主成分是多个变量的综合,它们的实际意义很难解释,我们可以在最后的结果基础上再做一次旋转,使每个主成分与一定向量的相关性提高,从而可以更容易地解释。在SPSS中应该有这么一个选项,通常都是选择方差最大的旋转(因为用的是英文版,不清楚中文翻译是什么,英文是factor->rotation->varimax)。
你可以试试。
1、在新建的Excel表格中,插入六列数据,有种类、AC1、AC2、AC3、AC4和AC5;
2、打开SPSS分析工具,点击文件菜单,打开数据选择excel表格,从而导入数据;
3、导入数据之后,调整变量列展示的宽度,展示默认数据视图;
4、单击分析菜单,然后选择降维中的因子;
5、打开因子分析窗口,将AC1、AC2、AC3、AC4和AC5移到变量框中;
6、点击描述按钮,打开对应的窗口,统计勾选初始解,相关系数矩阵勾选系数和KMO和巴特利特球形度检验;
7、接着点击提取按钮,打开窗口并勾选分析相关性矩阵,显示勾选未旋转因子解和碎石图;
8、选择旋转打开窗口,方法选择最大方差法,显示勾选旋转后的解和载荷图;
9、点击得分按钮,打开因子得分窗口,勾选保存为变量,方法选择回归,然后单击继续;
10、最后设置选项,缺失值勾选成列排除个数,系数显示格式勾选按大小排序,然后点击继续;
11、确定之后,生成因子分析结果,有相关性矩阵、KMO和巴特利特检验;
12、根据已选的几个变量,生成公因子方差和总方差解释;
13、接着,生成以组件号为横坐标,特征值为纵坐标,构成碎石图;
14、还可以生成成分矩阵和旋转后的成分矩阵,提取方法是主成分分析法;
15、在成分转换矩阵下方,生成旋转后的空间中的组件图;
16、最后按照成分,生成成分得分系数矩阵和成分得分协方差矩阵。
欢迎分享,转载请注明来源:品搜搜测评网