太阳能热水器是按温度和水位自动上水的。
当水箱的水温度高于一定温度,就会自动上凉水中和。当水箱水位低于最低水位,那么不管水箱水温多少度,此时都会上水。
水箱里面的水超过设定温度(如45℃)后,上水电磁阀(或水泵)打开,冷水经过电磁阀(或水泵)往太阳能里面上水。当水箱温度低于设定温度,上水电磁阀(或水泵)关闭,停止上水。
这里有两个先决条件,即水位控制。当水箱水位低于最低水位,那么不管水箱水温多少度,此时都会上水,另外,当水箱水位已经达到满水位状态,那么不管水箱多少度,此时都不会上水。
:
日常维护
1安装太阳能热水器时,输水管内可能沾有尘埃或油味,首次使用时可打开水龙头先排除杂物。
2太阳能热水器内的存水,应根据当地的水质状况作定期的排放,排水时间可选于早上集热器较低温时。
3太阳能热水器表面,依地区落尘量而作定期的擦试,下雨时能起到自行清洗,保持热水器的表面清洁可得到较高的集热效率。
参考资料:
1、根据水泵进出口压差,与水泵扬程对比,看是否一致。如果相差太多则水泵没有完全做功,考虑水泵本身问题。判断水泵本体是否有气,叶轮是否脱落、磨损等;
2、检查采暖外管线,是否存在管道爆裂情况;
3、检查外管线是否存在气体,同时从管路最高点排气;
4、检查水泵出口止回阀是否打开,长时间不使用有可能杂质堵住止回阀导致打不开,水流不通过;
5、检查水泵入口过滤器的过滤网是否堵住,长时间不使用有可能杂质堵住过滤网导致水流不通过;
6、检查补水泵电气控制系统,如电接点指针脱落不灵敏或者变频器损坏。
扩展资料:
自动补水阀的工作原理跟减压阀大致相似,利用入口压力和出口压力来平衡弹簧力,当系统压力不足,导致弹簧力大于入口压力与出口压力的总和。
自动补水阀阀芯在弹簧力的作用下打开,开始从入口补水,随着水不断补充到系统,自动补水阀出口端压力上升,直到入口压力和出口压力等于弹簧力,自动补水阀重新关闭。需要特别注意的是自动补水阀在设定补水压力的时候下游阀门是要关闭的,即在静压下设定。
你好,回水阀的作用是:调节回水流量。调节支路循环量,量小,增加开度,量大,减小开度 。
2、回水截止阀安装在散热器回水端,调节进水与回水之间的压差,保证散热器低噪声运行及实现末端水力平衡,调节各个供热环路的阻力平衡。产品具有其他厂家没有的流量可对应标记。
3、在些用热水的设施中,需要水达到一定的温度后再开启或关闭阀门,例如:在太阳能热水系统中,太阳能集热器中水的温度要达到60℃时,阀门才开启将热水储存在水箱中,如果低于60℃时则关闭阀门。此种控制方法,目前一般都采用电子控制方法来实现,需要电源、控温仪表、电磁阀等成本高、安装不便。
4、回水阀(补水阀)工作原理:
(1)自动补水阀带有减压稳压装置,压力值可配合压力表进行调节并自动维持调节后系统压力;当系统压力降低时,自动打开注水,到达设定压力时自动关闭,避免水压过高损坏系统设备。
(2)防止系统水回流;自动补水阀带有止回阀,防止系统水在补水水压降低或停止时回流。
(3)手动截止;为便于维修系统设备,自动补水阀配备手动截止阀,可关闭补水水源。
5、疏水阀门是用于蒸汽管网及设备中,能自动排出凝结水、空气及其它不凝结气体,并阻水蒸汽泄漏的阀门。
本实用新型涉及一种水箱自动补水系统。
背景技术:
现有建筑二次供水水箱或消防水箱采用机械浮球阀控制进水管进水,会出现浮球阀长时间泡在水中容易锈蚀损坏,更换浮球阀需要把水箱的水全部放掉,施工时需要人员进入水箱内施工等缺点,无法实现实时水位及防冻监控功能,对水质无法实时监测和杀菌,靠人工检查浪费人工成本。
技术实现要素:
本实用新型要解决的技术问题是:克服现有技术的不足,提供一种水箱自动补水系统,实现了水箱的水压、水温的实时监控,可进行水箱的自动补水、加热、过滤、杀菌等功能。
本实用新型的技术方案为:
水箱自动补水系统,包括液位传感器、温度传感器、电加热器、紫外线杀菌器和控制系统,液位传感器、温度传感器、电加热器及紫外线杀菌器分别与控制系统电连接,紫外线杀菌器设置在进水管上,液位传感器、温度传感器及电加热器设置在水箱内,进水管上还设有电磁阀,电磁阀与控制系统电连接。
优选地,所述电加热器为法兰加热管。
优选地,所述紫外线杀菌器的进水管路上设有手动阀,自清洗过滤器的进水管路上设有手动阀。
优选地,所述水箱的出水管上设有自清洗过滤器,自清洗过滤器与控制系统电连接。
本实用新型与现有技术相比,具有以下有益效果:
1本实用新型将液位传感器与控制系统相结合,不仅可以实现水箱的自动补水,还可以减少溢水事件造成的水资源损失。将温度传感器与控制系统相结合,可对水温进行实时监控并进行自动加温,避免了冬天水箱和管道被冻裂的风险,减少损失。通过紫外线杀菌器对进水进行杀菌,可以有效提高水质,防止水质污染。通过自清洗过滤器对出水进行过滤及水质检测,可以保证出水的质量要求并免去人工检测的人力成本。本实用新型采用液位传感器替代浮球阀,避免了浮球阀易锈蚀损坏、更换浮球阀需要把水箱的水全部放掉、施工时需要人员进入水箱内施工等问题,实现了水箱的水压、水温的实时监控,可进行水箱的自动补水、加热、过滤、杀菌等功能。
2本实用新型可用于工业与民用建筑水箱、水池、二次供水、消防水池水箱等的实时监控,安全可靠性高,自动化程度高,有节省看护水位人力的优点。
附图说明
图1是本实用新型的结构示意图。
图中,1-液位传感器、2-温度传感器、3-电加热器、4-紫外线杀菌器、5-进水管、6-水箱、7-电磁阀、8-手动阀、9-出水管、10-自清洗过滤器。
具体实施方式
实施例1
如图1所示,本实施例提供了一种水箱6自动补水系统,包括液位传感器1、温度传感器2、电加热器3、紫外线杀菌器4和控制系统,液位传感器1、温度传感器2、电加热器3及紫外线杀菌器4分别与控制系统电连接,紫外线杀菌器4设置在进水管5上,液位传感器1、温度传感器2及电加热器3设置在水箱6内,进水管5上还设有电磁阀7,电磁阀7与控制系统电连接。其中,液位传感器1、温度传感器2及电加热器3分别用一根线悬挂在水箱6内,方便后续检修时将其从水箱6中取出;所述电加热器3为法兰加热管,法兰加热管为现有装置,其具体结构在此不再赘述。
工作原理:
水箱6进水管5上的电磁阀7及紫外线杀菌器4处于常闭状态,水箱6中的液位传感器1监测水箱6中的水压,可在控制系统中预设允许的最低水压值和最高水压值。当液位传感器1监测到水箱6水压低于最低水压值时,将信号反馈给控制系统,控制系统控制打开电磁阀7及紫外线杀菌器4,水由进水管5流经紫外线杀菌器4消毒杀菌后流入水箱6内。当液位传感器1监测到水箱6的水压达到最高水压值时,将信号反馈给控制系统,控制系统控制关闭电磁阀7及紫外线杀菌器4,从而实现水箱6的整个自动补水过程。
同时,水箱6内的温度传感器2监测水箱6中水的温度,可在控制系统中预设允许的最低水温值和最高水温值。当温度传感器2监测到水箱6水温低于最低水温值时,将信号反馈给控制系统,控制系统控制打开法兰加热管,法兰加热管对水箱6中的水进行加热。当温度传感器2监测到水箱6的水温达到最高水温值时,将信号反馈给控制系统,控制系统控制关闭法兰加热管,从而防止水箱6内水温过低导致管道冻裂。
实施例2
在实施例1的基础上,所述紫外线杀菌器4的进水管5上设有手动阀8,自清洗过滤器10的进水管路上设有手动阀8,以便于手动控制进水管5和出水管9的开闭,方便设备的检修,保证设备的安全性。
实施例3
在实施例1的基础上,所述水箱6的出水管9上设有自清洗过滤器10,自清洗过滤器10与控制系统电连接,自清洗过滤器10为现有装置,其具体结构在此不再赘述。
通过在出水管9上设置自清洗过滤器10,可以对水箱6流出的水进行过滤,去除掉水中的杂质,便于使用。
实施例4
在实施例1的基础上,所述控制系统包括wifi模块,可与手机无线连接,手机内设有水箱监控app,这样就可以在手机端实时监控水箱6情况,当液位、温度发生异常情况时报警。
尽管通过参考附图并结合优选实施例的方式对本实用新型进行了详细描述,但本实用新型并不限于此。在不脱离本实用新型的精神和实质的前提下,本领域普通技术人员可以对本实用新型的实施例进行各种等效的修改或替换,而这些修改或替换都应在本实用新型的涵盖范围内/任何熟悉本技术领域的技术人员在本实用新型揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本实用新型的保护范围之内。因此,本实用新型的保护范围应所述以权利要求的保护范围为准。
技术特征:
1水箱自动补水系统,其特征在于:包括液位传感器(1)、温度传感器(2)、电加热器(3)、紫外线杀菌器(4)和控制系统,液位传感器(1)、温度传感器(2)、电加热器(3)及紫外线杀菌器(4)分别与控制系统电连接,紫外线杀菌器(4)设置在进水管(5)上,液位传感器(1)、温度传感器(2)及电加热器(3)设置在水箱(6)内,进水管(5)上还设有电磁阀(7),电磁阀(7)与控制系统电连接。
2如权利要求1所述的水箱自动补水系统,其特征在于:所述电加热器(3)为法兰加热管。
3如权利要求1所述的水箱自动补水系统,其特征在于:所述紫外线杀菌器(4)的进水管路上设有手动阀(8),自清洗过滤器(10)的进水管路上设有手动阀(8)。
4如权利要求1所述的水箱自动补水系统,其特征在于:所述水箱(6)的出水管(9)上设有自清洗过滤器(10),自清洗过滤器(10)与控制系统电连接。
技术总结
本实用新型公开了一种水箱自动补水系统,包括液位传感器、温度传感器、电加热器、紫外线杀菌器和控制系统,液位传感器、温度传感器、电加热器及紫外线杀菌器分别与控制系统电连接,紫外线杀菌器设置在进水管上,液位传感器、温度传感器及电加热器设置在水箱内,进水管上还设有电磁阀,电磁阀与控制系统电连接。本实用新型实现了水箱的水压、水温的实时监控,可进行水箱的自动补水、加热、过滤、杀菌等功能
给你一个方案,简单易做材料好找:
到电子元件店买个老式洗衣机的水位开关和一根软胶管。见下图。我想,具体电路和制作不用我多说了吧?
如果电机是几百瓦的小电机,可以直接用水位开关控制电机,如果是大电机,应该用水位开关带接触器,用接触器控制电机。
今天小编辑给各位分享管式热交换器原理图的知识,其中也会对管式热交换器原理图解分析解答,如果能解决你想了解的问题,关注本站哦。
U型管式换热器的工作原理是什么
换热器的工作原理都热量从高温端传递至低温段。
U型管式换热器管程每根管子都弯成U形,管子的两端分别安装在同一固定管板的两侧,并用隔板将封头隔成两室,每根管子都可以自动收缩,与其它管子和外壳无关。
即使壳体与管子间温差很a时也使用,实际生产中循环水冷却高温气体便常用U型管式换热器,换热器列管腐蚀或泄漏后可只换芯子,但不宜清洗。
U型管压力计是历史最悠久的测量压强仪器。它在用于真空测量中属于绝对真空计,可作为真空计量标准。它的典型原理结构如右图所示。它是由两根测量管构成,通过测量管内工作液柱的高度差h,即可计算出待测压力P的值。液柱的一侧需用抽真空等方法使其上的压力P0比起待测压力P来。
可以忽略不计,这种压力计的精度和测量下限,主要取决于如何测准液柱面的高度差h和测量h的精度,以及工作液体的密度。测量h的方法很多,如直接用刻度尺测量,用测高仪、点接触测微计、光学干涉法等等,其中干涉法的精度最高。
工作液体最早采用的是汞,而在真空测量中为向低压量程扩展,也常用饱和蒸气压低且密度和粘度小的油类。这种压力计可测量低、中真空。
管式换热器的工作原理是什么?
管式换热器又称管壳式换热器和列管式换热器,管式换热器的工作原理如下:
管壳式换热器有多层导热特性良好的材料叠合而成工作原理和热水器类似。
热水器是由燃气燃烧时产生热而换热器是发热的介质不是明火,换热器内部有两路管道回路,一个是热源另一个是被加热源热源就像热水器燃烧时的火焰如热水或蒸汽等。
被加热源就像热水器里被加热的水。还有热源回路中换热器的热源进口前有一个调节阀通过改变这个阀门的开度就可以调节被加热源的温度。
:
管式换热器是最典型的间壁式换热器,它在工业上的应用有着悠久的历史,而且至今仍在所有换热器中占据主导地位。管式换热器主要有壳体、管束、管板和封头等部分组成,壳体多呈圆形,内部装有平行管束,管束两端固定于管板上。
参考资料:
热交换器的工作原理
原理:压缩机将冷冻剂压缩成高压饱和气体,这种气态冷冻剂再经过冷凝器冷凝。
通过节流装置节流之后,通入到蒸发器中,将所需要冷却的媒介冷却换热。例如将蒸发器连接到楼里的各个房间,蒸发器内的蛇行管将同空气进行换热,再通过鼓风将冷气吹向房间的空气当中。
而蒸发器蛇行管内的冷冻剂换热后变成低压蒸气回到压缩机,再被压缩机压缩,这样循环利用就完成了制冷系统。
制热与制冷原理相同,即逆卡诺循环,与制冷原理不同的是冷凝器和蒸发器的对换,即:压缩机-蒸发器-节流装置-冷凝器。
扩展资料:
热敏传感换热机组特点
1、传热迅捷、换热高效、换热效率可达100%。
2、冷凝水充分回收,循环利用,整个系统水自洁防垢,换热器、散热器及换热系统可保持长效稳定高效的热交换性能,最大限度降低系统结垢现象,不会因难以克服的结垢弊端而降低系统换热效率。
3、换热器采用全不锈钢制作,产品结构设计科学,工艺制作精良,使用寿命长,可达20年以上。
4、关键部件采用德国先进工艺技术及订单加工,因而主机不受蒸汽压力及系统压力影响,有效消除噪音、汽击现象,整机运行平稳。
5、冷凝水被完全吸收和利用,系统没有特殊原因,无需设置补水装置,大大节约了系统用水及运行费用。
6、整套机组结构紧凑,占地面积小,大大节省土建投资,同时,由于换热效率极高,运行中系统又无需补水,整个机组节汽、节电、节水三位一体,为用户创造可观的节能效益。
7、机组具备高智能自动化控制功能,可实现超压、超温保护,断电蒸汽自动切断及室外温度自动补偿功能并可实现远程监控,为用户提供高枕无忧的运行平台。
8、应用领域广阔,可广泛用于热电、厂矿、食品医疗、机械轻工、民用建筑等领域的采暖、热水洗浴及其他用途。
9、应用条件宽泛,可用于较大压力、温度范围的热交换。
参考资料:
管式热交换器原理图及分类详解
随着人们对热能认识的加深,需求越来越大,很多人在工作或者生活中常会听到会见到这么一个东西——热交换器。热交换器是指将热流体内的热能传递到冷流体的器具,以满足规定的工艺要求的装置,是对流传热及热传导的一种工业应用。简单来说也就是一种内部接触面较大又相对密封的一种容器。家用的热交换器比较常见,咱们今天就说一下在工业领域中应用比较广泛的管式热交换器。
基本概念
在管式换热器内进行换热的两种流体,一种在管内流动,其行程称为管程;一种在管外流动,其行程称为壳程。管束的壁面即为传热面。为提高管外流体给热系数,通常在壳体内安装一定数量的横向折流档板。折流档板不仅可防止流体短路,增加流体速度,还迫使流体按规定路径多次错流通过管束,使湍动程度大为增加。常用的档板有圆缺形和圆盘形两种,前者应用更为广泛。
流体在管内每通过管束一次称为一个管程,每通过壳体一次称为一个壳程。为提高管内流体的速度,可在两端封头内设置适当隔板,将全部管子平均分隔成若干组。这样,流体可每次只通过部分管子而往返管束多次,称为多管程。同样,为提高管外流速,可在壳体内安装纵向档板使流体多次通过壳体空间,称多壳程。在管式换热器内,由于管内外流体温度不同,壳体和管束的温度也不同。
基本分类
固定管板式
固定管板式换热器是将两端管板直接与壳体焊接在一起。主要由外壳、管板、管束、封头等主要部件组成。壳体中设置有管束,管束两端采用焊接、胀接或胀焊并有的方法将管子固定在管板上,管板外周围和封头法兰用螺栓紧固。固定管板式换热器的结构简单、造价低廉、制造容易、管程清洗检修方便,但壳程清洗困难,管束制造后有温差应力存在。当换热管与壳体有较大温差时,壳体上还应设有膨胀节。
浮头式
浮头式换热器一端管板固定在壳体与管箱之间,另一端管板可以在壳体内自由移动,也就是壳体和管束热膨胀可自由。故管束和壳体之间没有温差应力。一般浮头可拆卸,管束可以自由地抽出和装入。浮头式换热器的这种结构可以用在管束和壳体有较大温差的工况。管束和壳体的清洗和检修较为方便,但它的结构相对比较复杂,对密封的要求也比较高。
“U”型管式
U形管式换热器是将换热管炜成U形,两端固定在同一管板上。由于壳体和换热管分开,换热管束可以自由伸缩,不会由于介质的温差而产生温差应力。U形管换热器只有一块管板,没有浮头,结构比较简单。管束可以自由的抽出和装入,方便清洗,具有浮头式换热器的优点,但由于换热管做成半径不等的U形弯,最外层换热管损坏后可以更换外,其它管子损坏只能堵管。同时,它与固定管板式换热器相比,由于换热管受弯曲半径的限制它的管束中心部分存在空隙,流体很容易走短路,影响了传热效果。
以上就是工业中常用的管式热交换器的分类与细分分类下的结构原理图,原理简单而设计上又比较复杂,工艺、材质要求也较高,目的就是为了提升热交换器的换热效率。然而管式热交换器因为其特殊的管状构造,在使用过程中使用的流体肯定包含一些杂质等,很难彻底清洗。这也就造成了企业对于资源、时间、人力的浪费,今后在清洗方面将是主要发展的方向。
目前,广大农村青壮年大都进城务工,留守在家的是那些老弱病残和小孩,他们在生活中会遇到许多困难,比如生活用水。虽然许多农村家庭都有压水井。但很多情况下因为水面太深,压起水来十分吃力;有不少家庭在房顶修有小型水塔,用小型单相抽水机抽水组建自家的“自来水”系统,但抽水是人工控制的,老人小孩上去不安全。为此,在《通用技术》课上,我提出了设计一个自动抽水装置的设想。在老师的指导下,几经改进和完善,设计并制作了这个小型水塔自动抽水控制电路。
通过在十几个农户家近一年的实际使用,发现它安全、稳定、可靠,完全无须人工参与,解决了留守在家的老人、小孩的生活用水问题,同时也减轻了在外务工人员的后顾之忧。现将该装置介绍如下。
一、电路原理图及工作原理
整个控制装置的电路原理见图1。它由水位检测、比较输出、控制执行和电源等部分组成。整个控制电路以LM386为核心组成,LM386本是一块音频小功放集成电路,这里用作电压比较。
电路工作原理:其中,P1、P2、P3是设置在水塔中且彼此绝缘的三个水位探测电极。P1是最高水位检测电极,与电源正极相连,始终呈高电位(9v)。P2是最低水位检测电极,与LM386的反相输入端相连。P3是锁定电极,通过继电器的一组常闭触点与电源相连,当触点断开时呈低电位,闭合时呈高电位。
当合上闸刀开关K以后(正常情况下此开关无须断开),经变压器B将220V交流电压转换为75V左右的交流电压,经桥式整流电路(QD)整流、电容C4滤波后形成约9V的直流电压为整个控制电路供电。
开始时,由于水塔中无水,LM386的同相输入端(3)经R1与Rp对电源电压进行分压后而始终保持一定的电位,但反相输入端(2)却由于下拉电阻R1而保持0电位,故LM386(5)脚输出高电平(接近电源电压),继电器J1吸合,常闭触点JK11断开,常开触点JK12闭合,于是,交流接触器J2得电吸合,触点组JK21、JK22闭合,抽水电机得电工作,给水塔补水。
由于不断补水,水塔中水位不断上升,即使P2没入水中,由于P3悬空,电位为O,电路仍保持这一状态不变而继续补水,水位继续上升。当P1与水面接触的瞬间,因自然水导电,而使LM386的反相输入端(2)的电位高于同相输入端(这一点在电路调试时调定),于是,LM386翻转,输出低电平,继电器J21失电而释放,导致JK11闭合,JK12断开,交流接触器失电释放,停止补水。
同时,因JK11。闭合,P3处于高电位,即使水面退出P1,仍可通过P3来维持电路目前的状态。一旦水面退出到P2离开水面的一瞬间,LM386的(2)脚回到O电位,LM386再一次翻转,JK11断开,P3又一次悬空,JK12闭合,如前所述,抽水电机得电进行再一次补水,如此循环,实现自动补水。
经过一个多月的试用,发现电路工作十分稳定可靠,完全无须人工参与,十分有用!
二、元件选择、电路调试及安全注意事项
控制电路的核心元件是一块LM386集成电路,它本是一块音频小功率放大电路,这里用作电压比较,有一定的输出,可直接驱动继电器。J1用6~9V的直流继电器,须有两组常闭常开触点。交流接触器用250V,容量不小于20A的两相交流接触器(家用水泵的功率一般为750W到1KW左右,但考虑到启动电流较大)。电源变压器是一个十分重要的元件,因长期通电工作,虽然电路耗电不大,但也要选用20VA以上的电源变压器,以确保长期通电工作而不至于过热而损坏,此点十分重要!整流电路用的是全桥,无特殊要求。电阻用1/4W碳膜电阻即可,阻值见图注。电容参数见图,无特殊要求。保护二极管D用1N4007或4148均可。
电路调试很简单,那就是要保证LM386的反相输入端得电后(不管是通过P1还是通过P3),其电位必需高于同相输入端的电位,这可通过调节Rp来实现。
再就是设置在水塔中的三个检测水位变化的电极P1、P2、P3必须彼此绝缘。同时,他们长期设置在水中,为防止电极因电化学反应而锈蚀,应采用碳棒代替。碳棒可从废旧干电池中取得,但必须用砂纸反复打磨,用酒精反复清洗晾干,然后将连接碳棒和控制电路的细长绝缘导线一端剥出10cm左右,缠绕在碳棒的一端,再用防水胶粘在一块玻璃板上。
碳棒缠绕导线的一端应用防水胶封牢,不能露出导线的任何金属部分,碳棒的另一端露在外面,再将三块粘有探测电极的玻璃板分别用防水胶粘到水塔内部适当的地方,即P1粘到水位的上限位置,P2粘在水位的下限位置,同时要保证短暂停电的供水,故建议将P2设置在比出水口以上适当的地方,P3粘在水池底即可(对金属水塔可不设置P3,而将连接P3的导线直接连在金属桶的任何地方)。通过这样处理后,电极和导线就不容易因电化学放映而锈蚀了。
电极设置时,一定要注意在无水时应是相互绝缘的,尤其是购置的成品金属小水塔。对于成品封闭式水塔,其电极的设置建议将其先粘贴在一根绝缘细杆上如PVC管上,并在外部确定三个电极的高度,再由排气孔或钻一小孔后插入,再想办法固定。
(指导老师:阊松茂 杨金耿)
欢迎分享,转载请注明来源:品搜搜测评网