16种常用的数据分析方法-因子分析

16种常用的数据分析方法-因子分析,第1张

因子分析法是指从研究指标相关矩阵内部的依赖关系出发,把一些信息重叠、具有错综复杂关系的变量归结为少数几个不相关的综合因子的一种多元统计分析方法。 

是一种旨在寻找隐藏在多变量数据中、无法直接观察到却影响或支配可测变量的潜在因子、并估计潜在因子对可测变量的影响程度以及潜在因子之间的相关性的一种多元统计分析方法

基本思想

根据相关性大小把变量分组,使得同组内的变量之间相关性较高,但不同组的变量不相关或相关性较低,每组变量代表一个基本结构一即公共因子。

为什么做因子分析

举例说明:在实际门店问题中,往往我们会选择潜力最大的门店作为领航店,以此为样板,实现业绩和利润的突破及未来新店的标杆。选择领航店过程中我们要注重很多因素,比如:

↘所在小区的房价

↘总面积

↘户主年龄分布

↘小区户数

↘门店面积

↘2公里范围内竞争门店数量等

收集到所有的这些数据虽然能够全面、精准的确定领航店的入选标准,但实际建模时这些变量未必能够发挥出预期的作用。主要体现两方面:计算量的问题;变量间的相关性问题。

这时,最简单直接的方案就是削减变量个数,确定主要变量,因子分析以最少的信息丢失为前提,将众多的原有变量综合成少数的综合指标。

因子分析特点

因子个数远小于变量个数;

能够反应原变量的绝大数信息;

因子之间的线性关系不显著;

因子具有命名解释性

因子分析步骤

1原有变量是否能够进行因子分析;

2提取因子;

3因子的命名解释;

4计算因子得分;五、综合评价

因子与成分分析的区别

相同:都能够起到处理多个原始变量内在结构关系的作用

不同:主成分分析重在综合原始变适的信息而因子分析重在解释原始变量间的关系,是比主成分分析更深入的一种多元统计方法

因子分析可以看做是优化后的主成分分析,两种方法有很多共通的地方,但应用方面各有侧重。

因子分析应用场景

因子分析方法主要用于三种场景,分别是:

l 信息浓缩 :将多个分析项浓缩成几个关键概括性指标。比如将多个问卷题浓缩成几个指标。如果偏重信息浓缩且关注指标与分析项对应关系,使用因子分析更为适合。

l 权重计算 :利用方差解释率值计算各概括性指标的权重。在信息浓缩的基础上,可进一步计算每个主成分/因子的权重,构建指标权重体系。

l 综合竞争力 :利用成分得分和方差解释率这两项指标,计算得到综合得分,用于综合竞争力对比(综合得分值越高意味着竞争力越强)。此类应用常见于经济、管理类研究,比如上市公司的竞争实力对比。

因子分析案例

现在有 12 个地区的 5 个经济指标调查数据(总人口、学校校龄、总雇员、专业服务、中等房价),为对这 12 个地区进行综合评价,请确定出这 12 个地区的综合评价指标。( 综合竞争力应用场景

同一指标在不同地区是不同的,用单一某一个指标难以对12个地区进行准确的评价,单一指标只能反映地区的某一方面。所以,有必要确定综合评价指标,便于对比。因子分析方法就可以应用在这个案例中。

5 个指标即为我们分析的对象,我们希望从这5个可观测指标中寻找出潜在的因素,用这些具有综合信息的因素对各地区进行评价。

下图spss因子分析的操作界面主要包括5方面的选项,变量区只能选择数值型变量,分类型变量不能进入该模型。

spss软件为了消除不同变量间量纲和数量级对结果的影响,在该过程中默认自动进行标准化处理,因此不需要对这些变量提前进行标准化处理。

 

描述统计选项卡

希望看到各变量的描述统计信息,要对比因子提取前后的方差变化,选定“单变量描述性”和“原始分析结果”;

现在是基于相关矩阵提取因子,所以,选定相关矩阵的“系数和显著性水平“,

另外,比较重要的还有 KMO 和球形检验,通过KMO值,我们可以初步判断该数据集是否适合采用因子分析方法,kmo结果有时并不会出现,这主要与变量个数和样本量大小有关。

 

 

抽取选项卡:在该选项卡中设置如何提取因子

提取因子的方法有很多,最常用的就是主成分法。

因为参与分析的变量测度单位不同,所以选择“相关矩阵”,如果参与分析的变量测度单位相同,则考虑选用协方差矩阵。

经常用到碎石图对于判断因子的个数很有帮助,一般都会选择该项。关于特征值,一般spss默认只提取特征值大于1的因子。收敛次数比较重要,可以从首次结果反馈的信息进行调整。

 

 

因子旋转选项卡

因子分析要求对因子给予命名和解释,是否对因子旋转取决于因子的解释。

旋转就是坐标变换,使得因子系数向1 和 0 靠近,对公因子的命名和解释更加容易。旋转方法一般采用”最大方差法“即可,输出旋转后的因子矩阵和载荷图,对于结果的解释非常有帮助。

如果不经旋转因子已经很好解释,那么没有必要旋转,否则,应该旋转。

 

 

保存因子得分

要计算因子得分就要先写出因子的表达式。因子是不能直接观察到的,是潜在的。但是可以通过可观测到的变量获得。

因子分析模型是原始变量为因子的线性组合,现在我们可以根据回归的方法将模型倒过来,用原始变量也就是参与分析的变量来表示因子。从而得到因子得分。因子得分作为变量保存,对于以后深入分析很有用处。

 

结果解读:验证数据是否适合做因子分析

参考kmo结果,一般认为大于05,即可接受。同时还可以参考相关系数,一般认为分析变量的相关系数多数大于 03,则适合做因子分析;

KMO=0575 检验来看,不是特别适合因子分析,基本可以通过。

 

 

结果解读:因子方差表

提取因子后因子方差的值均很高,表明提取的因子能很好的描述这 5 个指标。

方差分解表表明,默认提取的前两个因子能够解释 5 个指标的 934%。碎石图表明,从第三个因子开始,特征值差异很小。综上,提取前两个因子。

 

 

 

 

结果解读:因子矩阵

旋转因子矩阵可以看出,经旋转后,因子便于命名和解释。

因子 1主要解释的是中等房价、专业服务项目、中等校平均校龄,可以命名为社会福利因子;

因子 2 主要解释的是其余两个指标,总人口和总雇员。可以命名为人口因子。

因子分析要求最后得到的因子之间相互独立,没有相关性,而因子转换矩阵显示,两个因子相关性较低。可见,对因子进行旋转是完全有必要的。

 

结果解读:因子系数

因子得分就是根据这个系数和标准化后的分析变量得到的。在数据视图中可以看到因子得分变量。

结论

经过因子分析实现了目的,找到了两个综合评价指标,人口因子和福利因子。

从原来的 5 个指标挖掘出 2 个潜在的综合因子。可以对12 个地区给出客观评价。

 

 

 

可以根据因子1或因子2得分,对这12个地区进行从大到小排序,得分高者被认为在这个维度上有较好表现。

问题一:主成分分析和因子分析有什么区别? 因子分析与主成分分析的异同点:

都对原始数据进行标准化处理; 都消除了原始指标的相关性对综合评价所造成的信息重复的影响; 构造综合评价时所涉及的权数具有客观性; 在信息损失不大的前提下,减少了评价工作量

公共因子比主成分更容易被解释; 因子分析的评价结果没有主成分分析准确; 因子分析比主成分分析的计算工作量大

主成分分析仅仅是变量变换,而因子分析需要构造因子模型。

主成分分析:原始变量的线性组合表示新的综合变量,即主成分;

因子分析:潜在的假想变量和随机影响变量的线性组合表示原始变量。

问题二:统计分析中的因子分析(factors),如何确定因子的个数 方差累计贡献率,碎石图,特征根,很多的

问题三:因子分析法如何确定主成分及各个指标的权重? 5分 在SPSS中,主成分分析是通过设置因子分析中的抽取方法实现的,如果设置的抽取方法是主成分,那么计算的就是主成分得分,另外,因子分析和主成分分析尽管原理不同,但是两者综合得分的计算方法是一致的。

确定数据的权重也是进行数据分析的重要前提。可以利用SPSS的因子分析方法来确定权重。主要步骤是:

(1)首先将数据标准化,这是考虑到不同数据间的量纲不一致,因而必须要无量纲化。

(2)对标准化后的数据进行因子分析(主成分方法),使用方差最大化旋转。

(3)写出主因子得分和每个主因子的方程贡献率。

Fj =β1jX1 +β2jX2 +β3jX3 + ……+ βnjXn ; Fj 为主成分(j=1、2、……、m),X1、X2 、X3 、……、Xn 为各个指标,β1j、β2j、β3j、……、βnj为各指标在主成分Fj 中的系数得分,用ej表示Fj的方程贡献率。

(4)求出指标权重。 ωi=[(m∑j)βijej]/[(n∑i)(m∑j)βijej],ωi就是指标Xi的权重。

因子分析应用在评价指标权重确定中,通过主成分分析法得到的各指标的公因子方差,其值大小表示该项指标对总体变异的贡献,通过计算各个公因子方差占公因子方差总和的百分数。

问题四:因子分析法是什么? 因子分析

1输入数据。

2点Analyze 下拉菜单,选Data Reduction 下的Factor 。

3打开Factor Analysis后,将数据变量逐个选中进入Variables 对话框中。

4单击主对话框中的Descriptive按扭,打开Factor Analysis: Descriptives子对话框,在Statistics栏中选择Univariate Descriptives项要求输出个变量的均值与标准差,在Correlation Matrix 栏内选择Coefficients项,要求计算相关系数矩阵,单击Continue按钮返回Factor Analysis主对话框。

5单击主对话框中的Extraction 按钮,打开如下图所示的Factor Analysis: Extraction 子对话框。在Method列表中选择默认因子抽取方法――Principal ponents,在Analyze 栏中选择默认的Correlation Matrix 项要求从相关系数矩阵出发求解主成分,在Exact 栏中选择Number of Factors;6, 要求显示所有主成分的得分和所能解释的方差。单击Continue按钮返回Factor Analysis主对话框。

6单击主对话框中的OK 按钮,输出结果。

统计专业研究生工作室原创,请勿复杂粘贴

问题五:已解决:因子分析法和主成分分析法是一回事吗 不是一个方法,不过很接近的

问题六:因子分析法的分析步骤 因子分析的核心问题有两个:一是如何构造因子变量;二是如何对因子变量进行命名解释。因此,因子分析的基本步骤和解决思路就是围绕这两个核心问题展开的。(i)因子分析常常有以下四个基本步骤:⑴确认待分析的原变量是否适合作因子分析。⑵构造因子变量。⑶利用旋转方法使因子变量更具有可解释性。⑷计算因子变量得分。(ii)因子分析的计算过程:⑴将原始数据标准化,以消除变量间在数量级和量纲上的不同。⑵求标准化数据的相关矩阵;⑶求相关矩阵的特征值和特征向量;⑷计算方差贡献率与累积方差贡献率;⑸确定因子:设F1,F2,…, Fp为p个因子,其中前m个因子包含的数据信息总量(即其累积贡献率)不低于80%时,可取前m个因子来反映原评价指标;⑹因子旋转:若所得的m个因子无法确定或其实际意义不是很明显,这时需将因子进行旋转以获得较为明显的实际含义。⑺用原指标的线性组合来求各因子得分:采用回归估计法,Bartlett估计法或Thomson估计法计算因子得分。⑻综合得分以各因子的方差贡献率为权,由各因子的线性组合得到综合评价指标函数。F = (w1F1+w2F2+…+wmFm)/(w1+w2+…+wm )此处wi为旋转前或旋转后因子的方差贡献率。⑼得分排序:利用综合得分可以得到得分名次。在采用多元统计分析技术进行数据处理、建立宏观或微观系统模型时,需要研究以下几个方面的问题:・ 简化系统结构,探讨系统内核。可采用主成分分析、因子分析、对应分析等方法,在众多因素中找出各个变量最佳的子 ,从子 所包含的信息描述多变量的系统结果及各个因子对系统的影响。“从树木看森林”,抓住主要矛盾,把握主要矛盾的主要方面,舍弃次要因素,以简化系统的结构,认识系统的内核。・ 构造预测模型,进行预报控制。在自然和社会科学领域的科研与生产中,探索多变量系统运动的客观规律及其与外部环境的关系,进行预测预报,以实现对系统的最优控制,是应用多元统计分析技术的主要目的。在多元分析中,用于预报控制的模型有两大类。一类是预测预报模型,通常采用多元线性回归或逐步回归分析、判别分析、双重筛选逐步回归分析等建模技术。另一类是描述性模型,通常采用聚类分析的建模技术。・ 进行数值分类,构造分类模式。在多变量系统的分析中,往往需要将系统性质相似的事物或现象归为一类。以便找出它们之间的联系和内在规律性。过去许多研究多是按单因素进行定性处理,以致处理结果反映不出系统的总的特征。进行数值分类,构造分类模式一般采用聚类分析和判别分析技术。如何选择适当的方法来解决实际问题,需要对问题进行综合考虑。对一个问题可以综合运用多种统计方法进行分析。例如一个预报模型的建立,可先根据有关生物学、生态学原理,确定理论模型和试验设计;根据试验结果,收集试验资料;对资料进行初步提炼;然后应用统计分析方法(如相关分析、逐步回归分析、主成分分析等)研究各个变量之间的相关性,选择最佳的变量子 ;在此基础上构造预报模型,最后对模型进行诊断和优化处理,并应用于生产实际。

问题一:因子分析到底有什么用处? 问题:大家觉得因子分析到底有什幺用处呢?把原来很多个影响因素归纳成几个影响因子,如果不继续做回归或者聚类的话,光做因子分析有价值吗?答复:因子分析是将多个实测变量转换为少数几个综合指标(或称潜变量),它反映一种降维的思想。通过降维将相关性高的变量聚在一起,从而减少需要分析的变量的数量,而减少问题分析的复杂性。在你对问题系统结构不了解时候,因子分析可以根据数据内在逻辑性,把它归并成几个公因子,每个公因子分别代表空间的一个维度,如果经过正交或斜 交旋转的话,各个维度之间可以认为是不相关的,这些公因子能够相对完整地刻画对象的体系维度,最起码累计方差贡献率大于85%的话,就基本能够保证重要信 息不丢失了。一句话,你如果对研究对象到底应该分为几个维度不清楚的话,用因子分析可以通过数据内在逻辑告诉你。但如果你对研究对象体系比较清楚的话,那你直接确定维度,通过AHP计算出权重,就能够把系统表述清楚了。但这里面有巨大问题,单纯通过数据内 在逻辑来判断维度,常常是错误的,而主观判断其实更加科学,并非象统计学宣称的,数据说话才有发言权。真正有发言权的,是你对问题的经验认识程度。人们为 了避免被人嘲笑主观判断的失误,而越来越选择了统计分析,实际上,他们并不清楚,单纯用统计分析来做判断,才是最愚蠢的。只有主客观结合起来,才是相对科 学的,两者矛盾的时候,应该深入研究矛盾的根源,搞不清楚的话,我认为指标体系评价法要远比统计分析准确的多。而变量之所以能分布在不同的因子内,则是由 于其方差波动性大小和变量之间的相关性决定的,波动性越大,越排在前面的公因子中,各个公因子之间的变量是不相关的,而每个公因子之间的变量是相关的。因 子分析认为那些数据波动大的变量对对象影响作用更大,它们排在公因子的前列,这样单纯从数据逻辑来判断的准则你认为对吗?我想,如果管理和社会科学都这幺 认为的话,那错误将大大增加了。上面想法是我这两年做课题的体会,没有在任何一本书上看过相关说法,也许说的不对,这是我个人看法。如果让我选择的话,我 宁愿用指标体系评价法,体系几个维度事先就清楚,最多先用因子分析算算,看看数据波动性如何,到底能确定几个维度,只起辅助作用。研究者就是专家,指标体 系的维度由主观来做判断,这主要来自经验判断,而不是由数据判断,我认为其实更科学。当然,如果你对问题一无所知,那指标体系评价法用AHP来做的话,错 误很可能更多。我以前就强烈批判过AHP。说到底,没有一种评价方法是好的,说明问题就好。问题:那能对LISREL进行类似于因子分析的探索性因素分析了解吗?能给点评价么?3x答复:下面是探索性分析的原理:传统上所谈的因素分析)factor ysis)指的是探索性因素分析)exploratory factor ysis),它的目的是在承认有测量误差的情形下,尝试用少数的因素)factors)以解释许多变项间的相关关系。随着统计理论及电脑计算上的进展,目前因素分析的方法可分成探索性因素分析)exploratory factor ysis,EFA)及验证性因素分析)confirmatory factor ysis,CFA),这两类分析之间的差别在于研究者对研究变项间因素结构的了解程度不同。如果研究者对资料内所含的因素性质,结构及个数不是很 清楚,则可使用探索性因素分析试图找出能解释资料变项间相关关系的少数几个重要因素。若研究者从过去文献中的理论及自己的研究经验,而对资料间因素之数 目,结构有一定程度的了解及假设,则可使用验证性因素分析来验证该假设是否能解>>

问题二:请教SPSS高人,主成份分析和因子分析有什么不同?做主成分分析目的是什么?谢谢 主成分分析可以理解为一种数据的处理理论,也可以理解为一种应用方法。而因子分析则可以理解为一种应用方法,因为做因子分析采用的比较多的就是用主成分分析的方法来浓缩因子。所以

其实所谓的区别只不过是在学科研究当中存在的,因为同属于统计学的理论,所以一定要找出两者的区别来。但是如果你只是应用的话,那就没必要考虑两者有什么区别。

况且spss使用因子分析非常方便 就可以得出各因子的得分,但是如果你非要用主成分分析方法,则需要自己手动再根据spss输出的某些因子分析结果来计算主成分得分。

做主成分分析或者说因子分析的目的 是为了浓缩众多变量,使之在后续的计算中更加简介。比如原来有80多个变量,如果直接进行综合排名要考虑每个变量进行综合,所以此时通过主成分分析,可以将原来的80多个变量浓缩成3~5个代替原来众多变量的新变量 即所谓的主成分或主因子。这样后续的计算就很简洁了

问题三:探索性因子分析的目的意义有哪些 看你对变量理论的分组符不符合实际的情况,是确保模型合理性的前提

问题四:请问 做相关分析前,一定要做因子分析吗?因子分析的目的是什么? 谢谢! 主成分分析和因子分析的区别 :jok:

1,因子分析中是把变量表示成各因子的线性组合,而主成分分析中则是把主成分表示成

个变量的线性组合。

2,主成分分析的重点在于解释个变量的总方差,而因子分析则把重点放在解释各变量之

间的协方差。

3,主成分分析中不需要有假设(assumptions),因子分析则需要一些假设。因子分析的假

设包括:各个共同因子之间不相关,特殊因子(specific factor)之间也不相关,共同

因子和特殊因子之间也不相关。

4,主成分分析中,当给定的协方差矩阵或者相关矩阵的特征值是唯一的时候,的主成分

一般是独特的;而因子分析中因子不是独特的,可以旋转得到不到的因子。

5,在因子分析中,因子个数需要分析者指定(spss根据一定的条件自动设定,只要是特

征值大于1的因子进入分析),而指

定的因子数量不同而结果不同。在主成分分析中,成分的数量是一定的,一般有几个变量

就有几个主成分。

和主成分分析相比,由于因子分析可以使用旋转技术帮助解释因子,在解释方面更加有

优势。大致说来,当需要寻找潜在的因子,并对这些因子进行解释的时候,更加倾向于

使用因子分析,并且借助旋转技术帮助更好解释。而如果想把现有的变量变成少数几个

新的变量(新的变量几乎带有原来所有变量的信息)来进入后续的分析,则可以使用主

成分分析。当然,这中情况也可以使用因子得分做到。所以这中区分不是绝对的。

总得来说,主成分分析主要是作为一种探索性的技术,在分析者进行多元数据分析之前

,用主成分分析来分析数据,让自己对数据有一个大致的了解是非常重要的。主成分分

析一般很少单独使用:a,了解数据。(screening the data),b,和cluster ysis一

起使用,c,和判别分析一起使用,比如当变量很多,个案数不多,直接使用判别分析可

能无解,这时候可以使用主成份发对变量简化。(reduce dimensionality)d,在多元回

归中,主成分分析可以帮助判断是否存在共线性(条件指数),还可以用来处理共线性

在算法上,主成分分析和因子分析很类似,不过,在因子分析中所采用的协方差矩阵的

对角元素不在是变量的方差,而是和变量对应的共同度(变量方差中被各因子所解释的

问题五:因子分析中正交旋转的原因和目的是什么? 因子分析中正交旋转的原因和目的是:为了更突出各个因子的典型代表变量是谁,这样更容易发觉因子的作用。

因子分析的基本目的就是用少数几个因子去描述许多指标或因素之间的联系,即将相关比较密切的几个变量归在同一类中,每一类变量就成为一个因子,以较少的几个因子反映原资料的大部分信息。运用这种研究技术,我们可以方便地找出影响消费者购买、消费以及满意度的主要因素是哪些,以及它们的影响力运用这种研究技术,我们还可以为市场细分做前期分析。

问题六:因子分析法的统计意义 模型中F1,F2,…,Fm叫做主因子或公共因子,它们是在各个原观测变量的表达式中都共同出现的因子,是相互独立的不可观测的理论变量。公共因子的含义,必须结合具体问题的实际意义而定。e1,e2,…,ep叫做特殊因子,是向量x的分量xi(i=1,2,…,p)所特有的因子,各特殊因子之间以及特殊因子与所有公共因子之间都是相互独立的。模型中载荷矩阵A中的元素(aij)是为因子载荷。因子载荷aij是xi与Fj的协方差,也是xi与Fj的相关系数,它表示xi依赖Fj的程度。可将aij看作第i个变量在第j公共因子上的权,aij的绝对值越大(|aij|£1),表明xi与Fj的相依程度越大,或称公共因子Fj对于xi的载荷量越大。为了得到因子分析结果的经济解释,因子载荷矩阵A中有两个统计量十分重要,即变量共同度和公共因子的方差贡献。因子载荷矩阵A中第i行元素之平方和记为hi2,称为变量xi的共同度。它是全部公共因子对xi的方差所做出的贡献,反映了全部公共因子对变量xi的影响。hi2大表明x的第i个分量xi对于F的每一分量F1,F2,…,Fm的共同依赖程度大。将因子载荷矩阵A的第j列( j =1,2,…,m)的各元素的平方和记为gj2,称为公共因子Fj对x的方差贡献。gj2就表示第j个公共因子Fj对于x的每一分量xi(i= 1,2,…,p)所提供方差的总和,它是衡量公共因子相对重要性的指标。gj2越大,表明公共因子Fj对x的贡献越大,或者说对x的影响和作用就越大。如果将因子载荷矩阵A的所有gj2 ( j =1,2,…,m)都计算出来,使其按照大小排序,就可以依此提炼出最有影响力的公共因子。3 因子旋转建立因子分析模型的目的不仅是找出主因子,更重要的是知道每个主因子的意义,以便对实际问题进行分析。如果求出主因子解后,各个主因子的典型代表变量不很突出,还需要进行因子旋转,通过适当的旋转得到比较满意的主因子。旋转的方法有很多,正交旋转(orthogonal rotation)和斜交旋转(oblique rotation)是因子旋转的两类方法。最常用的方法是最大方差正交旋转法(Varimax)。进行因子旋转,就是要使因子载荷矩阵中因子载荷的平方值向0和1两个方向分化,使大的载荷更大,小的载荷更小。因子旋转过程中,如果因子对应轴相互正交,则称为正交旋转;如果因子对应轴相互间不是正交的,则称为斜交旋转。常用的斜交旋转方法有Promax法等。4因子得分因子分析模型建立后,还有一个重要的作用是应用因子分析模型去评价每个样品在整个模型中的地位,即进行综合评价。例如地区经济发展的因子分析模型建立后,我们希望知道每个地区经济发展的情况,把区域经济划分归类,哪些地区发展较快,哪些中等发达,哪些较慢等。这时需要将公共因子用变量的线性组合来表示,也即由地区经济的各项指标值来估计它的因子得分。设公共因子F由变量x表示的线性组合为:Fj = uj1 xj1+ uj2 xj2+…+ujp j=1,2,…,m该式称为因子得分函数,由它来计算每个样品的公共因子得分。若取m=2,则将每个样品的p个变量代入上式即可算出每个样品的因子得分F1和F2,并将其在平面上做因子得分散点图,进而对样品进行分类或对原始数据进行更深入的研究。但因子得分函数中方程的个数m小于变量的个数p,所以并不能精确计算出因子得分,只能对因子得分进行估计。估计因子得分的方法较多,常用的有回归估计法,Bartlett估计法,Thomson估计法。⑴回归估计法F = X b = X (X ¢X)-1A¢ = XR-1A>>

问题七:主成分分析和因子分析有什么区别? 因子分析与主成分分析的异同点:

都对原始数据进行标准化处理; 都消除了原始指标的相关性对综合评价所造成的信息重复的影响; 构造综合评价时所涉及的权数具有客观性; 在信息损失不大的前提下,减少了评价工作量

公共因子比主成分更容易被解释; 因子分析的评价结果没有主成分分析准确; 因子分析比主成分分析的计算工作量大

主成分分析仅仅是变量变换,而因子分析需要构造因子模型。

主成分分析:原始变量的线性组合表示新的综合变量,即主成分;

因子分析:潜在的假想变量和随机影响变量的线性组合表示原始变量。

问题八:在因子分析中计算变量共同度的目的是可以反映什么 所提供公因子可以解释原始变量的方差程度。

问题九:因子分析常用来解决什么问题,目标是什么 主要是用来寻找指标变了共同的潜变量或称公因子,然后用公因子进行后续的各项分析,达到降维的目的。(南心网为您解决SPSS因子分析问题)

两个方法基本相同,只是因子分析是在主成分基础上,多出一步旋转步骤,为了让提取的成分更容易命名。两种方法都可以在网页版spssau中使用,配合智能文字建议和帮助手册可以能快理解。

如果说研究目的完全在于信息浓缩,并且找出因子与分析项对应关系,建议用因子分析。主成分分析更多用于权重计算,以及综合得分计算。

因子分析-SPSSAU

主成分分析-SPSSAU

欢迎分享,转载请注明来源:品搜搜测评网

原文地址:https://pinsoso.cn/meirong/1996281.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-11-02
下一篇2023-11-02

随机推荐

  • 艾嘉曼身体套盒怎么样

    使用效果还不错。艾嘉曼身体套盒产品采用传统上等的中药为主要原料,经过高科离子提纯技术,使有效成份分子量达到毛孔的万分之一的细度,在皮肤表面瞬间吸收,使皮肤更加的细腻,使用效果还不错。艾嘉曼除了身体套盒还有,百草赋活精华水、精华霜、秘润养护乳

    2024-04-15
    60300
  • 兰蔻肌底液的功效,小黑瓶肌底精华液功效

    兰蔻有很多的护肤品都非常受欢迎,比如兰蔻的精华液就是一种效果很好的产品。有很多条件比较好的女生都会购买兰蔻的肌底液来使用。而且兰蔻肌底液的功效也非常的不错。那么,兰蔻肌底液的功效,小黑瓶肌底精华液的功效是什么?兰蔻小黑瓶的功效有抗衰老、抗皱

    2024-04-15
    53400
  • 美容店一个套盒的利润

    美容店一个套盒的利润大约在70%左右,这是根据相关专业人士透露得出的结论。当然,具体利润还会受到多种因素的影响,例如套盒的成本、销售价格、市场需求等等。一般来说,美容店会根据市场需求和自身定位,选择合适的套盒产品,并制定合理的销售价格。在销

    2024-04-15
    41100
  • 透真烟酰胺美白精华露次抛怎么样

    透真烟酰胺美白精华露次抛是一款非常受欢迎的美白产品,它的效果得到了众多消费者的好评。但是对于它的次抛效果,我们需要从不同角度来进行分析。从产品成分来看,透真烟酰胺美白精华露次抛主要成分为烟酰胺和透明质酸,这两种成分都有很好的美白效果。其中烟

    2024-04-15
    36100
  • 呼吸罗马套盒和欧惠极致套盒哪个更好

    欧惠极致好。1、欧惠极致好用,是欧蕙家最高档次的一个系列,也是做的最出色,销量最多的套盒,而呼吸罗马套盒的销量少,因此是欧惠极致好。2、欧惠是LG的顶级产品,呼吸是LG的一线,比欧惠低一档,伊思的话也就是二线。因此事欧惠极致好。      

    2024-04-15
    36200
  • 妮维雅洗面奶祛痘吗?

    妮维雅控油祛痘的洗面奶好么 效果很好。 妮维雅长效控油洁面乳的质地水润,流动性较强。泡沫丰富细腻,能够有效清洁肌肤,保持肌肤油脂平衡,但要多用水冲洗才能彻底洗干净。使用后,肌肤有滋润感,但长效控油效果不明显。需要注意的是,这款洁面乳不够

    2024-04-15
    54100
  • 长安和伊思特瓷砖哪个相对比较好,都是佛山产的吗?

    长安瓷砖还是比较有名,具体哪里产的就不要听销售人员给你讲解的了,最好看他们的包装上面的资料。还有就是需要选大厂,大品牌的瓷砖,你想一想你装房子管得最久的是什么?肯定是瓷砖、涂料、门窗那些硬装。像蒙娜丽莎、马可波罗、威尼斯商人瓷砖、冠珠这些都

    2024-04-15
    39100

发表评论

登录后才能评论
保存