化学成分的检测和鉴定(通常我们称之为成分分析)在无任何有关样品先验认知的情况下会按如下步骤进行,相对所需要的样品量也不少。
1简单定性分析
比如PH、密度、溶解度、熔点……等能想到的所有简单特性,选择性组合,对结果进行可能性的推测。
2合适的预处理方案
通过第一步的结果,推测选择相对更有效的预处理措施如:蒸馏、过滤、离心、干燥、灼烧……以此使组分得到有效分离和富集。
3结构和成分分析
这里开始就要分开两步走
31 有机:谱图采集,对比标准数据库可以得到匹配度最高的结果,当然对于利用数据库无法检索到高匹配度的物质。
32无机:AES、IR、XRD、等主要针对元素种类、元素价态进行分析
4结果验证
到这一步,样品的大致组分有了基本结果,就需要运用各类检测手段去验证,实际上就是各种定量分析,GC、LC等。
提取方法
研究中药化学成分时,提取、分离、鉴定是必不可少的三个步骤。首先是把化学成分从药材中提取出来,其产物含多种成分,即为复杂的混合物,然后经过初步分离纯化及进一步分离得到达到一定纯度的单体成分,才能进行结构鉴定。
┌ 溶剂提取法
│
├ 水蒸气蒸馏法
│
提取方法 ┼ 升华法
│
├ 压榨法
│
└ 超临界流体提取法
剂提取法
溶剂提取法原理及常用溶剂
选用什么样的溶剂提取中药成分,取决于溶剂的性质和被提取成分的化学结构及溶解性。溶剂可分为水及酸水或碱水。亲水性有机溶剂、亲脂性有机溶剂。
根据"相似相溶原理",欲提取亲脂性成分应选用亲脂性溶剂,欲提取亲水性成分则选用水及亲水性溶剂。应注意的是乙醇、甲醇虽然属于亲水性溶剂,它们可与 水随便混溶,但很多亲脂性成分可溶于乙醇、甲醇,所以乙醇或甲醇溶液中既有水溶性成分,也有很多脂溶性成分。乙醇或甲醇中可加入水配成不同浓度的乙醇或甲 醇,根据提取成分的情况可选用适当浓度的醇进行提取。
提取方法
用溶剂提取中药成分,常用浸渍法、渗漉法、煎煮法、回流提取法、连续提取法等。同时,原料的粉碎度、提取时间、提取温度、设备条件等因素也都能影响提取效率,必须加以考虑。
(1)浸渍法:浸渍法是将处理过的药材,用适当的溶剂在常温或温热(60~80℃)的情况下浸渍以溶出其中成分。本法适用于有效成分遇热易破坏以及含多量 淀粉、树胶、果胶、粘液质的中药的提取。但浸出率较差,特别是用水为溶剂,其提取液易于发霉变质,须注意加入适当的防腐剂。
(2)渗漉法:渗漉 法是向中药粗粉中,不断添加浸出溶剂使其渗过药粉,从渗漉筒下端出口流出浸出液的一种浸出方法。当溶剂渗进药粉溶出成分比重加大而向下移动时,上层的溶液 或稀浸液便置换其位置,造成良好的浓度差,使扩散能较好地进行,故浸出效率较高,浸出液较澄清,但溶剂消耗量大、费时长、操作仍嫌麻烦。
(3)煎煮法:煎煮法是将中药粗粉加水加热煮沸,将中药成分提取出来的方法。此法简便,药中大部分成分可被不同程度地提出,但含挥发性成分及有效成分遇热易破坏的中药不宜用此法,对含有多糖类中药,煎煮后,药液比较粘稠,过滤比较困难。[医学 教育网 搜集整理]
(4)回流提取法:如用易挥发的有机溶剂加热提取中药成分时,则需采用回流提取法以减少溶剂消耗,提高浸出效率。但受热易破坏的成分不宜用此法,且溶剂消耗量仍大,操作亦麻烦。
(5)连续提取法:为了弥补回流提取法中需要溶剂量大、操作较烦的不足,可采用连续提取法。实验室常用脂肪提取器或称索氏提取器。连续提取法提取液受热时间长,因此对受热易分解的成分不宜用此法。
水蒸气蒸馏法
水蒸气蒸馏法只适用于具有挥发性的,能随水蒸气蒸馏而不被破坏,与水不发生反应,且难溶或不溶于水的成分的提取。此类成分的沸点多在100℃以上,并在 100℃左右有一定的蒸气压。中药的挥发油、某些小分子生物碱如麻黄碱、烟碱、槟榔碱以及某些小分子的酚性物质如牡丹酚等的提取可采用水蒸气蒸馏。
升华法
某些固体物质如水杨酸、苯甲酸、樟脑等受热在低于其熔点的温度下,不经过熔化就可直接转化为蒸气,蒸气遇冷后又凝结为固体称为升华。中药中有一些成分具 有升华性质,能利用升华的方法直接从中药中提取出来。如从樟木中升华的樟脑,在《本草纲目》中已有详细记载,为世界上最早应用升华法制取药材有效成分的记 述。又如茶叶中的咖啡因具有升华性,可将茶叶放在大小适宜的烧杯中,上面用圆底烧瓶盛水冷却,然后加热,到一定温度(178℃),咖啡因可凝结于烧瓶底 部,成白色针状结晶。但中药成分一般可升华的很少。
压榨法
此法用于新鲜原料中成分的提取。
超临界流体提取法
是近些年来运用于中药中某些成分提取的一种新方法,此法有很多优点,也有局限性,需要特殊的设备。
1、化学分析法:利用物质化学反应为基础的分析方法,称为化学分析法。每种物质都有其独特的化学特性,我们可以利用物质间的化学反应并将其以一种适当的方式进行表征,用以指示反应的进程,从而得到材料中某些组合成分的含量;
2、原子光谱法:原子光谱是原子吸收或发出光子的强度关于光子能量(通常以波长表示)的图谱,可以提供关于样品化学组成的相关信息。原子光谱分为三大类:原子吸收光谱、原子发射光谱和原子荧光光谱;
3、X射线能量色散谱法(EDX):EDX常与电子显微镜配合使用,它是测量电子与试样相互作用所产生的特征X射线的波长与强度,从而对微小区域所含元素进行定性或定量分析。每种元素都有一个特定波长的特征X射线与之相对应,它不随入射电子的能量而变化,测量电子激发试样所产生的特征X射线波长的种类,即可确定试样中所存在元素的种类。元素的含量与该元素产生的特征X射线强度成正比,据此可以测定元素的含量;
4、电子能谱分析法:电子能谱分析法是采用单色光源或电子束去照射样品,使样品中电子受到激发而发射出来,然后测量这些电子的强度与能量的分布,从而获得材料信息。电子能谱的采样深度仅为几纳米,所以它仅仅是表面成分的反应;
5、X射线衍射法(XRD):XRD也可以辅助用来进行物相的定量分析。它的依据是,物相的衍射线强度随着含量的增加而提高。但是并不成正比,需要加以修正,采用Jade程序就可以对物相进行定量分析;
6、质谱法(MS):它是将被测物质离子化,按离子的质荷比分离,测量各种离子谱峰的强度而实现分析目的的一种分析方法。质量是物质的固有特征之一,不同的物质有不同的质量谱(简称质谱),利用这一性质,可以进行定性分析;谱峰强度也与它代表的化合物含量有关,可以用于定量分析;
7、分光光度计法:分光光度计采用一个可以产生多个波长的光源,通过系列分光装置,从而产生特定波长的光源,光线透过测试的样品后,部分光线被吸收,计算样品的吸光值,从而转化成样品的浓度,吸光值与样品的浓度成正比。它包括可见分光光度计和紫外分光光度计;
8、火花直读光谱仪:火花直读光谱仪用电火花的高温使样品中各元素从固态直接气化并被激发而发射出各元素的特征波长,用光栅分光后,成为按波长排列的“光谱”,这些元素的特征光谱线通过出射狭缝,射入各自的光电倍增管,光信号变成电信号,经仪器的控制测量系统将电信号积分并进行模/数转换,然后由计算机处理,并打印出各元素的百分含量。
欢迎分享,转载请注明来源:品搜搜测评网