2017年检验技师考试免疫学考点总结
免疫学检验是检验技师考试的考点之一。为了方便考生更好的复习关于免疫学检验的知识。下面是我为大家带来的关于免疫学检验的知识,欢迎阅读。
1、免疫:是机体识别和排斥抗原性异物的一种生理功能
2、免疫防御(对外);免疫自稳(防自身免疫病);免疫监视(防肿瘤)。
3、中枢免疫器官:骨髓、胸腺;外周免疫器官:淋巴结、脾脏(最大)、黏膜相关淋巴组织
4、B细胞:通过识别膜免疫球蛋白来结合抗原,介导体液免疫;B细胞受体=BCR=mIg
表面标志:膜免疫球蛋白(SmIg)、Fc受体、补体受体、EB病毒受体和小鼠红细胞受体。
成熟B细胞:CD19、CD20、CD21、CD22 (成熟B细胞的mIg主要为mIgM和mIgD)同时检测CD5分子,可分为B1细胞和B2细胞。
B细胞功能检测方法:溶血空斑形成试验(体液免疫功能)。
5、T细胞:介导细胞免疫。共同表面标志是CD3(多链糖蛋白);辅助T细胞的标志是CD4;杀伤T细胞的标志是CD8;T细胞受体=TCR。
T细胞和NK细胞的共同表面标志是CD2(绵羊红细胞受体);
CD3+CD4+CD8- = 辅助性T细胞(Th)
CD3+CD4-CD8+ = 细胞毒性T细胞(Tc或CTL)(T细胞介导的细胞毒试验)
CD4+CD25+ = 调节性T细胞(Tr或Treg)
T细胞功能检测:植物血凝素(PHA)刀豆素(CONA)刺激T细胞增殖。增殖试验有:形态法、核素法。
T细胞亚群的分离:亲和板结合分离法,磁性微球分离法,荧光激活细胞分离仪分离法
E花环试验是通过检测SRBC受体而对T细胞进行计数的一种试验;
6、NK细胞:具有细胞介导的细胞毒作用。直接杀伤靶细胞(肿瘤细胞和病毒感染的细胞)
表面标志:CD16(ADCC)、CD56。
测定人NK细胞活性的靶细胞多用K562细胞株,而测定小鼠NK细胞活性则常采用YAC-1细胞株。
7、吞噬细胞包括:单核-吞噬细胞系统(MPS,表面标志CD14,包括骨髓内的前单核细胞、外周血中的单核细胞和组织内的巨噬细胞)和中性粒细胞。(表达MHCⅡ类分子)
8、人成熟树突状细胞(DC)(专职抗原呈递功能):表面标志为CD1a、CD11c和CD83。
9、免疫球蛋白可分为分泌型(sIg,主要存在于体液中,具有抗体功能)及膜型(mIg,作为抗原受体表达于B细胞表面,称为膜表面免疫球蛋白)
10、免疫球蛋白按含量多少排序:IgG>IgA>IgM>IgD>IgE五类(按重链恒定区抗原性(CH)排序)
免疫球蛋白含量测定:单向环状免疫扩散法、免疫比浊法。
11、免疫球蛋白的同种型抗原决定簇位于恒定区(CH、CL)
12、抗体由浆细胞产生。抗体分子上VH和VL(高变区)是抗原结合部位。
13、IgG:血清中含量最高的免疫球蛋白(IgG1最高),血液和细胞外液中的主要抗体。也是再次免疫应答的主要抗体,是唯一能通过胎盘的抗体,大多数抗菌抗体、抗病毒抗体是IgG,某些自身抗体及超敏Ⅱ型抗体是IgG,免疫学检测中第二抗体也以IgG为主。
14、IgA:分血清型(单体存在)及分泌型;分泌型IgA(sIgA)为二聚体,性能稳定,主要存在于胃肠道、支气管分泌液、初乳、唾液、泪液中,局部浓度高,是参与黏膜局部免疫的主要抗体。
15、IgM:为五聚体,主要存在于血液中,是Ig中分子量最大的(又称巨球蛋白)。个体发育最早合成和分泌的抗体。抗原刺激后体液免疫应答中最先产生的抗体,感染过程中血清IgM水平升高,说明近期感染。新生儿脐血中若IgM增高,提示有宫内感染。
16、IgE:为单体结构,正常人血清中含量最低。IgE为亲细胞抗体,介导Ⅰ型超敏反应。特异性过敏反应和寄生虫早期感染患者血清中可升高。
17、补体:具有酶样活性的球蛋白(肝细胞、巨噬细胞产生);激活途径主要有三种:经典途径(以结合抗原后的IgG或IgM类抗体为主要激活剂(双链DNA),C1~C9全部参与)、替代途径(病原微生物细胞壁成分(脂多糖)直接激活补体C3,然后完成C5~C9的激活过程)、MBL途径(由急性炎症期产生的甘露糖结合凝集素(MBL)与病原体结合后启动激活)。
18、补体系统中C3含量最多,C2含量最少。
19、灭活:加热56℃30分钟,补体丧失活性
20、补体清除免疫复合物的方式:吞噬调理;免疫粘附;免疫复合物抑制。
21、完全抗原=反应原性+免疫原性。半抗原=反应原性(无免疫原性)
22、抗原抗体结合力(分子间引力):静电吸引、范德华力、氢键、疏水作用力(最强)
23、抗原抗体反应的四大特点:特异性、可逆性、比例性、阶段性;受反应条件(如温度、pH、电解质、抗原抗体比例等)的影响。
24、抗体过量——前带;抗原过量——后带(钩状效应)
25、抗原抗体反应可分为两个阶段:第一阶段为抗原与抗体发生特异性结合的阶段,此阶段反应快,仅需几秒至几分钟,但不出现可见反应;第二阶段为可见反应阶段,此阶段反应慢,往往需要数分钟至数小时。
26、颗粒性抗原出现凝集反应。可溶性抗原出现沉淀反应。单价抗原与相应抗体结合不出现沉淀现象。
27、木瓜酶水解IgG为2Fab+Fc;胃蛋白酶水解IgG为F(ab)2+nFc。
28、最常用于免疫动物的佐剂是弗氏佐剂,弗氏佐剂分为弗氏完全佐剂(弗氏不完全佐剂加卡介苗)和弗氏不完全佐剂两种。
29、R(兔子)型抗血清是用家兔及其他动物免疫产生的抗体,抗原抗体反应比例合适范围较宽,适于作诊断试剂。
H(马)型抗血清是用马等大动物免疫获得的抗体,抗原抗体反应比例合适范围较窄,一般用作免疫治疗。
30、抗血清常见保存条件:2-8℃保存;冷冻保存(最常用);真空干燥保存(5-10年)。
31、杂交瘤细胞放入液氮(-196℃)前,需要逐步降温。复苏细胞时,从液氮罐内取出冻存管,立即浸入37℃水浴。
32、凝集反应分为两个阶段:①抗原抗体的特异性结合;②出现可见的颗粒凝聚。
33、直接凝集反应的原理是细菌、螺旋体和红细胞等颗粒性抗原,在适当的电解质(085%氯化钠)参与下可直接与相应抗体结合出现凝集。抗原=凝集原,抗体=凝集素。
34、玻片凝集试验:主要用于抗原的定性分析,AB0血型的测定。
试管凝集试验:肥达氏试验、外斐试验、输血交叉配血试验;
35、红细胞包被抗原,用以检测抗体的血凝反应,称为正向间接血凝反应(PHA)。
红细胞包被抗体,用以检测抗原的血凝反应,称为反向间接血凝反应(RPHA)。
36、间接血凝抑制试验:可用于检测抗体、自身抗体、变态反应性抗体,也可测定抗原。
37、金**葡萄球菌A蛋白(SPA)
38、血凝试验可在微量滴定板或试管中进行,将标本倍比稀释,一般为1:64,同时设不含标本的稀释液为对照孔。凡红细胞沉积于孔底,集中呈一圆点的为不凝集。如红细胞凝集,则分布于孔底周围。
39、明胶凝集试验(间接):HIV-1抗体和抗精子抗体检测
40、抗球蛋白试验,又称Coombs试验,是检测抗红细胞不完全抗体的一种很有用的方法。包括直接Coombs试验(检测红细胞上的不完全抗体)和间接Coombs试验(游离在血清中的不完全抗体)
41、沉淀反应分两个阶段:第一阶段为抗原抗体发生特异性结合,几秒到几十秒即可完成,出现可溶性小的复合物,肉眼不可见。第二阶段为形成可见的免疫复合物,约需几十分钟到数小时才能完成,如沉淀线、沉淀环。
42、免疫比浊:最适pH为65~85,磷酸盐缓冲液。
43、对流免疫电泳:抗体流向负极,抗原流向正极
44、免疫固定电泳也用予尿液中本-周蛋白的检测及κ、λ分型,脑脊液中寡克隆蛋白的检测及分型。
45、RIA(放免)核素(125Ⅰ)标记抗原,竞争抑制(标记抗原和非标记抗原竞争限量抗体);IRMA(免疫放射)核素标记抗体,非竞争结合(过量标记抗体,反应速率比RIA快,灵敏度明显高于RIA。)
RIA可以测定大分子和小分子抗原,但IRMA则只能测定至少有两个抗原决定簇的抗原。
46、常用的荧光素有:异硫氰酸(FITC)黄绿色,最常用;四乙基罗丹明(RB200)橘红色;四甲基异硫氰酸罗丹明(TRITC)橙红色;藻红蛋白(R-RE)橙色。其他:铕(Eu3+)
47、荧光标记蛋白的常用方法:搅拌法和透析法。
荧光抗体效价鉴定:抗原含量为1g/L时,抗体效价>1:16
48、时间分辨荧光免疫测定(TRFIA)以镧系元素(如:铕)化合物为荧光标记物。
49、偏振免疫测定的偏振波长是485nm(蓝光)。
50、辣根过氧化物酶(HRP):底物(1)邻苯二胺(OPD),(2)四甲基联苯胺(TMB) ELISA中应用最广泛的底物。
碱性磷酸酶(ALP):底物:对-硝基苯磷酸脂(p-NPP)
β-半乳糖苷酶(β-Gal):底物:4-甲基伞酮基-R-D半乳糖苷(4-MUU)
51、异相法:先分离,后测定;均相法:不分离,直接测。
52、酶联免疫吸附试验(ELISA):
必要的试剂:①固相的抗原或抗体;②酶标记的抗原或抗体;③酶反应的底物。
抗原测定:蛋白大分子抗原用得最多的是双抗体夹心法(HBsAg)。只有单个抗原决定簇的小分子,则使用竞争抑制法。
抗体测定:通常使用间接法(HCV、HIV)、双抗原夹心法(HBsAb)、竞争法(HBcAb、HBeAb)和捕获法(IgM)等
待测孔最后显示的颜色深浅与标本中的待测抗原或抗体呈正相关的是:双抗体夹心法、双位点一步法、间接法测抗体;
53、化学发光底物有:直接化学发光剂:吖啶酯和三联吡啶钌;酶促反应发光剂:(标记酶HRP)鲁米诺及其衍生物、(标记酶为碱性磷酸酶)AMPPD;
54、免疫印迹实验中常选用多克隆抗体。
55、外周血单个核细胞的分离的分层液常用:Ficoll(由上到下为血浆,单个核细胞,粒,红)和Percoll(由上至下:死细胞,单个核细胞,淋,红,粒)。
56、纯淋巴细胞群的采集有:黏附贴壁法,吸附柱过滤法,磁铁吸引法,Percoll分离液法。
57、T细胞和B细胞的分离:E花环沉降法,尼龙毛柱分离法
58、淋巴细胞活力测定:台盼蓝染色法,死细胞为蓝色。
59、CD4是HIV受体,HIV感染时CD4/CD8比值明显降低。
60、CD4/CD8升高常见于自身免疫性疾病;而CD4/CD8降低常见于病毒感染、恶性肿瘤和再生障碍性贫血等。
61、(ELISA)双抗体夹心法是用于细胞因子测定的最常用方法。
62、流式细胞仪:前向散射光(FS)反映颗粒的大小。侧向散射光(SS)反映颗粒内部结构复杂程度、表面的光滑程度。荧光(FL)反映颗粒被染上荧光部分数量的多少。
63、免疫荧光标记最常用的荧光染料:异硫氰酸荧光素(FITC)亮绿色荧光。德州红红色荧光。藻胆蛋白类橙色至红色荧光。
64、临床上常用三色荧光抗体标记将CD3-CD16+CD56+淋巴细胞确定为NK细胞。
65、AIDS患者的一个特征性免疫诊断指标表现为:T淋巴细胞总数减少,T细胞亚群CD4Th/CD8Tc比例倒置,Th/Tc<10,Th细胞数量显著下降甚至测不出,而Tc细胞数量可正常或增加,NK细胞减少或活力下降,B淋巴细胞群则处于正常范围。
65、强直性脊柱炎——HLA-B27
66、SLE患者以IgG、IgA升高较多见。类风湿关节炎患者以IgM增高为主。
67、M蛋白(MP)是B淋巴细胞或浆细胞单克隆异常增殖(>30g/L)所产生的一种在氨基酸组成及顺序上十分均一的异常单克隆免疫球蛋白。多无免疫活性,故又称副蛋白。临床上多见于多发性骨髓瘤、高丙种球蛋白血症、恶性淋巴瘤、重链病、轻链病等
68、M蛋白-最基本方法:血清蛋白区带电泳技术
M蛋白-粗筛试验:血清免疫球蛋白定量(单向琼脂免疫扩散法和免疫比浊法)
M蛋白-鉴定,首选方法:免疫固定电泳(IFE)技术(区带电泳技术与特异性抗血清的免疫沉淀反应相结合)是临床最常用的方法。
69、IgD降低见于原发性无丙种球蛋白血症、矽肺
70、CSF中的浓度:IgG>IgA>IgM。神经系统肿瘤时,以IgA和IgM升高为主。
(感染、血管病变、系统性疾病=IgG升高)
71、本-周蛋白即尿中游离的免疫球蛋白轻链。尿中可测得,血中呈阴性(原因是本-周蛋白分子量小,极易迅速自肾脏排出,血中含量并不升高)
72、冷球蛋白又称冷免疫球蛋白,在-4℃时发生沉淀,于37℃时又复溶解。采血是冷球蛋白检测的关键,宜在体温条件下采集和保存静脉血。
73、补体结合试验(CFT),梅毒的诊断,华氏反应。
74、非均相荧光免疫测定:时间分辨荧光免疫测定法。
均相荧光免疫测定:荧光偏振免疫测定法。
75、链球菌感染:ASO(胶乳凝集试验、免疫散射比浊法)
76、伤寒沙门菌有菌体(O)抗原、鞭毛(H)抗原和表面(Vi)抗原。肥达反应,效价≥1:80为阳性
77、卡氏肺孢菌,又称卡氏肺孢子虫,为类真菌。
78、Ⅰ型超敏反应:由特异性IgE抗体介导产生,其发生速度最快。(青霉素、支气管哮喘)
提高Th1细胞活性,减少IL-4的分泌,可降低IgE的产生,阻断IgE介导的Ⅰ型超敏反应。
参与Ⅰ型超敏反应:肥大细胞、嗜碱性粒细胞、嗜酸性粒细胞。
79、Ⅱ型超敏反应:又称细胞毒型或细胞溶解型超敏反应,它是由靶细胞表面的抗原与相应IgG或IgM类抗体结合后,在补体(细胞溶解)、巨噬细胞(吞噬)和NK细胞(ADCC作用)参与下,引起的以细胞溶解或组织损伤为主的病理性免疫反应。(输血反应、新生儿溶血症、自身免疫性溶血性贫血、药物过敏性血细胞减少症、肺出血肾炎综合征、甲状腺功能亢进)
80、Ⅲ型超敏反应:由可溶性免疫复合物沉积于局部或全身多处毛细血管基底膜,通过激活补体,并在血小板、嗜碱性粒细胞、中性粒细胞等的参与下,引起的以充血水肿、局部坏死和中性粒细胞浸润为主要特征的炎症反应和组织损伤。(Arthus反应、类Arthus反应、血清病、链球菌感染后肾小球肾炎、类风湿关节炎、SLE)/81、Ⅳ型超敏反应:又称迟发型超敏反应(DTH),是效应T细胞与特异性抗原结合后,引起的以单个核细胞浸润和组织损伤为主要特征的炎症反应。(细胞免疫)效应性CD4+Th1细胞识别抗原后活化,可释放IFN-γ、TNF、淋巴毒素(LT)、IL-3、GM-CSF、单核细胞趋化蛋白-1(MCP-1)等多种细胞因子。
常见Ⅳ型超敏反应性疾病:感染性迟发型超敏反应(结核分枝杆菌、病毒、原虫)、接触性皮炎、移植排斥反应。(结核菌素皮试、斑贴试验)
82、变性的IgG可刺激机体产生抗变性IgG抗体(类风湿因子)
83、ITP患者血清中存在有抗血小板抗体,该抗体可以缩短血小板的寿命。
84、抗乙酰胆碱受体抗体:对重症肌无力(MG)具有诊断意义。
85、毒性弥漫性甲状腺肿患者血清中有抗促甲状腺激素受体(TSHR)的IgG型自身抗体。(甲状腺功能的'亢进)
86、多发性肌炎是以损害肌肉为主要表现的自身免疫性疾病,如果同时有皮肤损害,则称为皮肌炎。
87、75%的PSS患者有抗核抗体阳性,抗Scl-70抗体是PSS的特异性抗体,80%~95%的局限性硬皮病患者抗着丝点抗体阳性。
88、自身免疫病(AID)的特征:高滴度自身抗体,病理特点为免疫炎症损伤与抗原分布一致,能建动物模型。
89、抗DNP抗体(抗核蛋白抗体)通常完全被DNA和组蛋白吸收,是形成狼疮细胞的因子。
90、ANA阳性的荧光现象分:核膜型、均质型、斑点型、核仁型。ANA常为自身免疫病的初筛试验。
91、ENA是可提取核抗原的总称,分子中不含DNA。
92、抗dsDNA抗体对SLE有较高的特异性。抗Sm抗体也是SLE的特异性标志之一。此两项常为SLE确诊指标。(对疑为SLE的患者,应先进行ANA和抗dsDNA抗体的检测,当ANA和(或)抗dsDNA抗体阳性时,再作抗ENA抗体谱的检测。如有抗Sm抗体和(或)抗RNP抗体阳性,可实验室诊断为SLE)
93、抗核RNP抗体:为MCTD(混合性结缔组织病)的诊断指标。
94、抗SSA/抗SSB抗体:为干燥综合征(SS)的诊断指标。(当ANA阳性而抗dsDNA抗体阴性,抗ENA抗体谱中抗SsA抗体和(或)抗ssB抗体阳性,可实验室诊断为干燥综合征。)
95、抗Jo-1抗体:多发性肌炎(PM)患者常为阳性。
96、抗Scl-70抗体:进行性系统性硬皮症(PSS)的诊断指标。
97、NCA:原发性小血管炎的特异性血清标志物
98、内风湿性关节炎(RA):自身抗体有RF、抗角蛋白抗体(AKA)、抗环瓜氨酸肽抗体(anti-CCP)。
99、Farr法测定dsDNA抗体的特异性高,为公认标准法,当抗dsDNA抗体结合率大于20%时对SLE有意义。
100、抗线粒体抗体(AMA):原发性胆汁性肝硬化
101、巨球蛋白血症:以分泌IgM的浆细胞恶性增殖为病理基础的疾病。好发于老年男性,主要表现骨髓外浸润,以肝、脾和淋巴结肿大为主要体征并伴有血黏滞过高综合征,如表现为视网膜出血。(血清呈胶冻状难以分离,电泳时血清有时难以泳动,集中于原点是该病的电泳特征)
102、异常免疫球蛋白检测的应用原则
初筛实验:区带电泳分析、免疫球蛋白定量检测和尿本-周蛋白定性检测。
确证实验:免疫电泳、免疫固定电泳、免疫球蛋白亚型、血清及尿中轻链蛋白的定量检测。
103、HIV诱导的免疫应答
1体液免疫应答HIV感染后,机体可产生:中和抗体、抗P24壳蛋白抗体、抗gp120和抗gp41抗体
2细胞免疫应答:CD8+T细胞应答、CD4+T细胞应答。
104、HIV抗原检测:核心抗原p24(ELISA)
105、免疫印迹法判断标准为:①HIV抗体阳性:至少有两条膜带(gp41/gp120/gp160)或至少一条膜带与p24带同时出现;②HIV抗体阴性:无HIV抗体特异性条带出现;③HIV抗体可疑:出现HIV特异性条带,但带型不足以确认阳性者。
CD4+T细胞计数是反映HIV感染患者免疫系统损害状态的最明确指标。当CD4+T细胞低于500/μl,则易机会性感染;低于200/μl,则发生AIDS。
106、CEA大于60μg/L时可见于结肠、胃、肺癌。手术6周后CEA水平正常。
107、AFP——原发性肝癌。PSA——前列腺癌
108、糖类抗原有:CA125:上皮性卵巢癌和子宫内膜癌;CA15-3:乳腺癌;CA19-9:胰腺癌、结直肠癌。
109、神经母细胞瘤和小细胞肺癌(基因有P53,RB)的标志物:神经元特异性烯醇化酶(NSE)
110、排斥反应有:宿主抗移植反应(HVGR)和移植物抗宿主反应(GVHR)。
111、移植物存活与HLA配型的关系是:①供、受者HLA-A和HLA-B相配的位点数越多,移植物存活几率越高;②供、受者HLA-DR位点相配更重要,因为HLA-DR和HLA-DQ基因有很强的连锁不平衡,DR位点相配的个体,通常DQ位点也相配;③不同地区HLA匹配程度与移植结果的关系有着不同的预测价值。
;免疫组化,是应用免疫学基本原理——抗原抗体反应,即抗原与抗体特异性结合的原理,通过化学反应使标记抗体的显色剂(荧光素、酶、金属离子、同位素)显色来确定组织细胞内抗原(多肽和蛋白质),对其进行定位、定性及定量的研究,称为免疫组织化学技术(immunohistochemistry)或免疫细胞化学技术(immunocytochemistry)。 · 具有特异性高和亲和力强的抗体是实验成功的首要条件。
– 对抗体的要求:纯度高、比活性强;
· 高度特异性抗体的获得,取决于抗原的纯度。
– 对抗原的要求:纯度高,免疫原性强,稳定无变化。 · 抗原的概念:凡是在机体内引起体液免疫和(或)细胞免疫反应的物质,称为抗原。抗原具有两个方面的特性:
– 免疫原性:引起机体产生抗体和(或)致敏淋细胞的特性;
– 免疫反应性:抗原能与相应的抗体及致敏淋巴细胞发生特异的结合或反应的特性。
· 根据抗原是否显示免疫原性分为:
– 完全抗原:分子量较大,一般在10kDa以上,并具有较复杂的化学组成。
· 免疫原性最强的是蛋白质抗原,多糖次之;脂类和核酸必需和蛋白质及多糖形成复合物才具有良好的免疫原性。
– 半抗原:又称为不完全抗原,分子量较小。例如:某些短肽、多糖、类脂和药物等。
· 半抗原必需与载体结合,才能获得免疫原性。
载 体
· 通常是具有高度免疫原性的大分子物质,具有将免疫原性传递给耦联的半抗原能力。
– 常用的载体有钥孔血蓝蛋白(keyhole limpet hemocyanin,KLH)、牛血清白蛋白(bovine serum albumin, BSA)、卵白蛋白(Ovalbumin,OVA)等。
– 用戊二醛或碳化二亚胺作为交联剂通过功能基团-NH2、-COOH等将半抗原结合到载体上。结合比例为5kDa结合5~25个分子的小肽。 1、抗体的概念:
· 机体受到抗原刺激后,由浆细胞合成并分泌出一类具有与抗原发生特异性结合的球蛋白,被称为抗体。
– 抗体主要存在于血清内;
– 抗体都是免疫球蛋白,但免疫球蛋白并不一定都是抗体。
– 免疫球蛋白根据重链的结构及抗原特异性不同分为五种,既IgG、 IgD、IgE、 IgA、IgM。
2、免疫组化实验中常用的抗体:单克隆抗体和多克隆抗体。
· 单克隆抗体:是一个B淋巴细胞克隆分泌的抗体,是应用细胞融合杂交瘤技术免疫动物制备的。
– 特异性强、抗体产量高。
· 多克隆抗体:是将纯化后的抗原直接免疫动物后,从动物血中所获得的免疫血清,是多个B淋巴细胞克隆所产生的抗体混合物。
– 特异性低,会产生抗体的交叉反应。
– 多克隆抗体广泛应用于石蜡包埋组织切片,可减少假阴性染色机会。
– 抗原与抗体的结合,要求量保持一定比例,当抗原或抗体过量时,是不能聚合成大颗粒。
3、抗体的制备——多克隆抗体的制备
· 动物的选择
· 佐剂(adjuvant)
· 免疫方法
· 免疫剂量
· 抗体效价的测定
· 放血或定期抽血
(1) 动物的选择
选择什么动物来免疫取决于:
· 所需抗血清的量
– 小鼠只能提供10~15ml的血液,而山羊能提供几升。
· 能供免疫用的抗原量
– 小鼠50μg足够,而山羊需要几毫克。
(1) 动物的选择(续)
· 动物的品系:免疫动物与提供抗原的动物之间的种系差异越大越好。
– 例如哺乳动物的抗原可选择非哺乳动物来制备抗体。
– 常用的动物有兔、羊、马、猪等,以兔(新西兰兔,年轻,健壮,体重在25kg左右,雄性)为最常用。
(2) 佐剂 (adjuvant)
· 一般可溶性抗原注射后,迅速从注射部位扩散、吸收代谢。佐剂可延长滞留时间,且延长免疫刺激作用。因此在制备抗体的过程中,常将抗原和佐剂一起注射。
· 最常用的佐剂是弗氏佐剂,又分为:
– 弗氏不完全佐剂(Freund's incomplete adjuvant)
– 弗氏完全佐剂(Freund's complete adjuvant)
弗氏不完全佐剂
(Freund's incomplete adjuvant, FIA)
· 是由油剂(石蜡油或植物油)与乳化剂(羊毛脂或Tween80)混合而成,比例为1:1、2:1、3:1或5:1,可根据需要而定,通常2:1。
· 使用时与水溶性抗原按1:1比例充分混合,使抗原分散在佐剂中形成油包水乳剂。
弗氏完全佐剂 (Freund's complete adjuvant, FCA)
· 在弗氏不完全佐剂中加入活卡介苗或死的结核分枝杆菌(终浓度为2~20mg/ml),即成为FCA。
· 免疫动物时,将弗氏佐剂与抗原按体积 1:1 混合乳化后(油包水)注入动物。
– 一般首次注射时用完全佐剂乳化,第二次或第三次注射时用不完全佐剂或不用佐剂。
佐剂与抗原乳化的方法
· 研磨法:适于制备大量的佐剂抗原
– 先将不完全佐剂加热,取173ml放人无菌玻璃研钵内;缓缓滴入023ml活卡介苗,边滴边按同一方向研磨,使菌体完全分散。
– 按同样方法滴人抗原,每加一滴应研磨至小滴消失。滴加抗原的速度要慢,待抗原全部加人后,应成为乳白色粘稠的油包水乳剂。
· 缺点:研钵壁上粘附大量乳剂,抗原损失较大,对微量或难得抗原不宜采用。
佐剂与抗原乳化的方法(续)
· 注射器混合法
– 将等量的完全佐剂和抗原分别吸人两个5ml注射器内,然后插入三通管内,交替推动针管混匀,往复操作直至形成粘稠的乳剂为止。
· 优点:无菌操作,节省抗原或佐剂。
· 缺点:不易乳化,时间长。
佐剂与抗原乳化的方法(续)
· 快速乳化法:利用超声波粉碎器可快速乳化抗原和佐剂混合物。
– 将抗原和佐剂按所需量加入一离心管中,置于超声波粉碎器上,粉碎头浸入液面下 05cm,离瓶底05cm左右,以免打碎离心管。
– 每次乳化 10~15s,然后置冰箱lmin左右。反复乳化3~4次即可完全乳化。管内残余量800r/min离心5~10min收集。
· 优点:简单、快速、节省材料。
乳化剂的鉴定
· 判断乳化是否充分,可将一滴乳化好的液体滴在水面上(冷水中),如能长时间保持圆珠形而不散开,表示乳化达到要求。
(3) 免疫方法——免疫途径
· 常有静脉、腹腔、肌肉、皮下、皮内、淋巴结、脚掌等注射。
· 一般采用多点注射方法
– 常在足、掌、腋窝淋巴结周围、背部两侧、颌下、耳后等处的皮内或皮下。
– 皮内易引起细胞免疫反应,有利于提高抗体的效价。
(3) 免疫方法——免疫途径 (续)
· 几点说明:
– 大动物一般不用腹腔注射
– 颗粒抗原和使用佐剂时不能静脉注射
– 抗原宝贵可采用淋巴结内微量注射法,只需10~100g抗原即可获得较好的免疫效果。
– 皮内注射较困难,特别是天冷时更难注入。
(3) 免疫方法——次数及间隔时间
· 次数一般为2~3次(初次免疫和加强免疫)
– 首次注射后,10~15天再加强注射;
– 剂量同首次或为首次的一半,用不全佐剂或不用佐剂。
· 间隔时间,一般而言,动物越大,间隔越长
– 豚鼠、大鼠为7~8天,兔子为10~15天,羊为14~28天;
– 第三次注射的间隔时间更长些,效果更好。
举例1:家兔的免疫
· 初次免疫
– 用50~200g Ag加入FCA,在背部皮下注射6~8点,每点01~02ml,也可肌肉内或皮内注射;
· 两周后,加强免疫
– 将50~200g Ag于PBS或FIA中,在肌肉、皮下、静脉或腹腔内注射;
· 抗体效价的检测:加强免疫一周后,耳缘静脉采血
– 抗体效价测定可用环状沉淀试验、琼脂双向扩散法等方法。前者抗体效价在1:4000以上,后者在1:16以上,即可采血,取血清进一步提纯。
举例2:微量抗原淋巴结内注射免疫家兔
· 一般选择25~30kg的新西兰种公兔
– 先在其两脚垫注射完全福氏佐剂02ml(卡介苗每兔合5mg);
– 10天后,见胭窝淋巴结肿大,然后将抗原注射至肿大的淋巴结内,第一次注射抗原用完全福氏佐剂混合乳化;
– 以后每隔20天用不完全福氏佐剂乳化抗原,以同样方法加强2次,各次注射的抗原均为25~50g;
– 末次注射两周后兔耳放血测价 (可达1:128)。
举例3:豚鼠和大鼠的免疫
· 初次免疫
– 用10~100g Ag加入FCA,在背部皮内注射4~6点,每点 0lml,也可肌肉内或皮下注射;
· 加强免疫
– 每隔 7~8天,将10~50g Ag于 PBS或FIA中。在肌肉、皮下或静脉注射;
· 抗体效价的检测
(4) 免疫剂量
· 抗原性强的抗原量应小,过大反会引起免疫抑制;
· 免疫周期长的动物可少量多次注射,短的可大量少次。
(4) 免疫剂量 (续)
· 各种动物首次免疫抗原剂量和加强免疫的剂量
(5) 抗体效价的检测
多采免疫双向扩散法
基本原理
· 指抗原和抗体在同一凝胶内都扩散,彼此相遇后形成特异性的沉淀线。
– 将抗原与抗体分别加入同一凝胶板中两个相隔一定间距的小孔内,使两者进行相互扩散,当抗原抗体浓度之比相适宜时,彼此相遇形成一白色弧状沉淀线。
· 优缺点:简便,但敏感性较低,易出现假阴性结果。
免疫双向扩散法的操作步骤
· 将玻璃板用水洗净后用75%乙醇冲洗,晾干后放在水平台上备用。
· 将l % agar 融化后,置56C水浴。
· 在玻璃板上铺胶,约15mm 厚,凝固后打孔(直径 3rnm),孔间距10mm。
· 中心孔加5l 抗原样品,周围孔内每孔加5l 抗血清(抗体预先作系列倍比稀释即 1:2、1:4、1:8、1:16、1:32等比例)。
· 凝胶板置湿盒内,室温扩散24h。
· 观察结果。
抗体效价检测的其它方法
· 环状沉淀试验,需较多的抗血清,现已很少用;
· 对流免疫电泳,比琼脂免疫双扩散法敏感,较简便、实用;
· 酶联免疫吸附试验 (ELISA)。
(6) 放血或定期抽血
常用以下3种方法
· 颈动脉放血法:放血量较多,动物不易中途死亡。例如:25kg白兔可放血约80ml。家兔、山羊、绵羊等动物采血常用此法。
· 心脏采血法:常用于家兔、豚鼠、大白鼠、鸡等小动物,但操作不当易引起动物死亡。
· 静脉采血:家兔可用耳缘静脉采血;山羊、绵羊、马和驴可用颈静脉采血,这种放血法可隔日1次,有时可采集多量血液。
(6) 放血或定期抽血 (续)
· 采血过程中,动作要轻柔,尽量避免溶血
· 血液凝固后,及时离心收集血清,否则细胞溶解释放的杂蛋白(例如蛋白水解酶)将污染抗体并将抗体水解,降低效价;
· 加叠氮化钠,分装,低温保存,也可加一定的保护剂如BSA、甘油等。
佐剂是非特异性免疫增强剂,当与抗原一起或预先注入机体时,可增强机体对抗原的免疫应答或改变免疫应答类型。
佐剂有很多种;例如氢氧化铝佐剂、短小棒状杆菌、脂多糖、细胞因子、明矾等。弗氏完全佐剂和弗氏不完全佐剂是目前动物试验中最常用佐剂。
由于佐剂能增强抗原表面面积,并能延长抗原在体内保留时间,使抗原与淋巴系统细胞有充分接触时间,所以它有多种作用:
(1)把无抗原性的物质转变为有效的抗原;
(2)增强循环抗体的水平或产生更有效的保护性免疫;
(3)改变所产生的循环抗体的类型;
(4)增强细胞介导的超敏反应的能力;
(5)产生实验性自身免疫或其他类型的变态性疾病;
(6)保护抗原(特别是DNA,RNA)不受体内酶的分解。
第二章 抗 原
抗原的概念
抗原(antigen,Ag)是一类能刺激机体免疫系统使之产生特异性免疫应答,并能与相应的免疫应答产物在体内或体外发生特异性结合的物质。抗原具有两种特性:①免疫原性(immunogenicity)即抗原能刺激特定的免疫细胞,使免疫细胞活化、增殖、分化,最终产生免疫效应物质(抗体和致敏淋巴细胞)的特性。②免疫反应性(immunoreactivity)即抗原与相应的免疫效应物质(抗体和致敏淋巴细胞)相遇时,可发生特异性结合而产生免疫反应的特性(又称反应原性)。具有这两种特性的物质称为完全抗原(complete antigen),又称免疫原(immunogen),大多数蛋白质类抗原属完全抗原。有些简单的有机分子(分子量小于40 kD),单独存在时无免疫原性,当与蛋白质载体(carrier)结合后才有免疫原性,但单独时能与相应的抗体结合而具有免疫反应性,这些小分子物质称半抗原(hapten)或不完全抗原(incomplete antigen),如多糖、类脂、某些药物均属半抗原。�
在某些情况下,抗原也可诱导相应克隆的淋巴细胞对该抗原表现为特异性的负免疫应答,称为免疫耐受(immune tolerance)(详见第9章)。有时,抗原还可引起病理性的高免疫应答即超敏反应(hyersensitivity)(详见第11章)。这些抗原分别称为耐受原(tolerogen)和变应原(allergen)(表21)。
表21抗原的命名和性能
免疫应答刺激物广义命名 引起免疫
应答类型
表现形式 免疫原性 免疫反应性 免疫应答刺激物狭义命名
抗原 正免疫应答 正常免疫应答 + + 抗原
超敏反应 + + 变应原
负免疫应答 免疫耐受 + - 耐受原
第一节抗原分子免疫原性的条件�
一、异物性�
异物性是指抗原与自身成分相异或未与宿主胚胎期免疫细胞接触过的物质。正常情况下,机体的免疫系统具有精确识别“自己”和“非己”物质的能力。抗原是指非己的异种或异体物质。抗原与机体之间的种系关系越远、组织结构差异越大、抗原性越强。例如鸭血清蛋白对鸡的抗原性较弱,而对家兔则是强抗原。各种病原微生物、动物血清等对人也是强抗原。同种异体间,由于遗传类型不同、组织细胞结构也有差异,因而也具有抗原性。例如人体红细胞表面的ABO血型抗原、白细胞及一切有核细胞表面的组织相容性抗原系统等。�
二、理化状态
(一)分子大小
凡具有抗原性的物质,分子量较大,一般在100 kD以上,分子量小于40 kD者一般无抗原性。在有机物中,蛋白质的抗原性最强,某些复杂的多糖也具有抗原性。大分子物质抗原性较强的原因是:①分子量越大,其表面的化学基团(抗原决定簇)越多,而淋巴细胞要求有一定数量的抗原决定簇才能活化。②大分子的胶体物质,化学结构稳定,在体内不易降解清除,停留时间长,能使淋巴细胞得到持久刺激,有利于免疫应答的发生。大分子物质经降解成小分子后即降低或失去抗原性。分子量小于40 kD的物质并非绝对没有抗原性,如胰高血糖素分子量仅为46kD,仍具有一定的免疫原性。�
(二)化学结构的复杂性�
抗原物质表面必须有较复杂的化学结构。抗原表面若含有大量的芳香族氨基酸,尤其是酪氨酸时,抗原性较强;以直链氨基酸为主组成的蛋白质,抗原性较弱。例如明胶蛋白,分子量虽高达1000 kD但由于其主要成分为直链氨基酸,在体内易被降解,故抗原性很弱,如在明胶分子中加入少量酪氨酸(2%)就可增强其抗原性。某些多糖抗原其抗原性由单糖的数目和类型决定。核酸的抗原性较弱,但与蛋白质载体连接后可具有抗原性。类脂一般无抗原性。�
抗原性的强弱还与抗原分子的物理状态有关,一般聚合状态的颗粒性抗原比胶体状态的可溶性抗原免疫原性强,因此,可将抗原性弱的物质吸附于颗粒物质表面以增强其抗原性。
三、分子结构和易接近性�
抗原分子中一些特殊化学基团的立体结构(构象conformation)是决定此分子是否能与相应淋巴细胞表面的抗原受体吻合,从而启动免疫应答的物质基础。当抗原表面分子构象发生轻微变化时,就可导致抗原性发生改变。�
易接近性(accessibility)是指抗原表面这些特殊的化学基团与淋巴细胞表面相应的抗原受体相互接触的难易程度。易接近性的难易程度常与这些化学基团在抗原分子中分布的部位有关,如存在于抗原分子表面的化学基团易与淋巴细胞抗原受体结合,免疫原性强;若存在于抗原分子的内部,则不易与淋巴细胞表面的抗原受体接近,而不表现免疫原性。�
决定某一物质是否具有免疫原性,除与上述条件有关外,还受机体的遗传、年龄、生理状态、个体差异等诸多因素的影响。此外,抗原进入机体的方式和途径也可影响抗原性的强弱程度。
第二节 抗原的特异性与交叉反应�
特异性(specificity)是免疫应答中最重要的特点,也是免疫学诊断和免疫学防治的理论依据。抗原的特异性既表现在免疫原性上,也表现在免疫反应性上。前者是指抗原只能激活具有相应受体的淋巴细胞系,使之发生免疫应答,产生特异性抗体和致敏淋巴细胞;后者是指抗原只能与相应的抗体和致敏淋巴细胞特异性结合而发生免疫反应。�
一、抗原决定簇�
抗原决定簇(antigenic determinant)存在于抗原分子表面,是决定抗原特异性的特殊化学基团,又称表位(epitope)。决定簇的性质、数目和空间构象决定着抗原的特异性,抗原藉此与相应淋巴细胞表面的抗原受体结合,激活淋巴细胞引起免疫应答;抗原也藉此与相应抗体发生特异性结合。因此,抗原决定簇是被免疫细胞识别的标志和免疫反应具有特异性的物质基础。研究发现,抗原物质中的决定簇有两类,分别称为构象决定簇(conformational determinants)和顺序决定簇(sequential determinant)。构象决定簇指序列上不相连而依赖于蛋白质或多糖的天然空间构象形成的决定簇,一般暴露于抗原分子的表面。顺序决定簇指一段序列相连的氨基酸片段所形成的决定簇,又称线性决定簇(linear determinant),多存在于抗原分子的内部。一个抗原分子可具有一种或多种不同的抗原决定簇。位于分子表面的决定簇,易被相应的淋巴细胞识别,具有易接近性,可启动免疫应答,称为功能性抗原决定簇,其中尚有个别化学基团是关键性的免疫优势基团。位于抗原分子内部的决定簇,一般情况下被包绕于分子内部不能引起免疫应答,称为隐蔽性抗原决定簇。若因各种理化因素的作用而暴露出内部的决定簇即可使抗原结构发生改变,成为变性抗原。例如因创伤、感染或射线的作用后,可使自身组织变性而成为自身抗原,是导致自身免疫病的原因之一。�
抗原的结合价(antigenic valence)是指能和抗体分子结合的功能性决定簇的数目。大多数天然抗原的分子结构十分复杂,由多种、多个抗原决定簇组成,是多价抗原,它们可以和多个抗体分子交互结合。�
二、载体决定簇与半抗原决定簇�
Ovary等用半抗原二硝基苯酚(DNP)与载体牛丙球蛋白(BGG)结合,制备成人工复合抗原(DNP�BGG),用DNP�BGG免疫3组家兔,再次免疫时,对第1组仍注射DNP�BGG(与初次免疫相同);第2组将载体换为卵白蛋白(OA),即注射DNP�OA(半抗原相同,载体不同);第3组注射BGG(载体相同,但无半抗原)。结果发现:仅第一组家兔产生高效价的抗DNP抗体。表明再次免疫时半抗原需结合在与初次免疫相同的载体上,才能产生针对半抗原的抗体,称此为载体效应(Carrier effect 表22)。说明载体不单纯起运载半抗原的作用,而是具有载体特异性。因此提出:一个完全抗原分子必须具有载体决定簇与半抗原决定簇。其后Mitchison等应用载体效应过继转移实验进一步证明在抗体形成过程中,T细胞是载体反应性细胞,对抗体的产生起辅助作用;B细胞是半抗原反应细胞,即抗体产生细胞。自此阐明了载体效应的细胞学基础,并解释了低分子物质与体内载体蛋白结合形成完全抗原,从而诱发超敏反应的机制。��
表22载体—半抗原效应�
实验组别 初次免疫 再次免疫 抗DNP抗体
1
2
3
DNP-BGG
DNP-OA
DNP-BCG
DNP-BCG
DNP-OA
BCG
+++
+/-
+
三、抗原分子的T细胞决定簇和B细胞决定簇�
用牛血清蛋白(BSA)免疫动物后,既可获得抗BSA抗体,又可获得对BSA的致敏淋巴细胞。天然BSA既可以与相应的抗体结合,又能刺激致敏淋巴细胞发生增殖反应。而加热变性的BSA则不能与抗BSA抗体结合,但仍能刺激T细胞发生增殖反应,提示BSA中含有两类不同性质的抗原决定簇,分别称为T细胞决定簇和B细胞决定簇。�
T、B细胞表面均存在着特异性抗原受体,能识别相应的抗原决定簇。研究发现B细胞决定簇一般存在于抗原分子表面或转折处,呈三级结构的构象决定簇。现认为B细胞决定簇可直接与B细胞表面的抗原受体(BCR)结合,无需加工变性,也无需与MHC分子(详见第五章)结合。
图21抗原分子中的T细胞与B细胞决定簇
细胞决定簇则在抗原分子内部,为一段线性排列的氨基酸序列,即顺序决定簇。T细胞决定簇需经抗原递呈细胞(antigen presenting cell,APC)加工处理,并与其MHC分子结合后,才能被T细胞的抗原受体(TCR)识别(图21)。�
大量研究证明:T细胞依赖性抗原(见第四节)分子中必定含有T、B细胞两类决定簇,迄今为止尚未有一个抗原决定簇既可与抗体结合,又可与TCR结合的报道,因此T细胞决定簇与B细胞决定簇是两种完全不同的决定簇。对小分子免疫原胰高血糖素(由29个氨基酸组成)的分析证明:其分子氨基端(N端,1~18个氨基酸残基)为B细胞决定簇,羧基端(C端,19~29个氨基端残基)为T细胞决定簇。�
四、抗原-抗体反应的特性�
(一)抗原-抗体反应的特异性�
抗原-抗体反应的高度特异性能精确区分抗原物质间的微细差异,这种特异性是由抗原分子表面决定簇的化学组成、空间排列和立体构型决定的。用连接有不同化学基团的苯氨衍生物制备成复合抗原,将其分别免疫动物得到相应抗体后与上述抗原分别进行反应,结果证明各种复合抗原均只能与相应抗体发生特异性结合(表23),说明不同的化学基团决定了抗原-抗体反应的特异性。若使用同种化学基团,仅是连接位置不同所获得抗体也只能与相应抗原发生结合。试验表明,同种化学基团如酒石酸仅由于构型不同,所制备出的抗体同样具有特异性。抗原特异性虽取决于半抗原(即抗原决定簇)的结构,但载体蛋白并非只是半抗原的附加物,它对半抗原在体内导致抗体的产生具有重要的调节作用(详见第八章)。�
表23不同化学基团对抗原特异性的影响�
(二)抗原-抗体分子结合的特性�
抗原—抗体分子间的结合不是共价键结合,而是由近距离分子间的四种吸引力结合在一起,它们相互配对的情况和吸引力的相对距离见图22。抗原与抗体两分子间距离稍远时,仍可有氢键作用;疏水作用必须在两分子非常靠近时才能发生;范德华力(Vander waals bond)是指分子表面电子云相互作用而发生极化,当抗原、抗体分子表面产生相反极化时,才能结合;静电力则是指抗原、抗体表面电荷相反时的相吸作用。�
图22抗原-抗体结合时分子间吸引力
抗原-抗体的结合,不仅要求空间构型互补,也取决于两者的结构、部位和类型。如抗原-抗体空间互补适合,分子间距离接近,吸引力大,则成高亲和力;如空间互补不合适,化学基团与分子间不能很好匹配则吸引力小,排斥力增加,呈低亲和力。高亲和力与特异性反应相关,低亲和力现象常在交叉反应中出现。�
五、共同抗原和交叉反应�
天然抗原表面常带有多种抗原决定簇,每种决定簇都能刺激机体产生一种特异性抗体,因此,复杂抗原能使机体产生多种抗体。例如一种细菌感染机体后可测到体内有鞭毛抗体、菌体抗体等多种成分的抗体。有时两种不同的微生物间可存在有一种相同或相似的抗原决定簇,称为共同抗原(common antigen)。假如甲、乙两菌间有共同抗原存在,则由甲菌的某一抗原决定簇刺激机体产生的抗体,也可以和乙菌中相同的抗原决定簇结合,产生交叉反应。交叉反应也可在两种抗原决定簇构型相似的情况下发生,但由于两者之间并不完全吻合,故结合力较弱,为低亲和力。由于有共同抗原和交叉反应的存在,作血清学诊断时应予注意,以免造成 误诊。
第三节 抗原的分类 �
抗原的分类方法不一,一般按以下几种方法分类。�
一、根据抗原与机体的亲缘关系 分为异种抗原(xenoantigen)、同种异型抗原(alloantigen)、自身抗原(autoantigen)
二、根据抗原刺激机体发生免疫应答过程中是否需要T细胞的协助分类�
(一)胸腺依赖性抗原(thymus dependent antigen,TDAg)�TDAg刺激B细胞产生抗体过程中需T细胞的协助。绝大多数蛋白质抗原(如细胞、细菌、血清蛋白)属于此类。TDAg刺激机体产生的抗体有IgM和IgG,同时还可引起细胞免疫应答,并有免疫记忆。
(二)胸腺非依赖性抗原(thymus independent antigen,TIAg)�
TIAg,其特点是抗原分子上有许多相同的决定簇,重复排列呈长链的多聚物。如细菌脂多糖、荚膜多糖、聚合鞭毛素等。TIAg刺激B细胞产生抗体时一般不需要T细胞的协助,且产生的抗体主要为IgM,不引起细胞免疫应答,也无免疫记忆。�
三、其他分类方法�
根据抗原的化学组成不同可分为蛋白质抗原、脂蛋白抗原、糖蛋白抗原、多糖和核蛋白抗原等。根据抗原的性质可分为完全抗原、半抗原。根据抗原获得方式可分为天然抗原(natural antigen)、人工抗原(artificial antigen)、合成抗原 (synthetic antigen)和应用分子生物学技术制备的重组抗原 (疫苗)(参见第十九章)。�
第四节 医学上重要的抗原�
一、病原微生物及其代谢产物�
各种病原微生物如细菌、病毒、螺旋体等对机体均有较强的抗原性。微生物虽结构简单,但化学组成却相当复杂。各种微生物均含有多种不同的蛋白质及与蛋白质结合的多糖、类脂等,因此,微生物是一个含有多种抗原决定簇的天然抗原复合物。以细菌为例,就具有表面抗原、鞭毛抗原、菌毛抗原、菌体抗原等,这些抗原成分均可作为微生物鉴定、分型的依据。
细菌的代谢产物有些也为良好的抗原,细菌外毒素(exotoxin)化学本质为蛋白质,具有很强的免疫原性,能刺激机体产生相应的抗体即抗毒素(antitoxin)。外毒素经03%~04%甲醛处理后,可使其失去毒性而保留抗原性,称为类毒素(toxoid)。类毒素可刺激机体产生相应的抗毒素以中和外毒素的毒性作用,可作为人工自动免疫制剂,在预防相应疾病中起重要作用,例如白喉类毒素和破伤风类毒素等。�
二、动物免疫血清�
用类毒素免疫动物(如马)后,动物血清中可产生大量的抗毒素,即动物免疫血清。临床上常用抗毒素作为相应疾病的特异性治疗及紧急预防。这种来源于动物血清的抗毒素,对人体具有双重性;一方面可向机体提供特异性抗体(抗毒素),可中和细菌产生的相应外毒素,起防治疾病的作用;另一方面,对人而言又是异种蛋白质,可刺激机体产生抗动物血清的抗体,当机体再次接受此种动物血清时,有可能发生超敏反应(详见第十一章)。�
三、异嗜性抗原�
异嗜性抗原(heterophile antigen)是一类与种属特异性无关,存在于不同种系生物间的共同抗原。异嗜性抗原首先由Forssman发现。他用豚鼠脏器悬液免疫家兔后获得抗体,发现此抗体除能与豚鼠脏器发生特异性凝集反应外,还能与绵羊红细胞发生交叉凝集反应,故异嗜性抗原又称为Forssman抗原。后又陆续发现了多种异嗜性抗原:如溶血性链球菌的多糖抗原和蛋白质抗原与人体的心肌、心瓣膜或肾小球基底膜之间可有异嗜性抗原存在,当机体感染了溶血性链球菌并产生抗体后,可以与含有异嗜性抗原的上述组织结合,通过免疫反应造成机体的组织损伤,临床表现为风湿病或肾小球肾炎;大肠杆菌O14型的脂多糖与人体结肠粘膜间也有异嗜性抗原存在,此与溃疡性结肠炎的发病机制有关。
有些异嗜性抗原的存在可以协助疾病的诊断,例如引起非典型性肺炎的支原体与链球菌MG株之间有共同抗原存在;引起斑疹伤寒的立克次体与某些变形杆菌之间的异嗜性抗原;EB病毒所致的传染性单核细胞增多症患者血清中出现能凝集绵羊红细胞的异嗜性抗体等,这些疾病均可用异嗜性抗原所致的交叉凝集反应来协助诊断。�
四、同种异型抗原�
在同一种属的不同个体间,由于遗传基因不同而存在的不同抗原称为同种异型抗原。例如人类的红细胞、白细胞、免疫球蛋白、血小板等组织上均有同种异型抗原存在。�
(一)红细胞抗原(血型抗原)�
血型抗原存在于红细胞表面,迄今为止发现的红细胞抗原系统在40个以上,其中以ABO血型系统最为重要,其次是Rh血型系统(详见生理学)。
(二)白细胞抗原�
人类白细胞抗原(human leukocyte antigen,HLA)存在于白细胞、血小板和一切有核细胞表面,尤以淋巴细胞密度最高。此类抗原参与免疫应答、免疫调节,且与移植排斥反应及某些疾病的发生相关(详见第五章)。�
五、自身抗原�
能引起自身免疫应答的自身成分称为自身抗原。正常情况下,机体对自身成分不产生免疫应答,即免疫耐受。但在病理情况下,机体对自身抗原可产生强免疫应答,可导致自身免疫病(详见第十三章)。�
六、肿瘤抗原�
肿瘤抗原是细胞在癌变过程中出现的具有抗原性的一些大分子物质的总称,肿瘤抗原分为肿瘤特异性抗原(tumor specific antigen,TSA)和肿瘤相关抗原(tumor associated antigen,TAA)两类。TSA是某一种肿瘤细胞所特有的抗原,在实验动物肿瘤中已经证实。人类肿瘤中是否有TSA的存在,尚有争议,近年来应用单克隆抗体技术已在黑色素瘤、结肠癌、乳腺癌等肿瘤细胞表面检测到肿瘤特异性抗原。TAA是非肿瘤细胞特有的,在正常细胞上也可存在的抗原,但在细胞癌变时,其含量明显增加,胚胎抗原是其中的典型代表(详见第十七章)。
七、超抗原�
一般的多肽抗原称为常规抗原(conventional antigen),只被极少数具有抗原特异性受体的T细胞克隆识别并激活。近年发现某些抗原物质,只需极低浓度(1~10 ng/ml)即可激活大量T细胞克隆,产生极强的免疫应答效应,这类抗原称为超抗原(superantigen s�Ag详见附录3)。它对T细胞的激活机制与方式有别于常规抗原与有丝分裂原(mitogens)。�近年来还报道了一类应激抗原,能分别广泛刺激T、B细胞增殖,称为T细胞超抗原和B细胞超抗原。如热休克蛋白(heat shock protein,HSP)能强烈刺激γδT细胞(详见第六章)的增殖并增强其杀伤肿瘤细胞的活性;金**葡萄球菌蛋白A (staphylococcus protein A,SPA)、人类免疫缺陷病毒(human immunoseficiency virus,HIV)表面糖蛋白gp120等,能激活某些亚型的B细胞增殖。应激抗原在机体的抗肿瘤免疫及自身免疫病的发病机制中有一定意义。�
八、其他�
除上述抗原外,还有某些蛋白类食物,花粉,激素与药物等抗原或半抗原成分,可作为变应原引起超敏反应(详见第十一章)。此外,在淋巴细胞活性及功能检测中常使用有丝分裂原(mitogen)。由于T、B二类淋巴细胞表面均表达有丝分裂原的受体(M受体),在体外实验中可利用有丝分裂原刺激静止的淋巴细胞转化为淋巴母细胞,刺激多克隆的淋巴细胞活化,临床上常用此种方法进行淋巴细胞活性检测。有丝分裂原多为细菌产物或植物蛋白,常用的有丝分裂原有植物血凝素(phytohemagglutinin,PHA),刀豆蛋白A(concanavalin,ConA)、细菌脂多糖和聚合鞭毛素等。�
第五节 免疫佐剂�
免疫佐剂(immunoadjuvant)是同抗原一起或预先注射到机体,能增强机体对该抗原的免疫应答或改变免疫应答类型的物质。又称为佐剂(adjuvant)。�
一、佐剂的种类�
佐剂尚无统一的分类方法,一般可分为以下几类。�
1无机佐剂 如氢氧化铝、明矾、磷酸铝等。�
2有机佐剂 如微生物及其代谢产物。主要有分枝杆菌(结核杆菌、卡介苗、耻垢杆菌)、短小棒状杆菌、百日咳杆菌、革兰阴性菌的内毒素(脂多糖)等。�
3合成佐剂 人工合成的双链多聚核苷酸,如多聚肌苷酸:胞苷酸(poly I:c)、多聚腺苷酸:尿苷酸(poly A:U)等。�
4油剂 如弗氏佐剂是目前在动物实验中最常用的佐剂,可分为弗氏不完全佐剂(incomplete Freund's adjuvant,IFA)和弗氏完全佐剂(complete Freund's adjuvant,CFA)二种,前者是将抗原和油剂(石蜡或花生油)混合,再加入乳化剂(羊毛脂或吐温80),使成为油包水乳剂,即为IFA。在IFA中加入分枝杆菌(杀死的结核杆菌或卡介苗)就成为CFA,CFA作用较强,但易在注射局部形成肉芽肿和持久性溃疡,因而不适于人体使用。�
近来,人工合成一种卡介苗细胞壁中的有效佐剂成分——胞壁酰二肽(muramyl dipeptid,MDP),分子量小于05 kD,并含有D�异谷氨酰胺,对生物学降解作用有抵抗力,易溶于水可口服,无副作用。由于MDP可增强机体的免疫机能,故可提高疫苗接种的效果。
3合成佐剂:人工合成的双链多聚核苷酸,如多聚肌苷酸:胞苷酸(poly I:c)、多聚腺苷酸:尿苷酸(poly A:U)等。
4油剂:如弗氏佐剂是目前在动物实验中最常用的佐剂,可分为弗氏不完全佐剂(incomplete Freund's adjuvant,IFA)和弗氏完全佐剂(complete Freund's adjuvant,CFA)二种,前者是将抗原和油剂(石蜡或花生油)混合,再加入乳化剂(羊毛脂或吐温80),使成为油包水乳剂,即为IFA。在IFA中加入分枝杆菌(杀死的结核杆菌或卡介苗)就成为CFA,CFA作用较强,但易在注射局部形成肉芽肿和持久性溃疡,因而不适于人体使用。
近来,人工合成一种卡介苗细胞壁中的有效佐剂成分——胞壁酰二肽(muramyl dipeptid,MDP),分子量小于05 kD,并含有D-异谷氨酰胺,对生物学降解作用有抵抗力,易溶于水可口服,无副作用。由于MDP可增强机体的免疫机能,故可提高疫苗接种的效果。
二、佐剂的作用机理
佐剂的作用:①与抗原混合后可改变抗原的物理性状(如油剂等),有利于抗原在体内缓慢地释放,延长存留的时间。②被佐剂吸附的抗原(尤其是可溶性抗原),易被巨噬细胞吞噬,佐剂还可刺激巨噬细胞的吞噬作用及对抗原的处理。③可促进淋巴细胞的增殖、分化从而增强机体的免疫应答。
由于佐剂的综合效应是增强机体的免疫机能,故应用范围很广,例如免疫动物时加用佐剂可获得高效价的抗体;预防接种时加用佐剂可增强疫苗的效果;临床上可作为免疫增强剂用于肿瘤或慢性感染患者的辅助治疗等。
本章中英文名词对照(按出现先后为序)
antigen,Ag 抗原
immunogenicity 免疫原性
immunoreactivity 免疫反应性
complete antigen 完全抗原
immunogen 免疫原
carrier 载体
hapten 半抗原
incomplete antigin 不完全抗原
immune tolerance 免疫耐受
hypersensitivity 超敏反应
tolerogen 耐受原
allergen 变应原
conformation 构象
accessibility 易接近性
specificity 特异性
antigenic determinant 抗原决定簇
conformational determinants 构象决定簇
sequential determinant 顺序决定簇
epitope 表位
antigenic valence 抗原结合价
conjugated antigen 结合抗原
azoprotein 偶氮蛋白
antigen presenting cell,APC 抗原递呈细胞
common antigen 共同抗原
xenoantigen 异种抗原
alloantigen 同种异体抗原
autoantigen 自身抗原
thymus dependent antigen,TD�Ag 胸腺依赖性抗原
thymus independent antigen,TI�Ag 胸腺非信赖性抗原
natural antigen 天然抗原
artificial antigen 人工抗原
syntnetic antigen 合成抗原
exotoxin 外毒素
antitoxin 抗毒素
toxoid 类毒素
heterophile antigen 异嗜性抗原
human leukocyte antigen,HLA 人类白细胞抗原
tumor specific antigen,TSA 肿瘤特异性抗原
tumor associted antigen,TAA 肿瘤相关抗原
conventional antigen 常规抗原
superantigen,sAg 超抗原
mitogens 有丝分裂原
heat shock protein,HSP 热休克蛋白
staphylococcus protein A,SPA 金**葡萄球菌蛋白A
human immunoseficiency virus,HIV 人类免疫缺陷病毒
phytohemagglutinin ,PHA 植物血凝素
concanavalin,ConA 刀豆蛋白A
好好研究下抗原的理论吧。
immunoadjuvant 免疫佐剂
incomplete Freund's asjuvant,IFA 弗氏不完全佐剂
complete Freund's asjuvant,CFA 弗氏完全佐剂
佐剂是非特异性免疫增强剂,当与抗原一起注射或预先注入机体时,可增强机体对抗原的免疫应答或改变免疫应答类型。
与抗原同时或预先注射,可非特异性地增强或改变机体对抗原免疫应答的物质,称为佐剂。佐剂有很多种;例如氢氧化铝佐剂、短小棒状杆菌、脂多糖、细胞因子、明矾等。弗氏完全佐剂和弗氏不完全佐剂是动物试验中最常用佐剂。
扩展资料
1926年,铝盐才第一次被用于疫苗,也证明了“佐剂”这玩意儿能够提高免疫持久性,而铝盐一枝独秀的时间长达60多年时间。
在之后,角鲨烯、复合铝、脂质体等佐剂,反正其中最引人注目的就是AS系列佐剂,这些佐剂应用于流感、HPV、带状疱疹等疫苗,并且从免疫原性角度来说针对其特定抗原都是逆天的存在。
不得不说,现在的佐剂从安全性和效果来说都已经远高于几十年前(毕竟没人会往你胳膊里注射面包屑了),但是很多人还在通过各种方式炒作疫苗中佐剂的安全性问题,无非就是不想让你接种疫苗预防疾病罢了。
-佐剂
欢迎分享,转载请注明来源:品搜搜测评网