关于LED发光二极管

关于LED发光二极管,第1张

发光二极管( Light Emitting Diode, LED),是一种半导体元件。初时多用作为指示灯、显示板等;随著白光LED的出现,也被用作照明。它被誉为21世纪的新型光源,具有效率高,寿命长,不易破损等传统光源无法与之比较的优点。

加正向电压时,发光二极体能发出单色、不连续的光,这是电致发光效应的一种。改变所采用的半导体材料的化学组成成分,可使发光二极体发出在近紫外线、可见光或红外线的光。

1955年,美国无线电公司(Radio Corporation of America)的鲁宾·布朗石泰(Rubin Braunstein)(1922年生)首次发现了砷化镓(GaAs)及其他半导体合金的红外放射作用。1962年,通用电气公司的尼克·何伦亚克(Nick Holonyak Jr)(1928年生)开发出第一种实际应用的可见光发光二极管。

目录

1发光二极管技术

11原理

12蓝光与白光LED

13其他颜色

14有机发光二极管,OLED

15运作参数和效率

16几种错误的尝试法

2使用LED的权衡考虑

3LED应用

31已知的LED应用列表

32照明应用

33LED显示看板

34Multi-Touch Sensing

4相关参考

5相关参见

6相关资源

7外部连结

[编辑]

发光二极管技术

[编辑]

原理

发光二极管是一种特殊的二极管。和普通的二极管一样,发光二极管由半导体晶片组成,这些半导体材料会预先通过注入或掺杂等工艺以产生pn结结构。与其它二极管一样,发光二极管中电流可以轻易地从p极(阳极)流向n极(负极),而相反方向则不能。两种不同的载流子:空穴和电子在不同的电极电压作用下从电极流向pn结。当空穴和电子相遇而产生复合,电子会跌落到较低的能阶,同时以光子的方式释放出能量。

它所发出的光的波长,及其颜色,是由组成pn结的半导体物料的禁带能量所决定。由于硅和锗是间接禁带材料,在这些材料中电子与空穴的复合是非辐射跃迁,此类跃迁没有释出光子,所以硅和锗二极体不能发光。发光二极体所用的材料都是直接禁带型的,这些禁带能量对应着近红外线、可见光、或近紫外线波段的光能量。

在发展初期,采用砷化镓(GaAs)的发光二极体只能发出红外线或红光。随著材料科学的进步,人们已经制造出可发出更短波长的、各种颜色的发光二极管。

以下是传统发光二极管所使用的无机半导体物料和所它们发光的颜色:

铝砷化稼 (AlGaAs) - 红色及红外线

铝磷化稼 (AlGaP) - 绿色

aluminium gallium indium phosphide (AlGaInP) - 高亮度的橘红色, 橙色,**,绿色

磷砷化稼 (GaAsP) - 红色,橘红色,**

磷化稼 (GaP) - 红色,**,绿色

氮化镓 (GaN) - 绿色,翠绿色,蓝色

铟氮化稼 (InGaN) - 近紫外线,蓝绿色,蓝色

碳化硅 (SiC) (用作衬底) - 蓝色

硅 (Si) (用作衬底) - 蓝色 (开发中)

蓝宝石 (Al2O3) (用作衬底) - 蓝色

zinc selenide (ZnSe) - 蓝色

钻石 (C) - 紫外线

氮化铝 (AlN), aluminium gallium nitride (AlGaN) - 波长为远至近的紫外线

[编辑]

蓝光与白光LED

用GaN形成的紫外线LED1993年,当时在日本Nichia Corporation(日亚化工)工作的中村修二(Shuji Nakamura)发明了基于宽禁带半导体材料氮化稼(GaN)和铟氮化稼(InGaN)的具有商业应用价值的蓝光LED,这类LED在1990年代后期得到广泛应用。理论上蓝光LED结合原有的红光LED和绿光LED可产生白光,但现在的白光LED却很少是这样造出来的。

现时生产的白光LED大部分是通过在蓝光LED(波长 450 nm 至 470 nm)上覆盖一层淡**磷光体涂层制成的,这种**磷光体通常是通过把掺了铈的Yttrium Aluminum Garnet(Ce3+:YAG)晶体磨成粉末后混和在一种稠密的黏合剂中而制成的。当LED晶片发出蓝光,部分蓝光便会被这种晶体很高效地转换成一个光谱较宽(光谱中心约为580nm)的主要为**的光。(实际上单晶的掺Ce的YAG被视为闪烁器多於磷光体。)由於黄光会刺激肉眼中的红光和绿光受体,再混合LED本身的蓝光,使它看起来就像白色光,而其的色泽常被称作“月光的白色”。 这种制作白光LED的方法是由Nichia Corporation所开发并从1996年开始用在生产白光LED上。 若要调校淡**光的颜色,可用其他稀土金属铽或钆取代Ce3+:YAG 中掺入的铈(Ce),甚至可以以取代YAG中的部份或全部铝的方式做到。

而基於其光谱的特性,红色和绿色的物件在这种LED照射下看起来会不及阔谱光源照射时那麼鲜明。

另外由於生产条件的变异,这种LED的成品的色温并不统一,从暖**的到冷的蓝色都有,所以在生产过程中会以其出来的特性作出区分。

另一个制作的白光LED的方法则有点像日光灯,发出近紫外光的LED会被涂上两种磷光体的混合物,一种是发红光和蓝光的铕,另一种是发绿光的,掺杂了硫化锌(ZnS)的铜和铝。但由於紫外线会使黏合剂中的环氧树脂的质量变坏,所以生产难度较高,而寿命亦较短。与第一种方法比较,它效率较低而产生较多热(因为Stokes Shift前者较大),但好处是光谱的特性较佳,产生的光比较好看。而由於紫外光的LED功率较高,所以其效率虽比较第一种方法低,出来的亮度却相若。

最新一种制造白光LED的方法没再用上磷光体。新的做法是在硒化锌(ZnSe)基板上生长硒化锌的磊晶层。通电时其活跃地带会发出蓝光而基板会发黄光,混合起来便是白色光。

[编辑]

其他颜色

近期开发出来的LED颜色包括粉红色和紫色,都是在蓝光LED上覆盖上一至两层的磷光体造成。粉红色LED用的第一层磷光体能发黄光,而第二层则发出橙色或红色光。而紫色LED用的磷光体发橙色光。 另外一些粉红色LED的制造方法则存在一定的问题,例如有些粉红色LED是在蓝光LED涂上萤光漆或指甲油,但它们有机会剥落;而有些则用上白光LED加上粉红色磷光体或染料,可是在短时间内颜色会褪去。

价钱方面,紫外线、蓝色、纯绿色、白色、粉红色和紫色LED是较红色、橙色、绿色、**、红外线LED贵的,所以前者在商业用途上比较逊色。

发光二极体是封装在塑料透镜内的,比使用玻璃的灯泡或日光灯更坚固。而有时这些外层封装会被上色,但这只是为了装饰或增加对比度,实质上并不能改变发光二极体发光的颜色。

[编辑]

有机发光二极管,OLED

结合蓝色、黄绿(草绿)色,以及高亮度的红色LED等三者的频谱特性曲线,三原色在FWHM频谱中的频宽约24奈米—27奈米。主条目:有机发光半导体

有机发光二极管所用的物料是处结晶状态有机分子或高分子材料,而由后者制成的LED具有可弯曲的特性。和传统的发光二极体相比,OLED 的亮度更高,将来可望应用於制造平价可弯曲显示屏、照明设备、发光衣或装饰墙壁。2004年开始, OLED 已广泛应用於随身MP3播放器。

[编辑]

运作参数和效率

一般最常见的LED工作功率都是设定於30至60毫瓦电能以下。在1999年开始引入了可以在1瓦电力输入下连续使用的商业品级LED。这些LED都以特大的半导体晶片来处理高电能输入的问题,而那半导体晶片都是固定在金属铁片上,以助散热。在2002年,在市场上开始有5瓦的LED的出现 ,而其效率大约是每瓦18至22流明。

2003年九月,Cree, Inc公司展示了其新款的蓝光LED,在20毫安下达到35%的照明效率。他们亦制造了一款达65流明每瓦的白光LED商品,这是当时市场上最光的白光LED。在2005年他们展示了一款白光LED原型,在350毫安工作环境下,创下了每瓦70流明的记录性效率。[1]

今天,OLED的工作效率比起一般的LED低得多,最高的都只是在10%左右。但OLED的生产成本低得多,例如可以用简单的印制方法将特大的OLED阵列安放在屏幕上,用以制造彩色显示屏。

[编辑]

几种错误的尝试法

最共同的方式为LEDs (和二极管lasers) 失败是逐渐降低效率光输出和损失。但是, 突然的失败可能发生当活跃区域的退化wellThe 机制, 辐射性再结合发生, 介入脱臼生核和成长; 这要求一个现有的瑕疵的出现在水晶和被热、高电流密度, 和散发的光加速。砷化镓和铝砷化镓是易受这个机制比砷化镓磷化物、铟砷化镓磷化物, 和铟磷化物。由於活跃地区、镓氮化物和铟镓氮化物的不同的物产是实际上厚脸皮的对这种瑕疵; 但是, 高电流密度可能导致原子的电移在活跃地区, 导致脱臼和点瑕疵诞生, 作为nonradiative 再结合中心和导致热外面代替光。致电离辐射可能导致创作的这样瑕疵, 导致问题以辐射硬化电路包含LEDs (即在optoisolators 里) 。早期的红色LEDs 经常是著名的至於他们短的lifetimeWhite LEDs 使用一个或更多黄磷。黄磷倾向於贬低以热并且年龄, 丢失的效率和导致变化在导致的光colorHigh 电流上在被举起的温度可能导致金属原子扩散从电极入活跃区域。一些材料, 著名地铟罐子氧化物和银, 是依於电移。在某些情况下, 特别是与GaN/InGaN 二极管, 障碍金属层数使用妨害电移作用。机械重音, 高潮流, 并且腐蚀性环境可能导致颊须的形成, 导致短的circuitsHigh 力量LEDs 是易受当前拥挤, 电流密度的nonhomogenous 发行在连接点。这也鸟伬P地方化的热点的创作, 形成热量逃亡风险。Nonhomogenities 在基体, 导致导热性地方化的损失, 加重情况; 最共同那些是空隙由电移作用和Kirkendall 无效造成由残缺不全焊接, 或。热量逃亡是LED failuresLaser 二极管的同道会也闭O依於灾难光学损伤, 当光输出超出一个重要水平并且熔化塑料包裹facetSome 材料倾向於染黄当服从对热的起因, 导致部份效率吸收(和因此损失) 受影响的wavelengthsSudden 失败由热量重音经常造成。当环

[编辑]

使用LED的权衡考虑

近看一颗典型的LED,可以看到其内部结构。不同於白炽电灯泡, 容光焕发不管电子极性, LEDs 只将点燃以正面电子极性。当电压横跨p-n 连接点是在正确方向, 重大潮流流动并且设备被认为forward-biased 。如果电压是错误极性, 设备被认为反向偏心, 很少当前的流程, 并且光不散发。LEDs 可能被管理在交流电电压, 但他们只将点燃以正面电压, 导致LED 转动断断续续以AC 的频率LED 正确极性可能通常被确定的supplyThe 当看LED 的里面不是确定极性一个准确方式的follows:sign:+-polarity:positivenegativeterminal:anodecathodewiring:redblackpinout:longshortinterior:smalllargeshape:roundflatmarking:nonestripeIt 应该被注意。当在多数LEDs 大部份是"-", 在一些这是"+" 终端。平的制表符或短的别针是确定电压对LED 的当前的特徵是很像任一个二极管(是近似地指数的) 的polarityBecause 更加准确的方式, 小电压变动结果在一个巨大的变化在潮流上。增加来偏差在过程中这意味, 电压来源也陷X乎没有使一LED 轻当采取另同样型在它的最大规定值之外和潜在地毁坏itSince 电压对数与它可能被认为保留主要恒定在LEDs 经营的范围的潮流有关。因而力量可能认为是几乎比例与潮流。尝试和保留力量紧挨常数横跨变异在供应和LED 特徵电源应该是一个当前的来源。如果高效率不必需(即在多数显示应用), 略计对一个当前的来源由连接做LED 在系列用一个当前的限制的电阻器到电压来源是usedMost LEDs 一般有低反向击穿电压规定值, 因此他们将被更多的应用的反向电压比几伏特并且损坏。因为一些制造商不跟随显示标准上面, 如果可能资料表应该被咨询在联接LED 之前, 或LED 也陶Q测试在系列与一个电阻器在充足地低压供应避免反向故障。如果它欲驾驶LED 直接从更多AC 供应比它也野悁w置然后保护二极管的反向击穿电压(或其他L

td导演指技术指导、总监、导演等行业。

Technical Director (技术指导/总监/导演,行业简称TD) 这个职业主要存在于电脑动画和视效公司。如果按更专业的说法,TD这个职称还比较笼统,大多数公司都会把TD分为以下几种:

Lighting(灯光) TD (最普遍使用) 负责灯光和三维场景渲染。Character(角色) TD 负责角色骨架装配,布料,毛发及变形控制。Shader(着色或材质) TD 主要负责编写或者调整着色器,然后通过绘制的贴图确定模型最后的呈现形式。

影视导演:

导演同时运用了演员的身体及情绪/视线的选择/光线的调度/画面的构成/剪接的逻辑/音声的搭配,将某个剧本呈现于影视屏幕上,从而将这个剧本(以及如果有的话:它的思想)表现给观众的人。

影视工业涵盖多元的专业技术,从制片、摄影、灯光、美术指导、场务、演员、录音、混音、后期特效等,十分庞杂。绝大多数现代影视导演无法广泛专精以上各项专业技术,但他/她仍可以支配旗下所有各该部门的专业人士,依照他/她的意志工作。

LTE是基于OFDMA技术、由3GPP组织制定的全球通用标准,包括FDD和TDD两种模式用于成对频谱和非成对频谱。

LTE-TDD,国内亦称TD-LTE,即 Time Division Long Term Evolution(分时长期演进),由3GPP组织涵盖的全球各大企业及运营商共同制定,LTE标准中的FDD和TDD两个模式实质上是相同的,两个模式间只存在较小的差异,相似度达90%。TDD即时分双工(Time Division Duplexing),是移动通信技术使用的双工技术之一,与FDD频分双工相对应。TD-LTE是TDD版本的LTE的技术,FDD-LTE的技术是FDD版本的LTE技术。TD-SCDMA是CDMA(码分多址)技术,TD-LTE是OFDM(正交频分复用)技术。两者从编解码、帧格式、空口、信令,到网路架构,都不一样。

基本介绍 中文名 :TD-LTE 外文名 :TD-LTE 技术 :OFDMA技术 制定 :3GPP组织制定 全称 :Time Division Long Term 发展历程,技术特点,国内发展,中国移动,中国电信,中国联通,香港商用,国际情况, 发展历程 早在2004年11月份3GPP魁北克的会议上,3GPP决定开始3G系统的长期演进(Long Term Evolution)的研究项目。世界主要的运营商和设备厂家通过会议、邮件讨论等方式,开始形成对LTE系统的初步需求: 作为一种先进的技术,LTE需要系统在提高峰值数据速率、小区边缘速率、频谱利用率,并着眼于降低运营和建网成本方面进行进一步改进,为使用户能够获得“Always Online”的体验,需要降低控制和用户平面的时延。该系统必须能够和现有系统(2G/25G/3G)共存在无线接入网(RAN)侧,将由CDMA技术改变为能够更有效对抗宽频系统多径干扰的OFDM(正交频分调制)技术。OFDM技术源于20世纪60年代,其后不断完善和发展,90年代后随着信号处理技术的发展,在数字广播、DSL和无线区域网路等领域得到广泛套用。OFDM技术具有抗多径干扰、实现简单、灵活支持不同频宽、频谱利用率高支持高效自适应调度等优点,是公认的未来4G储备技术。 为进一步提高频谱效率,MIMO(多输入/多输出)技术也成为LTE的必选技术。MIMO技术利用多天线系统的空间信道特性,能同时传输多个数据流,从而有效提高数据速率和频谱效率。为了降低控制和用户平面的时延,满足低时延(控制面延迟小于100ms,用户面时延小于 5ms)的要求,NodeB-RNC-CN的结构必须得到简化,RNC作为物理实体将不复存在,NodeB将具有RNC的部分功能,成为 eNodeB,eNodeB间通过X2接口进行网状互联,接入到CN中。这种系统的变化必将影响到网路架构的改变,SAE(系统架构的演进)也在进行中, 3GPP同时也在为RAN/CN的平滑演进进行规划。 TD-LTE 作为LTE的需求,TDD系统的演进与FDD系统的演进是同步进行的。绝大多数企业对LTE标准的贡献可等同用于FDD和TDD模式。 在2005年6月在法国召开的3GPP会议上,以大唐移动为龙头,联合国内厂家,提出了基于OFDM的TDD演进模式的方案,在同年11月,在汉城举行的3GPP工作组会议通过了大唐移动主导的针对TD-SCDMA后续演进的LTE TDD技术提案。 到2006年6月,LTE的可行性研究阶段基本结束,规范制定阶段开始启动。 TD-LTE 技术手机 在2007年9月,3GPP RAN37次会议上,几家国际运营商联合提出了支持TYPE2的TDD帧结构,同年11月在济州工作组会议上通过了LTE TDD融合技术提案,基于TD的帧结构统一了延续已有标准的两种TDD(TD-SCDMALCR/HCR)模式。在RAN 38次全会上融合帧结构方案获得通过,被正式写入3GPP标准中。 2013年4月,爱立信向中国移动成功演示了TD-LTE上行单用户MIMO技术,该技术是LTE Advanced的关键技术之一,标志著爱立信成为首个在商用平台上支持TD-LTE上行单用户MIMO技术的厂商。 在晶片领域,美国高通公司于2010年11月开始参与中国工信部23GHz频谱试验,并与中国的OEM厂商合作,在2011年加入中国移动的26GHz频谱大规模试验。而在上海世博会期间,美国高通公司还联手中国移动及合作伙伴作出LTE TDD产品演示。 TDD-LTE系统具有如下特点: 1灵活支持14,3,5,10,15,20MHz频宽; 2下行使用OFDMA,最高速率达到100Mbits/s,满足高速数据传输的要求; 3上行使用OFDM衍生技术SC-FDMA(单载波频分复用),在保证系统性能的同时能有效降低峰均比(PAPR),减小终端发射功率,延长使用时间,上行最大速率达到50Mbits/s; 4充分利用信道对称性等TDD的特性,在简化系统设计的同时提高系统性能; 5系统的高层总体上与FDD系统保持一致; 6将智慧型天线与MIMO技术相结合,提高系统在不同套用场景的性能; 7套用智慧型天线技术降低小区间干扰,提高小区边缘用户的服务质量; 8进行时间/空间/频率三维的快速无线资源调度,保证系统吞吐量和服务质量。 Axxia处理器集成L1-L3 Quantenna QSR1000 4x4 IEEE80211ac Wi-Fi和SAI Technology L1-L3 cellular /LTE,支持LTE和Wi-Fi在企业网路中的无缝集成。 TD-LTE技术的优缺点: 优点: 1频谱利用率高TD一个载频16M W一个载频10M 2对功控要求低TD 0~200MZ W 1500MZ 3采用了智慧型天线和联合测试引入了所谓的空中分级,但效果如何还待验证 4避免了呼吸效应TD不同业务对覆盖区域的大小影响较小,易于网路规划 缺点: 1同步要求高 TD需要GPS同步,同步的准确程度影响整个系统是否正常工作 2码资源受限TD 只有16个码,远远少于业务需求所需要的码数量 3干扰问题上下行、本小区、邻小区都可能存在干扰 4移动速度慢TD 120KM/H W 500KM/H 技术特点 TD-LTE作为通信产业变革期的重要机遇,主要包含三大特点: 1包含大量中国的专利,由中国主导,同时得到了广泛国际支持,成为了国际标准; 2上网速度快,能够达到TD-SCDMA技术的几十倍,使无处不在的高速上网成为可能; 3产业发展速度快,与其他国际移动宽频技术基本实现了同步发展,代表着当今世界移动通信产业的最先进水平。 早在2004年11月份3GPP魁北克的会议上,3GPP决定开始3G系统的长期演进(Long Term Evolution)的研究项目。世界主要的运营商和设备厂家通过会议、邮件讨论等方式,开始形成对LTE系统的初步需求: 作为一种先进的技术,LTE需要系统在提高峰值数据速率、小区边缘速率、频谱利用率,并着眼于降低运营和建网成本方面进行进一步改进,同时为使用户能够获得“Always Online”的体验,需要降低控制和用户平面的时延。该系统必须能够和现有系统(2G/25G/3G)共存。 在无线接入网(RAN)侧,将由CDMA技术改变为能够更有效对抗宽频系统多径干扰,并且频谱利用率更为高效的 OFDM(正交频分调制)技术。OFDM技术源于20世纪60年代,其后不断完善和发展,90年代后随着信号处理技术的发展,在数字广播、DSL和无线区域网路等领域得到广泛套用。OFDM技术具有抗多径干扰、实现简单、灵活支持不同频宽、频谱利用率高、支持高效自适应调度等优点,是公认的未来4G储备技术。 为进一步提高频谱效率,MIMO(多输入/多输出)技术也成为LTE的必选技术。MIMO技术利用多天线系统的空间信道特性,能同时传输多个数据流,从而有效提高数据速率和频谱效率。 为了降低控制和用户平面的时延,满足低时延(控制面延迟小于100ms,用户面时延小于 5ms)的要求,目前的NodeB-RNC-CN的结构必须得到简化,RNC作为物理实体将不复存在,NodeB将具有RNC的部分功能,成为 eNodeB,eNodeB间通过X2接口进行网状互联,接入到CN中。这种系统的变化必将影响到网路架构的改变,SAE(系统架构的演进)也在进行中, 3GPP同时也在为RAN/CN的平滑演进进行规划。 作为LTE的需求,TDD系统的演进与FDD系统的演进是同步进行的。 在2005年6月在法国召开的3GPP会议上,以大唐移动为龙头,联合国内厂家,提出了基于OFDM的TDD演进模式的方案,在同年11月,在汉城举行的3GPP工作组会议通过了大唐移动主导的针对TD-SCDMA后续演进的LTE TDD技术提案。 到2006年6月,LTE的可行性研究阶段基本结束,规范制定阶段开始启动。 在2007年9月,3GPP RAN37次会议上,几家国际运营商联合提出了支持TYPE2的TDD帧结构,同年11月在济州工作组会议上通过了LTE TDD融合技术提案,基于TD的帧结构统一了延续已有标准的两种TDD(TD-SCDMA LCR/HCR)模式。在RAN 38次全会上融合帧结构方案获得通过,被正式写入3GPP标准中。 国内发展 中国工信部于2013年12月4日向中国移动通信集团公司、中国电信集团公司和中国联合网路通信集团有限公司颁发“LTE/第四代数字蜂窝移动通信业务(TD-LTE)”经营许可。中国移动获得130MHz频谱资源,分别为1880 -1900 MHz、2320-2370 MHz、2575-2635 MHz;中国联通获得40MHz频谱资源,分别为2300-2320 MHz、2555-2575 MHz;中国电信获得40MHz频谱资源,分别为2370-2390 MHz、2635-2655 MHz。 TD-LTE技术发展及其套用 中国移动 中国移动TD-LTE规模试验网部署项目采取“6+1”方案,将投资15亿人民币建网覆盖上海、杭州、南京、广州、深圳、厦门6个省市,每个城市将部署约200个基站;并在北京建TD-LTE演示网。 中国移动广东公司在广州、深圳两地同时启动TD-LTE用户体验。 TD-LTE演示网开通仪式 2012年8月7日,随着国内TD-LTE扩大规模试验网工作的深入,作为工信部确定的首批6个TD-LTE试点城市之一,广州移动拟在原计画建设规模的基础上,进一步扩大了TD-LTE试验网路的建设规模。广州TD-LTE网路最新上报规模已从最初规划3100个站点增加到3700个站点左右,占2012年国内13城市总建设规模20000个站点的185%,计画2012年底完成网路建设。 2012年11月,中国移动招标采购网公布了TD-LTE规模试验多模多频测试终端采购结果,此次数据卡、Mifi、国际漫游型Mifi、CPE、CSFB手机、多模双待单卡智慧型手机6大类终端产品总计招标34700部,包括华为、中兴通讯、上海贝尔、国民技术等15个厂家中标。 中国移动总经理李跃介绍,此次招标主要是为了配合中国移动在杭州、广州、深圳等13座城市的TD-LTE扩大规模试验。根据中国移动规划,到2014年,中国移动TD-LTE基站将达到35万个,还将同步推出15款商用水平的多模数据终端和3款手机。 中国电信 中国电信在4G技术选择上,更加倾向采用成本较低的FDD网路,若日后4G牌照需要规定使用TDD网路,中国电信会考虑向中国移动租用网路,甚至与其他具备TDD技术的运营商共同建造运营网路。 中国电信董事长王晓初在2013年接受采访时曾说:“如果是因为成本问题,根本无需考虑TD-LTE。如果是工信部发了TD-LTE牌照,中国电信想都别想,只有硬著头皮上。”3G向4G的升级,电信EVDO制式不支持向FDD和TD-LTE平滑过渡,全部的4G网路建设都要从零起步,压力巨大。先发TD-LTE牌照,对于电信来说较为不利。2014年2月14日,中国电信宣布全国百余城市4G商用,推出4G数据卡服务。 中国联通 2014年3月,中国联通总经理陆益民则表示,将于3月18日正式开启在25个城市的4G网路服务商用,此外联通还会同时推出多款最新定制的终端产品。 相对于中国移动和中国电信而言,中国联通推出4G服务相对容易,因为中国联通的3G制式是WCDMA,从技术角度而言很容易直接升级到4G。 并且,中国联通在2012年已经开始启动42Mbps网路升级,尤其是广东联通,截止2013年10月,广东21个地市的3G网路已经全部升级至42Mbps,而截至2013年底,联通全国大部分城市3G网路已升级到42Mbps网路。 业内预计,中国联通一旦开始4G商用,其步伐将比中国移动快,因为联通3G网路升级4G网路在很多地方仅需要软体升级,而联通3G网路全国已达40万个,大部分可直接升级4G,联通4G在商用城市数量、信号覆盖等方面后来居上也不稀奇,正因为此,陆益民提出到2014年底4G商用4G商用城市可增至300个。 另外,联通的3G用户数量和质量更佳,根据中国联通刚刚公布的2013年财报,2013年移动业务继续快速发展,全年实现移动服务收入15577亿元,同比增长20%。其中,公司3G业务发展规模实现新的突破,服务收入对移动收入的贡献达到595%,规模达到9272亿元,同比增长502%,成为公司第一收入来源。 香港商用 由中国主导的4G国际移动通信标准术TD-LTE将在2012年12月率先在香港正式商用,该网采取LTE TDD/FDD融合组网方式,运营将提供高速移动数据业务为主。香港TD-LTE的商用是亚太地区首个双 模LTE网,这也意味着我国将正式拉开进入4G时代的序幕。 TD-LTE技术 中国移动一直是国内TD-LTE技术的主导者。据了解,早在2012年年初,中国移动便已开始筹划在香港进行LTE TDD/FDD融合组网。首先是获取频谱,于是2月,中国移动斥资17亿港元成功在香港购得2330MHz-2360MHz总计30MHz的TDD频段。 随后中国移动香港有限公司宣布,在港正式推出4G服务,为客户提供高速移动数据业务,最高下载速率可达100Mbps。当时也推出了4G的相关契约套餐。中国移动香港公司董事长林振辉当时表示,此次推出为FDD LTE制式,并计画于今年底推出TD-LTE制式。(此前2009年2月,中国移动香港就竞得了FDD-LTE频谱) 作为同时拥有LTE TDD和FDD的运营商,建设一张LTE双模融合网路就成为最自然的选择。 2012年后几个月,中国移动在香港开展FDD LTE移动数据业务的同时,依据ITU的3GPP标准计画推出TD-LTE网路,与现有的FDD LTE网路形成互补。7月19日,中国移动TD-LTE项目在香港地区正式落地,在设备商的招标中,中兴、爱立信以各占50%份额的形式,为中国移动在香港建设FDD LTE及TD-LTE无缝双制式融合网路,初期基站数量超1000个左右。 之后,中移动便开始组织设备商、晶片商开始网路测试。中兴、爱立信、创意视讯共同完成了业界在商用网路下的TD-LTE/LTE FDD重定向测试,为香港首个商用TD-LTE/LTEFDD双模网路扫除了最后障碍。 据腾讯科技从香港方面人士获悉,下月18日左右中国移动香港有限公司将宣布TD-LTE的正式商用,初期与FDD LTE制式商用时相同,仅提供高速移动数据业务,用户语音通话、简讯等功能仍依靠现有2G、3G网路。 覆盖方面,根据中国移动香港公司LTE网路建设计画,到年底,实现4G LTE网路室外覆盖可达现有GSM网路的100%覆盖水平,室内覆盖可达80%水平。 终端方面,在香港上市的4G终端中涵盖了手机、上网卡、无线上网猫(MiFi终端)。其中,手机主要以三星、HTC、LG品牌为主,如三星GalaxyS II LTE、HTC One XL LTE和LG Optimus True HD LTE。其余两类终端主要是以华为、中兴为主。不过大多终端仅支持FDD LTE制式,支持双模LTE的还相对较少。 据了解华为、中兴,如今都已推出了支持双模LTE的上网卡和无线上网猫,如华为多模E398上网卡,中兴多模MF820S2上网卡和MF91S上网猫,后者产品即将在香港上市。 TD-LTE 技术 据上述香港人士透露,中国移动香港公司已准备好了相关终端,TD-LTE正式商用后,将推出相关数据套餐业务,如今还在制定之中。之前FDD LTE在香港商用时,推出了流量分别为188港币500MB、298港币1GB及398港币无 的三类套餐计画。且该套餐可以实现香港和内地数据流量共享,香港用户漫游内地的数据流量可计入包月之内。TD-LTE的套餐将有可能参照FDD LTE的模式。 作用 香港TD-LTE的商用是中国移动第一个正式商用的TD-LTE网路,这对备受瞩目的中国内地TD-LTE规模试验形成了强烈的示范效应。 在香港已有四家运营商开始运营4G,分别是中国移动、CSL(香港移动)、PCCW(电讯盈科)以及3HK(和记电讯旗下运营商),与后三个不同的是,中国移动运营的是一张双模的4G网,即LTE TDD/FDD融合服务。 从技术上而言,在视频流媒体、互动Web等下行流占据绝对优势的4G网路时代,TDD高容量、非对称的优势将逐步显现,尤其在FDD资源日趋紧张的情况下,推动LTE TDD/FDD融合组网将成为必然趋势。 从全球范围来看,LTE TDD/FDD融合组网已经成为全球移动宽频的重要演进方向。据了解,欧洲Hi3G公司在瑞典和丹麦部署并商用了TDD/FDD LTE融合网路;日本软银在已经商用TD-LTE的基础上,已于启动FDD LTE商用网建设,从而开始融合组网经营;欧洲的Vodafone和E-Plus等公司也都同时拥有TDD和FDD频率,并开通了融合测试网路。 对于中移动而言,TD-LTE率先在香港商用最重要的意义是希望借此来推动内地TD-LTE尽快商用。由于中国内地市场LTE牌照的不确定性,中移动必须借此证明,TD-LTE的技术和市场的成熟能力,以及其所具备的实际运营能力。 而香港与内地在通讯网路服务运营流程体制上有所不同,并不受牌照限制,只要具备资质的上市公司合法竞拍到频谱,铺好相关网路及准备好支持终端产品,即可宣布提供服务。 香港某分析师对腾讯科技表示,“中移动的TD-LTE香港商用后,相关终端产品、套用必须跟的上 ,这是价值体现最明显、也是市场反应最快的环节,需第一时间向内地释放一个利好的信号。” 中移动TD-LTE下月香港商用 其次,在TD-SCDMA的3G时代,由于经营不善,中移动并没有获得行业太好的口碑,所以中国移动意欲通过TD-LTE走出3G窘境。 而留给中移动的时间已经非常紧迫。此前的运营数据显示,中移动在3G市场的占有率已跌至38%,这一比例为45%。有分析人士指出,在TD-LTE商用服务前,中移动的3G市场份额将可能会继续下滑,从而导致ARPU值和利润率的下滑。因为,中移动此次在香港的TD-LTE商用必须成功。 还有,中国移动也希望借此在香港变身为主流运营商。之前中移动商用FDD LTE时,推出了只要398港币的无限上网套餐、免收内地漫游费等措施令CSL、数码通等本地巨头已叫苦不迭。 TD-LTE全球商用/试商用情况 林振辉此前在接受媒体采访时也表示,公司采用激进的市场竞争策略,目的就是在竞争激烈和用户口味尖端的香港市场上,赚取更多的成功经验。 中移动的决心令TD-LTE前景被看好。Ouvm预测到2016年,TD-LTE将占据全部LTE连线数的25%,而Infoics 2012Q1的报告中则预测,到2016年,按照设备销售收入来算,TDD与FDD的占比接近70%。 瑞银人士认为,中移动已经与主管部门达成默契,在牌照发放前,通过扩大规模试验来实现预商用。而中移动选择在市场竞争充分的香港率先上马TD-LTE商用网,既是将其作为探索TD-LTE运营的试验田,也是大规模上马TD-LTE的预告片。而这一预告片中的另一个关键字FDD/TDD融合,亦被视作意味深长。 国际情况 LTE是通用标准分为FDD-LTE和TDD-LTE两种模式,中移动采用的是TDD-LTE,也就是所说的TD-LTE,国际上大多数国家采用FDD-LTE制式。FDD-LTE已成为世界上采用的国家及地区最广泛的,终端种类最丰富的一种4G标准。全球有285个运营商在超过93个国家部署FDD 4G网路。 瑞典LTE站点 2010年5月25日,爱立信和瑞典运营商TeliaSonera在斯德哥尔摩启动全球首个LTE(FDD-LTE)商用站点,标志著在实现移动数字高速公路方面迈出了重要一步。 作为瑞典的主要运营商,TeliaSonera致力于升级网路,为用户提供更高的速率、更丰富的业务,让用户即使在移动状态中也能享受高速流畅的网路连线。为此,斯德哥尔摩,商用时间为2010年。根据协定,爱立信向 TeliaSonera 提供的FDD-LTE系统包括全新RBS6000系列的LTE无线基站、演进分组核心网、包含了 Redback 公司SmartEdge1200路由器和最新EDA多址接入聚集交换机的移动回程链路解决方案。此外,爱立信不仅负责网路实施及运行初期的网路管理工作,还将与 TeliaSonera 长期合作,以共同推动用户使用LTE移动宽频。 TD-LTE 就在全球经济尚未走出低谷的时候, TeliaSonera 宣布部署全球首个LTE商用站点。作为2010年正式启动的商用网路中的一部分,该站点的启动毫无疑问为全球LTE的发展提供了良好的范本,该站点的揭幕表明LTE不再遥不可及,而是已经成为了现实。 日本LTE牌照 日本正式发放LTE牌照,计画2011年投入使用 2009年5月7日日本总务省发放了4个LTE牌照。日本几大移动运营商NTT Docomo、软银移动、KDDI和e-Mobile公司没有悬念地都获得了LTE牌照。日本在以无线宽频为标志的4G时代将采用业界统一的LTE标准,这将有助于LTE的迅逐普及。正是基于这种考虑,日本总务省发布了4个LTE牌照,日本三大通信运营商NTT Docomo、软银、KDDI和新兴的通信运营商e-Mobile公司都可公平地获得开展LTE的频段。 日本最大的移动运营商NTT DoCoMo计画在今后5年投资3000至4000亿日元,建设LTE基站和骨干通信网。来年开通业务。软银移动将投资1200亿日元于设备,计画于2011年至2012年提供业务。日本e- Mobile公司计画至2013年的设备投资总额为3000亿日元,其将于2011年开通业务。KDDI将于2012年提供业务。其投资额为1000多亿日元。 有关专家指出,日本 之所以及早发放LTE牌照,是着眼于在全球领先部署4G。按照日本 的计画,5年后LTE将覆盖日本50%的人口。 美国LTE商用 由Verizon Communications与沃达丰公司共同组建的Verizon Wireless公司已经选定爱立信与阿尔卡特朗讯作为首要网路供应商,支持其在美国启动LTE网路部署。此前,Verizon已与沃达丰携手在美国及欧洲进行业界领先的LTE网路试验。这两家入选的设备厂商将为Verizon Wireless部署网路基础设施,使其能够自2010年起率先在美国推出商用FDD-LTE服务。 中移动高速上网演示 此外,Verizon还宣布选定诺基亚西门子通信与阿尔卡特朗讯作为其IP多媒体子系统(IMS)网路的核心供应商。无论采用何种接入技术,该系统均可实现丰富的多媒体套用。IMS将在Verizon服务架构的演进过程中扮演核心技术的角色。Verizon计画在其无线和固定宽频网路上提供基于IMS的IP融合套用和服务。LTE将成为采用IMS技术的重要无线接入网之一。Verizon Wireless在进行LTE网路建设并提供商用服务的同时,也将扩展其FiOS光网路。这是持续一致和相互补充的发展战略,着眼于宽频市场的未来发展。 事实上,早在2011年,Verizon就选用了高通公司的SnapdragonMSM8655™处理器以及MDM9600™LTE数据机晶片组并使用在各种新型连线终端上,从而充分利用VerizonWireless的4G LTE移动宽频网路。 宽频业务 在全球1700多家拥有WiMAX频谱资源的授权运营商中,约有470家拥有50MHz或更宽的频宽,考虑使用WiMAX提供长期能盈利的宽频服务,美国、日本、韩国、义大利、沙特、俄罗斯、台湾等地区的运营商都已经或者计画推出基于WiMAX的无线宽频服务。 预计到09年年底,全球排名靠前的22家WiMAX运营商的用户数量将有望从124万升到250万,到2010年年底,用户数量将接近400万。在这些用户中,有很大一部分将来自可能在2010年转换到WiMAX的一些大型专有网路用户,如Clearwire公司在美国的网路。但是,在Maravedis调查的22家WiMAX运营商中,有42%的公司正在考虑部署LTE网路,这对WiMAX的发展很不利。 在2009年到2010年期间,WiMAX阵营将面临经济压力,许多新兴移动运营商对WiMAX的资本投资将会放缓,其中包括35GHz频段的大多数运营商,他们会将其主要精力放在最有利可图的市场部分———寻找可靠性连线的企业客户。不过,尽管受到投资方面的困扰,新兴市场仍将是驱动WiMAX增长的核心,许多厂商认为拉丁美洲和亚洲是最具吸引力的地区。

镀钛镀钛也叫不锈钢钛特点膜层能在室外环境下长年不褪色原理借用惰性气体的辉光放电1PVD镀膜2PVD镀膜是物理蒸汽沉积。不锈钢镀膜,也叫不锈钢钛/锆镀膜,就是在一个真空容器内,在不锈钢表面形成钛/锆化合物的离子膜层,膜层能在室外环境下长年不褪色3工作原理4在高温,真空钛金炉内,钛、锆金属。借用惰性气体的辉光放电使金属或合金蒸气离子化,离子经电场加速而沉积带负电荷的不锈钢板上,从而形成色泽丰富艳丽的金属膜5色泽永恒的PVD镀膜6PVD镀膜不同与传统的电镀等方式,因为其独特的性能,高硬度,防磨檫,不剥落,不褪色,高度防腐,并且不受紫外线影响,因此,PVD镀膜不锈钢是作为一种独特的装饰材料被广泛应用于各种装饰领域7独特性能8在烈日下,潮湿及一般的城市环境中保持不褪色9在紫外线下不会脱皮,不剥落,不掉色10可以在各种纹路,图案表面上镀许多颜色11PVD镀膜颜色范围12金色,黄铜色,玫瑰金色,银白色,黑色,古铜色,紫铜色,蓝色等13表面特征14外观:纯金属膜,凝重而华丽的金属光泽15抗腐蚀和氧化性:不褪色,不易划伤16通用性:室内外主要的表面装饰工艺17良好的可塑性:在弯曲90度以上,不易断裂或脱皮及表面檫伤18耐抗性:硬度系数超过80RC19耐久性:表面抛光可维持20年以上20经济性:节约(减少)了一般镀铜(金)板所需清洁磨光的时间和花费,使用一块软布和玻璃清洁剂就可以21抗破坏性:笔迹和图迹易消除22环境适应性:防止有害物质的放射『铝型材表面镀钛工艺』铝型材镀钛金工艺,属于镀膜技术,它是在常规镀钛工艺基础上增加预镀和电镀工艺步骤,预镀工艺是将活化后的镀件置于食盐和盐酸的水溶液中进行化学处理;电镀工艺的镀液成分包括硫酸镍、氯化镍、硼酸、十二烷基硫酸钠、糖精、光亮剂,本工艺具有简单、实用、效果佳等优点,本工艺制得的钛金铝型材其膜层硬度HV≈1500、同等条件下比镀22K金耐磨150倍,可加工成各种形态的金色、彩色,黑色等光亮的多种系列铝型材产品。铝型材镀钛金工艺,包括选材、抛光、化学除油、清水冲洗、活化、真空镀钛工艺步骤,其特征在于它还包括:a、预镀工艺,该工艺是将活化后并经清水冲洗的钛金铝型材置于由食盐、、盐酸和水组成的液体中进行化学处理,处理温度为常温,处理时间至液体发生激烈化学反应为止;b、电镀工艺,该工艺中镀液成份包括硫酸镍、氯化镍、硼酸、十二烷基硫酸钠、糖精、光亮剂,工艺条件:电流3-4A/dm2阴极移动、5-7A/dm2空气搅拌,镀液温度50-60℃,PH值39-42,电镀时间15分钟。

欢迎分享,转载请注明来源:品搜搜测评网

原文地址:https://pinsoso.cn/meirong/2028785.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-11-04
下一篇2023-11-04

随机推荐

  • 如何设计王者荣耀皮肤平面图?

    王者荣耀皮肤设计一般需要角色人设设置,有个人设大纲之后才能开始皮肤设计,根据你的人设性格、背景等画出人物的皮肤外观,然后需要带上皮肤三视图(正,反,侧)皮肤设计需要美术功底,使用ps或者sai绘制,如果没有美术功底很难画出心仪的皮肤,现在王

    2024-04-15
    44300
  • 精华露怎么用

    精华露是一款非常重要的护肤品,尤其适合需要深度滋润和营养的皮肤。使用精华露,可以让皮肤更容易吸收养分,保持年轻活力。精华露到底怎么用呢?rn在使用之前要先清洁皮肤。这样能够确保皮肤表面没有杂质和污垢,为后续的护理做好准备。rn接下来

    2024-04-15
    46600
  • 洗面奶 面膜 爽肤水 精华油 芦荟胶 精华液 面霜 乳液 求早晚使用顺序…

    早晚护肤是每个人都需要的日常,而正确的使用顺序可以让你的肌肤更加健康亮丽。以下是洗面奶、面膜、爽肤水、精华油、芦荟胶、精华液、面霜和乳液的正确使用顺序:要用洗面奶彻底清洁皮肤。将适量洗面奶涂在手心,按摩脸部并轻轻揉搓,再用温水冲洗干净。在清

    2024-04-15
    46100
  • 妮维雅洁面慕斯好用吗 零皂基的洗面奶

    妮维雅新推出的这个洁面慕斯一上市就受到了很多人的喜欢和追捧,连女星张钧甯都为他站台,这是一款0皂基,纯氨基酸配方的洗面奶,对皮肤无刺激,很温和。敏感肌和痘痘肌以及孕妈妈们都可以放心的使用哦。妮维雅洁面慕斯好用吗一、0皂基,氨基酸配方

    2024-04-15
    37300
  • 急求神仙水,多元,欧莱雅保湿水精华的使用顺序!

    我了解到您想知道神仙水、多元和欧莱雅保湿水精华的使用顺序。让我来为您解答。在使用这三款产品时,您可以按照以下顺序进行。我们来说说神仙水的使用顺序。神仙水是一款非常受欢迎的化妆水,它有助于清洁皮肤和调理肌肤。在使用神仙水前,首先要确保脸部已经

    2024-04-15
    28300
  • 精华素和精华液有什么区别

    精华素的质地比精华液稀薄,更容易被肌肤所吸收。精华素与精华液都是美容护肤常用到的产品,但是精华液的质地比精华素厚重,涂抹上脸后需要较长的时间才能被肌肤所吸收,而分子较小的精华素却很容易被肌肤吸收进去。精华素与精华液的共同点很多,比如美白、保

    2024-04-15
    32100
  • 龙婆烈帕婴能不能和其它帕婴一起供

    不可以。怕烫和帕婴依霸古曼一起供奉基本是不可以的,建议不要供奉在一起,怕烫是音译,基本就是一种大鬼的东西,依霸又是招人缘,异性缘的阴牌,拍婴也是有正牌有阴,古曼童是经过净化的夭折小孩子的灵体,跟多时候是指正的古曼,而不是一些巫师制作的。

    2024-04-15
    25400

发表评论

登录后才能评论
保存