渗碳钢的化学成分,解释轴承渗碳钢成分。

渗碳钢的化学成分,解释轴承渗碳钢成分。,第1张

渗碳

渗碳以后可以提高钢的表面硬度及耐磨性

渗碳钢是用于制造渗碳零件的钢种。常用渗碳钢的牌号、化学成分、热处理、性能及用途如表6~8所示。

1、用途渗碳钢主要用于制造要求高耐磨性、承受高接触应力和冲击载荷的重要零件,如汽车、拖拉机的变速齿轮,内燃机上凸轮轴、活塞销等。

2、性能要求①表面具有高硬度和高耐磨性,心部具有足够的韧性和强度,即表硬里韧;②具有良好的热处理工艺性能,如高的淬透性和渗碳能力,在高的渗碳温度下,奥氏体晶粒长大倾向小以便于渗碳后直接淬火。

3、成分特点①低碳:含碳量一般为01~025%,以保证心部有足够的塑性和韧性,碳高则心部韧性下降。②合金元素:主加元素为Cr、Mn、Ni、B等,它们的主要作用是提高钢的淬透性,从而提高心部的强度和韧性;辅加元素为W、Mo、V、Ti等强碳化物形成元素,这些元素通过形成稳定的碳化物来细化奥氏体晶粒,同时还能提高渗碳层的耐磨性。

4、热处理和组织特点渗碳件一般的工艺路线为:下料→锻造→正火→机加工→渗碳→淬火+低温回火→磨削。渗碳温度为900~950℃,渗碳后的热处理通常采用直接淬火加低温回火,但对渗碳时易过热的钢种如20、20Mn2等,渗碳后需先正火,以消除晶粒粗大的过热组织,然后再淬火和低温回火。淬火温度一般为Ac1+30~50℃。使用状态下的组织为:表面是高碳回火马氏体加颗粒状碳化物加少量残余奥氏体(硬度达HRC58~62),心部是低碳回火马氏体加铁素体(淬透)或铁素体加托氏体(未淬透)。

5、常用钢种

根据淬透性不同,可将渗碳钢分为三类。

①低淬透性渗碳钢:典型钢种如20、20Cr等,其淬透性和心部强度均较低,水中临界直径不超过20~35mm。只适用于制造受冲击载荷较小的耐磨件,如小轴、小齿轮、活塞销等。

②中淬透性渗碳钢:典型钢种如20CrMnTi等,其淬透性较高,油中临界直径约为25~60mm,力学性能和工艺性能良好,大量用于制造承受高速中载、抗冲击和耐磨损的零件,如汽车、拖拉机的变速齿轮、离合器轴等。

③高淬透性渗碳钢:典型钢种如18Cr2Ni4WA等,其油中临界直径大于100mm,且具有良好的韧性,主要用于制造大截面、高载荷的重要耐磨件,如飞机、坦克的曲轴和齿轮等。

一、不锈钢简介

耐空气、蒸汽、水等弱腐蚀介质和酸、碱、盐等化学浸蚀性介质腐蚀的钢。又称不锈耐酸钢。实际应用中,常将耐弱腐蚀介质腐蚀的钢称为不锈钢,而将耐化学介质腐蚀的钢称为耐酸钢。由于两者在化学成分上的差异,前者不一定耐化学介质腐蚀,而后者则一般均具有不锈性。不锈钢的耐蚀性取决于钢中所含的合金元素。铬是使不锈钢获得耐蚀性的基本元素,当钢中含铬量达到12%左右时,铬与腐蚀介质中的氧作用,在钢表面形成一层很薄的氧化膜( 自钝化膜),可阻止钢的基体进一步腐蚀。除铬外,常用的合金元素还有镍、钼、钛、铌、铜、氮等,以满足各种用途对不锈钢组织和性能的要求。不锈钢通常按基体组织分为:①铁素体不锈钢。含铬12%~30%。其耐蚀性、韧性和可焊性随含铬量的增加而提高 , 耐氯化物应力腐蚀性能优于其他种类不锈钢。②奥氏体不锈钢。含铬大于18%,还含有 8%左右的镍及少量钼、钛、氮等元素。综合性能好,可耐多种介质腐蚀。③奥氏体 - 铁素体双相不锈钢。兼有奥氏体和铁素体不锈钢的优点,并具有超塑性。④马氏体不锈钢。强度高,但塑性和可焊性较差。

二、不锈钢历史

不锈钢是具有60年发展历程的现代材料

三、不锈钢作用

自本世纪初发明不锈钢以来,不锈钢就把现代材料的形象和建筑应用中的卓越声誉集于一身,使其竞争对手羡慕不已。不锈钢不会产生腐蚀、点蚀、锈蚀或磨损。不锈钢还是建筑用金属材料中强度最高的材料之一。由于不锈钢具有良好的耐腐蚀性,所以它能使结构部件永久地保持工程设计的完整性。含铬不锈钢还集机械强度和高延伸性于一身,易于部件的加工制造,可满足建筑师和结构设计人员的需要。

四、不锈钢牌号分组

200 系列—铬-镍-锰 奥氏体不锈钢

300 系列—铬-镍 奥氏体不锈钢

型号 301—延展性好,用于成型产品。也可通过机械加工使其迅速硬化。焊接性好。抗磨性和疲劳强度优于304不锈钢。

型号 302—耐腐蚀性同304,由于含碳相对要高因而强度更好。

型号 303—通过添加少量的硫、磷使其较304更易切削加工。

型号 304—通用型号;即18/8不锈钢。GB牌号为0Cr18Ni9。

型号 309—较之304有更好的耐温性。

型号 316—继304之后,第二个得到最广泛应用的钢种,主要用于食品工业和外科手术器材,添加钼元素使其获得一种抗腐蚀的特殊结构。由于较之304其具有更好的抗氯化物腐蚀能力因而也作“船用钢”来使用。SS316则通常用于核燃料回收装置。18/10级不锈钢通常也符合这个应用级别。[1]

型号 321—除了因为添加了钛元素降低了材料焊缝锈蚀的风险之外其他性能类似304。

400 系列—铁素体和马氏体不锈钢

型号 408—耐热性好,弱抗腐蚀性,11%的Cr,8%的Ni。

型号 409—最廉价的型号(英美),通常用作汽车排气管,属铁素体不锈钢(铬钢)。

型号 410—马氏体(高强度铬钢),耐磨性好,抗腐蚀性较差。

型号 416—添加了硫改善了材料的加工性能。

型号 420—“刃具级”马氏体钢,类似布氏高铬钢这种最早的不锈钢。也用于外科手术刀具,可以做的非常光亮。

型号 430—铁素体不锈钢,装饰用,例如用于汽车饰品。良好的成型性,但耐温性和抗腐蚀性要差。

型号 440—高强度刃具钢,含碳稍高,经过适当的热处理后可以获得较高屈服强度,硬度可以达到58HRC,属于最硬的不锈钢之列。最常见的应用例子就是“剃须刀片”。常用型号有三种:440A、440B、440C,另外还有440F(易加工型)。

500 系列—耐热铬合金钢。

600 系列—马氏体沉淀硬化不锈钢。

型号 630—最常用的沉淀硬化不锈钢型号,通常也叫17-4;17%Cr,4%Ni。

五、不锈钢为什么耐腐蚀?

所有金属都和大气中的氧气进行反应,在表面形成氧化膜。不幸的是,在普通碳钢上形成的氧化铁继续进行氧化,使锈蚀不断扩大,最终形成孔洞。可以利用油漆或耐氧化的金属(例如,锌,镍和铬)进行电镀来保证碳钢表面,但是,正如人们所知道的那样,这种保护仅是一种薄膜。如果保护层被破坏,下面的钢便开始锈蚀。

不锈钢的耐腐蚀性取决于铬,但是因为铬是钢的组成部分之一,所以保护方法不尽相同。

在铬的添加量达到10.5%时,钢的耐大气腐蚀性能显著增加,但铬含量更高时,尽管仍可提高耐腐蚀性,但不明显。原因是用铬对钢进行合金化处理时,把表面氧化物的类型改变成了类似于纯铬金属上形成的表面氧化物。这种紧密粘附的富铬氧化物保护表面,防止进一步地氧化。这种氧化层极薄,透过它可以看到钢表面的自然光泽,使不锈钢具有独特的表面。而且,如果损坏了表层,所暴露出的钢表面会和大气反应进行自我修理,重新形成这种"钝化膜",继续起保护作用。

因此,所有的不锈钢都具有一种共同的特性,即铬含量均在10.5%以上。

六、不锈钢的类型

"不锈钢"一词不仅仅是单纯指一种不锈钢,而是表示一百多种工业不锈钢,所开发的每种不锈钢都在其特定的应用领域具有良好的性能。成功的关键首先是要弄清用途,然后再确定正确的钢种。有关不锈钢的进一步详细情况可参见由NiDI编制的"不锈钢指南"软盘。

幸而和建筑构造应用领域有关的钢种通常只有六种。它们都含有17~22%的铬,较好的钢种还含有镍。添加钼可进一步改善大气腐蚀性,特别是耐含氯化物大气的腐蚀。

耐大气腐蚀

经验表明,大气的腐蚀程度因地域而异。为便于说明,建议把地域分成四类,即:乡村,城市,工业区和沿海地区。

乡村是基本上无污染的区域。该区人口密度低,只有无污染的工业。

城市为典型的居住、商业和轻工业区,该区内有轻度污染,例如交通污染。

工业区为重工业造成大气污染的区域。污染可能是由于燃油所形成的气体,例如硫和氮的氧化物,或者是化工厂或加工厂释放的其它气体。空气中悬游的颗粒,像钢铁生产过程中产生的灰尘或氧化铁的沉积也会使腐蚀增加。

沿海地区通常指的是距海边一英里以内的区域。但是,海洋大气可以向内陆纵深蔓延,在海岛上更是如此,盛行风来自海洋,而且气候恶劣。例如,英国气候条件就是如此,所以整个国家都属于沿海区域。如果风中夹杂着海洋雾气,特别是由于蒸发造成盐沉积集聚,再加上雨水少,不经常被雨水冲刷,沿海区域的条件就更加不利。如果还有工业污染的话,腐蚀性就更大。

美国、英国、法国、意大利、瑞典和澳大利亚所进行的研究工作已经确定了这些区域对各种不锈钢耐大气腐蚀的影响。有关内容在NiIDI出版的《建筑师便览》中作了简单介绍,该书中的表可以帮助设计人员为各种区域选择成本效益最好的不锈钢。

在进行选择时,重要的是确定是否还有当地的因素影响使用现场环境。例如,不锈钢用在工厂烟囱的下方,用在空调排气挡板附近或废钢场附近,会存在非一般的条件。

  轴承钢,是钢铁行业里应用得最为广泛的一种,也是钢铁生产过程中要求最严格的钢种之一。使用轴承钢,可以有效地提高轴承的扭转性能、降低噪音和延迟使用寿命。由于其性能优越,所以国际上严格要求了其成分必须具有均匀的硬度、耐磨性和高的弹性极限,但其成分里究竟应该包含多少碳量、多少含铬量,却是一门大大的学问。每一位冶金技术人员都应该懂得不同种类的轴承钢的成分构成,才能更顺利地冶炼出高质量的轴承钢。

  轴承钢,作为是所有钢铁生产中要求最严格的钢种之一,其含碳量ωc为1%左右,含铬量ωcr为05%-165%。国际上按照国际标准,将轴承钢分为六大类:高碳铬轴承钢、无铬轴承钢、渗碳轴承钢、不锈轴承钢、中高温轴承钢及防磁轴承钢。其中,高碳铬轴承钢GCr15产量目前已占到世界轴承钢生产总量的80%以上。而高碳铬轴承钢GCr15是世界上生产量最大的轴承钢,含碳Wc为1%左右,含铬量Wcr为15%左右。从1901年诞生至今100多年来,高碳铬轴承钢GCr15的主要成分基本上没有改变过。以至于轴承钢如果没有特殊的说明,那就是指GCr15。

  一般的轴承钢,主要都是高碳铬轴承钢,即含碳量1%左右,加入15%左右的铬,并含有少量的锰、硅元素的过共析钢。铬可以改善热处理性能、提高淬透性、组织均匀性、回火稳定性,又可以提高钢的防锈性能和磨削性能。但当铬含量超过165%时,淬火后会增加钢中残余奥氏体,降低硬度和尺寸稳定性,增加碳化物的不均匀性,降低钢的冲击韧性和疲劳强度。为此,高碳铬轴承钢中的含铬量一般控制在1,65%以下。只有严格控制轴承钢中的化学成分,才能通过热处理工序获得满足轴承性能的组织和硬度。

  面对成分要求如此严格的轴承钢,其冶金过程中对质量的控制也极其严苛,要注意如下几点:

  (1)较高的尺寸精度

  (2)特别严格的纯洁度

  (3)严格的低倍组织和显微(高倍)组织

  (4)特别严格的表面缺陷和内部缺陷

  (5)严格的碳化物不均匀性

  (6)严格的表面脱碳层深度

  随着经济发展,中国各地的城市基础设施工程正进行得热火朝天,而精密的轴承等基础机械铸造业也飞速发展,造成对轴承的需求越来越多,未来的轴承钢市场前景一片光明。各大钢铁厂更要充分了解各大分类的轴承钢成分构成及其物理性能,在冶炼过程中要严格控制成分含量,同时注意对冶金质量的严格控制,使得冶炼出来的轴承钢符合国际标准,并可以满足快速增长的市场需求。

奥氏体钢的成分与性能:

由于缺乏在低温下钢的性能数据和适宜在低温下工作的材料,早期的这些高技术的发展受到了很大的影响。1973年开始在美国国防部先进计划署支持下由国家标准局执行了一项超导电机用低温材料的研究。自1977年开始在美国能源研究和发展署的支持下,国家标准局又执行了一项有关核聚变装置的超低温材料的研究。在这两个研究项目中主要是在已有的镍铬奥氏体不锈钢中选择一些钢种进行实验研究。如AISl304(18Cr-8Ni)、304L(超低碳18Cr-8Ni)、310(25Cr-20Ni)、Nitronic40(21Cr-6Ni-9Mn)、Nitronic33(18Cr-3Ni-12Mn)、Nitronic50(22Cr-13Ni-5Mn)等钢种。

近十年来,清洁的新能源核聚变反应堆的研究和开发促进了Fe-Mn-Cr钢的广泛研究。这是因为采用Fe-Mn-Cr钢代替Fe-Ni-Cr钢作为核聚变反应堆的结构材料,不仅能大幅度降低成本,同时也具有优良的抗肿胀性能,特别是可以显著减少长期残留有害的放射线污染,这为核聚变反应堆的维修和废物处理提供了方便。通过研究,认识到这些传统的镍铬奥氏体不锈钢不适合制造大型超导设备及装置所需的高性能低温结构材料。归纳起来,其主要原因有以下几点。

(1)传统或改良的镍铬奥氏体不锈钢的屈服强度太低。

(2)钢的奥氏体组织稳定性比较差,因为这些钢的马氏体转变温度(舰)都在室温上下或低于室温不多,所以在比较低的温度下部分奥氏体转变成马氏体,改变了材料的强度、韧度和磁性等性能。

(3)增大镍和铬的含量可以增加奥氏体组织稳定性,但会使钢在低温下出现磁性,并且不会对强度有较大的贡献。

(4)在核聚变装置中有可能由于镍而产生半衰期很长的放射性同位素。

(5)镍元素比较贵,是紧缺资源,并且镍降低Neel(TN)温度。

为制造以上这些现代高技术仪器、设备和装置,需要开发在各种条件下所使用的新型结构钢材料。主要的性能技术要求如下。

(1)高的屈服强度。由于强磁场、高应力等环境因素的作用,结构材料受到很大的载荷,材料必须具有高的屈服强度。

(2)优良的塑韧性。许多设备是在低温、超低温下工作,安全可靠性非常重要,材料应具有良好的塑韧性(特别是低温下的塑韧性),以防止发生低应力脆性破坏。

(3)无磁性。一般要求导磁率低于102。通常只限于具有奥氏体组织的钢。在诸如受控热核聚变、磁浮高速列车、超导电磁推进船等大型超导设备中,所使用的结构材料要求无磁性。因为若带来磁性,则在结构材料自身中会产生电磁力并影响整个磁场的分布,产生涡流而发热。

(4)材料组织要稳定。如果在使用的温度和工作环境中材料的组织不稳定,会发生相变,就会降低韧度、产生磁性从而改变磁场的分布、造成体积变化和变形从而导致产生局部的高应力。

超低温(低达4K)结构用途的钢必须满足对强度和韧度的要求。尽管努力改善高强度铁素体钢的韧度,并使它适用于低温用途,但最终所选的显微组织仍然是奥氏体,因为它韧度优良。通常奥氏体Ni-Cr不锈钢是优先选用的材料,如美国300系列的AISl304、AISl310、AISl316等钢种,低碳的如日本的JIS的SUS304L、SUS316L等钢种。但通过研究发现这些镍铬不锈钢因屈服强度太低、组织不够稳定而不适用于制造许多低温设备及装置所需的超低温钢。

奥氏体钢是最适于制造这些在低温、无磁性等特殊环境下服役的结构件。其中奥氏体不锈钢是最重要的一类奥氏体钢。因为奥氏体不锈钢具有优异的不锈耐酸性、抗氧化性、抗幅照性、高温和低温力学性能、生物中性以及与食品有良好的相容性等,所以在石油、化工、电力、交通、航空、航天、航海、国防、能源开发以及轻工、纺织、医学、食品等工业领域都有广泛的用途。由于各种现代技术(特别是低温技术)的温度、应力等服役环境不同,因此对所需结构材料的性能要求也不同,必须研究开发各种系列用途的奥氏体结构钢。

所以自20世纪80年代以来,美国、日本等许多国家都致力于开发以高锰奥氏体低温钢为主要代表的各种新型奥氏体结构钢。主要有Fe-Mn、Fe-Mn-Cr、Fe-Mn-Cr-N、Fe-Mn-Cr-Ni-N、Fe-Cr-Ni-N、Fe-Mn-Al、Fe-Mn-Cr-Si、Fe-Mn-Si等系列。如日本神户钢厂的22Mn-13Cr-5Ni-02N和18Mn-16Cr-5Ni-02N,新日铁的25Mn-5Cr-lNi、25Mn-15Cr-1Ni一1Cu和22Mn-13Cr-3Ni一1Mo-1Cu-02N。其中日本神户钢厂研制的18Mn-16Cr-5Ni一022N具有较优的低温性能,它符合日本原子能研究所关于热轧状态钢在4K的强度和韧度的规范。苏联开发了铸造用Mn-Cr不锈钢,它是在常用的Fe-Cr-Mn钢的基础上添加适量的Ce、Cu、Ti、Zr等元素而开发的新钢种,其成分为(质量分数%):(002%~015%)C、(19%~25%)Mn、(12%~15%)Cr、(005%~010%)N、(02%~08%)Si、(0005%~001%)Ba、005%Ca、(005%~020%)Ce、(0005%~020%)Zr、(04%~4%)Cu、(55%~15%)Ti。美国阿·勒德隆钢公司开发了Cr-Ni-Mn奥氏体不锈钢,它的最高含碳量为003%,是一种低碳奥氏体不锈钢,兼有高强度和高延性。氮强化生物用不锈钢有17Cr-12Mn-3Mo-09N、17Cr-10Mn-3Mo-05N、18Cr-13Mn-04N等。对于这些材料,还在不断的进行研究并逐步的完善。

我国在此方面的研究起步较晚,早期曾研制了一些Fe-Mn-Al系的适用于77K的超低温钢,这些钢的强度比较低。并在超低温钢中均用氮来强化,而在Fe-Mn-Al钢中无法用氮来强化,因为氮和铝会结合夹杂物。在我国也曾仿制美国的Nitronic40(21Cr-6Ni~9Mn)钢,但该钢组织中容易出现扩铁素体,而且有磁性。在国外也因此钢易出现争铁素体和低温韧性过低而不再继续研究。戴起勋等比较系统地研究了低温奥氏体钢的组织和形变、断裂特征以及合金元素和温度对强度、韧性的影响;讨论了层错能和合金元素对层错能的作用m],并根据变温相变理论的推导得出了相变驱动力和层错能的直接关系,讨论了层错能对马氏体类型、形貌的影响,在此基础上,进一步研究了合金元素和层错能对低温奥氏体钢的相变的强度的综合影响,为低温奥氏体钢的优化设计提供了一定的理论基础。

欢迎分享,转载请注明来源:品搜搜测评网

原文地址:https://pinsoso.cn/meirong/2035391.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-11-04
下一篇2023-11-04

随机推荐

发表评论

登录后才能评论
保存